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In this paper, we derive a fixed-point theorem for self-mappings.)at is, it is shown that every isometric self-mapping on a weakly
compact convex subset of a strictly convex Banach space has a fixed point.

1. Introduction

LetX be a Banach space andC be a closed convex subsetX.
Let T: C⟶ C be a self-mapping ofC. Recall that T is said
to be nonexpansive if

‖Tx − Ty‖≤ ‖x − y‖, (1)

for all x, y ∈ C. )e fixed-point set of T is
Fix(T): � x ∈ C: Tx � x{ }. We say that the subset C of X
is said to have an approximate fixed-point sequence for a
nonexpansive self-map T if

lim
n⟶∞

xn − Txn

����
���� � 0, (2)

for any sequence xn􏼈 􏼉n≥ 1 ⊂ C. When the closed convex subset
C is bounded, then such a sequence always exists; indeed, by
letting εn ∈ (0, 1), for all n≥ 1, be a null sequence and defining
the maps Tnx � εnx0 + (1 − εn)Tx where arbitrarily x0 ∈ C,
one can see that ‖Tny − Tnx‖≤ (1 − εn)‖Ty−

Tx‖≤ (1 − εn)‖y − x‖, implying that Tn is a contraction
mapping with contraction constant 1 − εn. By the Banach
contraction mapping theorem, it follows that there exists a
unique xn ∈ C such that Tnxn � xn, which implies that

xn � εnx0 + 1 − εn( 􏼁Txn, (3)

from which we get ‖xn − Txn‖ � εn‖x0 − Txn‖

≤ εnsupx,y∈C‖x − y‖. Given that εn⟶ 0 and
supx,y∈C‖x − y‖<∞, it follows that xn􏼈 􏼉n≥ 1 is an approxi-
mate fixed-point sequence.

Another way of constructing an approximate fixed-point
sequence is to require or assume that Fix(T) is nonempty.
Now due to the assumption that Fix(T)≠∅, the sequence
xn􏼈 􏼉n≥ 1 ⊂ C is bounded (indeed, ‖xn − p‖≤ ‖x0 − p‖ for all

p ∈ Fix(T) and x0 taken arbitrarily in C). Hence,

xn − Txn

����
���� � εn x0 − Txn

����
����⟶ 0, (4)

and xn􏼈 􏼉n≥ 1 is an approximating fixed point for T.
Amapping T: C⟶ C of a setC in a Banach spaceX is

called isometric if

‖Tx − Ty‖ � ‖x − y‖, (5)

for all x, y ∈ C. Note that an isometric mapping is just a
nonexpansive mapping in which the inequality is always an
equality. A well-known result of Brodskii and Milman [1]
asserts that ifC is a weakly compact convex subset ofX and
X has normal structure, thenX has the fixed-point property
for isometric mappings. In particular, any compact convex
subset of X has the fixed-point property (see [2]).

References [3–10] can be consulted for fixed-point
problems on isometric mappings.

Definition 1 (strictly convex Banach space). A strictly
convex Banach space is a Banach space such that whenever
x≠ 0≠y, then ‖x + y‖ � ‖x‖ + ‖y‖ if and only if x � λy for
some λ> 0.

An example of a strictly convex Banach space is a Hilbert
space.
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Definition 2 (convex linear). Let X be a Banach space and
C⊆X be a closed convex subset of X. )en, the map
T: C⟶ X is said to be a convex linear if

T(ax +(1 − a)y) � aTx +(1 − a)y, (6)

for all x, y ∈ C and a ∈ (0, 1).
An example of a convex linear is a linear map.

2. Preliminaries

We introduce the following useful theorems that will be used
in the proof of our main result.

Theorem 1 (Mazur’s theorem). Every nonempty convex
subset of a Banach space is strongly closed if and only if it is
weakly closed.

Theorem 2 (Cantor’s intersection theorem). Let X be a
topological space. A decreasing nested sequence of nonempty
compact closed subset of X has nonempty intersection. In
other words, suppose that Ck is a sequence of nonempty

compact closed subset of X satisfying C0
C1

,...,Cn
Cn+1

,...

, and it
follows that

∩ kCk)≠∅.􏼐 (7)

3. Main Result

We give the proof of the main result of this paper, which is
accomplished in )eorem 3 below. )e following lemma,
corollary, and proposition shall aid us in arriving at the
conclusion of the main result.

Lemma 1. LetX be a strictly convex Banach space andC⊆X
be a closed convex subset and T: C⟶ C be an isometric
mapping. .en, T is convex linear on C. .at is, T(ax +

(1 − a)y) � aTx + (1 − a)Ty for all x, y ∈ C and a ∈ (0, 1).

Proof. Let w � ax + (1 − a)y and a ∈ (0, 1). Without loss of
generality, assume x≠y. )en, w − x � (1 − a)(y − x)

implies that

‖w − x‖ � (1 − a)‖y − x‖. (8)

Similarly, w − y � a(x − y) which also implies that

‖w − y‖ � a‖x − y‖. (9)

First, we show that Tx≠Ty≠Tw. To see this, we observe
that if Tx � Tw, then from (9), we have

‖w − y‖ � a‖x − y‖

� a‖Tx − Ty‖

� a‖Tw − Ty‖

� a‖w − y‖,

(10)

leading to the contradiction that a � 1.
Similarly, if Ty � Tw, then from (8), we have

‖w − x‖ � (1 − a)‖y − x‖

� (1 − a)‖Ty − Tx‖

� (1 − a)‖Tw − Tx‖

� (1 − a)‖w − x‖,

(11)

leading to the contradiction that a � 0.
Now since T is an isometry, it follows that

‖Tx − Ty‖ � ‖Tx − Tw + Tw − Ty‖

≤ ‖Tx − Tw‖ + ‖Tw − Ty‖

� ‖x − w‖ + ‖w − y‖

� (1 − a)‖x − y‖ + a‖x − y‖

� ‖x − y‖

� ‖Tx − Ty‖,

(12)

which implies that ‖Tx − Tw‖ + ‖Tw − Ty‖ � ‖Tx − Ty‖.
Since X is strictly convex and Tx≠Tw≠Ty implies that
there exist λ> 0 such that

Tx − Tw � λ(Tw − Ty),

(1 + λ)Tw � Tx + λTy,

Tw �
1

1 + λ
Tx +

λ
1 + λ

Ty,

(13)

we obtain

Tw � βTx +(1 − β)Ty, (14)

where β ∈ (0, 1) and β � 1/(1 + λ). We finally show that
β � a.

From (14), we have Tw − Tx � (1 − β)(Ty − Tx) which
implies that

‖Tw − Tx‖ � (1 − β)‖Ty − Tx‖. (15)

Also, Tw − Ty � β(Tx − Ty) implies that

‖Tw − Ty‖ � β‖Tx − Ty‖. (16)

From (16), β‖Tx − Ty‖ � ‖Tw − Ty‖ � ‖w − y‖ � a‖x −

y‖ � a‖Tx − Ty‖ which implies that β � a. Hence, from
(14), we have shown that T(ax + (1 − a)y) � aTx + (1 −

a)Ty which establishes the convex linearity of T. □

Corollary 1. Let X be a strictly convex Banach space, C⊆X
be a closed convex subset, and T: C⟶ C be an isometric
mapping. .en, the function f: C⟶ R, x⟶
‖(I − T)x‖ is a continuous convex function.

Proof. From Lemma 1, T is a convex linear. Hence, sub-
tracting the term ax + (1 − a)y from both sides of T(ax +

(1 − a)y) � aTx + (1 − a)Ty for all x, y ∈ C and a ∈ (0, 1),
we have
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(I − T)(ax +(1 − a)y) � a(I − T)x +(1 − a)(I − T)y.

(17)

We have the following evaluation:

f(ax +(1 − a)y) � ‖(1 − T)(ax +(1 − a)y)‖

� ‖a(1 − T)x +(1 − a)(1 − T)y‖

≤ a‖(1 − T)x‖ +(1 − a)‖(1 − T)y‖

� af(x) +(1 − a)f(y).

(18)

)us, f is a convex function and continuous (because T

is continuous). □

Proposition 1. Let f: C⟶ R be continuous convex
function on a weakly compact convex subsetC of any Banach
space X. .en, f attains its minimum on C. .at is, there
exist x ∈ C such that

f(x) � min f(x): x ∈ C􏼈 􏼉. (19)

Proof. Let m � inf f(x): x ∈ C􏼈 􏼉. We show that m> −∞
and that f(x) � m for some x ∈ C.

Suppose that m � −∞, and for each n ∈ N, define
Cn � x ∈ C: f(x)≤ − n􏼈 􏼉. For each n ∈ N, the set Cn is
closed (and weakly closed by )eorem 1), convex, and
nonempty (since m � −∞). )erefore, (Cn)∞n�1 forms a
nested decreasing sequence of weakly compact nonempty
sets. By )eorem 2, ∩∞n�1Cn ≠∅. But this implies that there
is some x ∈ C such that f(x)≤ − n for all n ∈ N, an im-
possibility. Consequently, m> −∞.

So define n ∈ N a sequence of sets
Cn
′ � x ∈ C: f(x)≤m + (1/n)􏼈 􏼉 for all n belonging to N

(natural numbers). As before, (Cn
′)∞n�1 is a nested sequence

of weakly compact nonempty sets and so ∩∞n�1Cn
′ ≠∅. If

x ∈ ∩∞n�1Cn
′, then x ∈ C and f(x) � m as required. □

Theorem 3 (main result). Every isometric self-mapping
T: C⟶ C on a weakly compact convex subset C of a
strictly convex Banach Space X has a fixed point.

Proof. We know from Corollary 1 that f(x): � ‖(I − T)x‖

is a continuous convex function. So, by Proposition 1, f

attains its minimum on C, say x. By the approximate fixed
point of T, it is always possible to choose a sequence
xn􏼈 􏼉n≥ 1 ⊂ C such that f(xn) � ‖xn − Txn‖≤ (1/n) for all

n≥ 1. Hence, ‖(I − T)x‖ � inf
x∈C

‖(I − T)x‖ � 0 and so
Tx � x. □

Example 1. Let C � [0, 1] and T: [0, 1]⟶ [0, 1], Tx � 1 −

x for all x ∈ [0, 1]. )en, T is an isometry, and by)eorem 3,
T has a fixed point.

As an application of )eorem 3, it is desired to solve the
linear problem

x − v � λ(Tx − v), λ ∈ (0, 1), (20)

for some nonzero scalar λ and constant vector v, where
T: C⟶ C is linear and C is closed and convex. )e
following theorem gives a solution.

Theorem 4. Let C be a closed convex subset of a Banach
spaceX and let T: C⟶ C be linear and continuous. .en,
equation (20) has a solution if the following holds:

(1) ‖T‖B(X,X) � λ− 1

(2) C is weakly compact
(3) X is strictly convex

Proof. By defining the auxiliary mapping

T′: C⟶ C, x⟼ λTx +(1 − λ)v, (21)

it is clearly seen that T′ is well defined and invariant on C

since C is convex and λ ∈ (0, 1). Since
T′y − T′x � λ(Ty − Tx), then by taking norms gives us

T′y − T′x
����

����X � λ‖Ty − Tx‖X. (22)

Since T is bounded, then

T′y − T′x
����

����X ≤ λ‖T‖B(X,X)‖y − x‖X � λ · λ−1
‖y − x‖X

� ‖y − x‖X.

(23)

Since T′ is an isometry, then by)eorem 3, one can find
a solution x � T′x � λTx + (1 − λ)v. □
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