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Global sequence alignment is one of the most basic pairwise sequence alignment procedures used in molecular biology to
understand the similarity that arises among the structure, function, or evolutionary relationship between two nucleotide se-
quences. )e general algorithm associated with global sequence alignment is the dynamic programming algorithm of Needleman
andWunsch. In this paper, patterns are exploited in the score matrix of the Needleman–Wunsch algorithm.With the help of some
examples, the general patterns realized are formulated as new a priori propositions and corollaries that are established for both
equal and unequal length comparisons of any two arbitrary sequences.

1. Introduction

Sequence alignment is the matching of strings or sequences
of characters to identify patterns that may lead to informed
structural or functional relationships between the strings or
sequences matched. Varying situational problems seem to
require the use of sequence alignment and examples abound
from computer science to molecular biology, where se-
quences are usually aligned to make more meaning out of
them. Bare [1] has discussed how researchers have over the
years considered genetic sequences as strings of characters
instead of focusing on their intrinsic properties to be able to
compute the similarity among two or more related se-
quences. Global and local sequence alignment are used for
matching two sequences, and they are categorized as pair-
wise sequence alignment or multiple sequence alignment
when any alignment matches more than two sequences
[2–4]. )e Needleman–Wunsch algorithm [5–7] and the
Smith–Waterman algorithm [8] are the general algorithms
associated with pairwise global and local alignment, re-
spectively. )ese two algorithms utilize a procedure called
the dynamic programming approach. Dynamic program-
ming as coined by Bellman in the 1940s is simply the process

of solving a bigger problem by finding optimal solutions to
its smaller nested problems [9–11].)us, to tackle a problem
in the context of dynamic programming, it must possess the
notion of recurrence. In [12, 13], an algorithm is said to be a
well-defined computational task that accepts input and
produces output values after following through a systematic
method. Mathematical theory is thus a prerequisite behind
the designing of functional programs [14, 15], and the al-
gorithm design specializes in solving such problems. Global
sequence alignment is mentioned as one of the vast dynamic
programming applications in practical problems [16–18].

More recently, Ouzounis and Baichoo [19] have stated
that even though pairwise sequence alignment has been dealt
with over time, concerns still remain in resolving exact
evolutionary distances that demand very specific estimates.
)ey have suggested the existence of theoretical relation-
ships within alignments, algorithms, and data that are yet to
be found. Motivated by the display of position-dependent
arrays for affine gaps using the Needleman–Wunsch algo-
rithm in [20, 21], we consider the more basic linear gap
penalties using arbitrary sequences and proceed to find
patterns in the score matrix which were absent in the
presentation. )is approach was taken because it is found
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missing in the available stream of literature although it can
be likened to the edit graph illustration seen in [1]. To the
best of our knowledge, there has never been any theoretical
exposition of this kind for the most basic and very funda-
mental concept of constant linear gap penalties which
constitute an implicit part of affine gap penalties. )us, we
focus on finding patterns in global sequence alignment using
constant linear gap penalties and attempt the display of
completed score matrices of the Needleman–Wunsch al-
gorithm with distinct positional arrays that can be inspected.
We give confirmation of this by basic proofs and suggest
how predictions can be made. To offer the reader the much
needed convenience, concepts that are deemed useful are
recalled in brief with corresponding references of compre-
hensive works that give more in-depth information.

2. Needleman–Wunsch Algorithm

Let the recursive formulation for the Needleman–Wunsch
algorithm be

(1) Initialization

Let P(0, 0) � 0,
Pm(i, 0) � Pm(i − 1, 0) + gap penalty, ∀i � 1, . . . , μ1
and
Pm(0, j) � Pm(0, j −1) + gap penalty, ∀j � 1, . . . , μ2,
where P(0, 0) is the initialization pivot for the score
matrix, Pm(i, 0) is the initial row pivot for the score
matrix, and Pm(0, j) is the initial column pivot for
the score matrix.

(2) Cell Box Calculation

Let

Pm(i, j) � max

PD(i, j) � Pm(i − 1, j − 1) + σ(α(i), β(j)),

PR(i, j) � Pm(i − 1, j) + gap penalty,

PL(i, j) � Pm(i, j − 1) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

(1)

where Pm(i, j) is the pivot for each cell box calculation,
PD(i, j) � Pm(i − 1, j − 1) + σ(α(i), β(j)) is the diagonal
value of a cell box, PR(i, j) � Pm(i − 1, j) + gap penalty is the
right value of a cell box, PL(i, j) � Pm(i, j − 1) + gap penalty
is the left value of a cell box, and σ(α(i), β(j)) is the score for
aligning the sequence characters of α(i) and β(j).

Specifically, the procedure for the Needleman–Wunsch
algorithm follows the dynamic programming approach of
the score matrix, traceback, and alignment as outlined in the
subsequent sections.

2.1. Score Matrix. )e score matrix is a tabular box con-
structed to keep count of score results. )e score matrix for
the Needleman–Wunsch algorithm begins with an initiali-
zation process and ends with the calculation of cell boxes.

2.1.1. Initialization. A sequence matrix is created with
μ1 + 1 columns and μ2 + 1 rows in order for the initial
matrix gap to be aligned where μ1 and μ2 are the lengths

of arbitrary sequences, 〈α〉 and 〈β〉, respectively. )e
letters of the sequence α fill in the horizontal axis, and
similarly, the characters of 〈β〉 fill in the vertical axis of
the sequence matrix created. Before the scoring begins
from the upper left corner of the initialized matrix to the
lower right corner of the matrix, the value P(0, 0) � 0 is
assigned to the intersection of the first row and the first
column of the matrix (i.e., the initial gap). )e reason for
the gap penalty for an alignment is because of the
possibility of mutation which may insert or delete a
string character from one of the sequences. Arrows that
point in the direction of positional movement (diagonal
and left or right) are placed in each cell box of the matrix
and only terminate when all the cell boxes are completely
filled.

2.1.2. Calculation of Cell Boxes in the Score Matrix

(1) Fill the initialized gap values first on both the hor-
izontal axis and the vertical axis with a defined
constant gap value score

(2) Follow with the calculation of each cell box having
the three position-dependent arrays (left/beside,
right/bottom, or diagonal)

(3) Allow only a match/mismatch value for a “diagonal”
position, and allow the “bottom” or “beside” posi-
tions to take linear gap values only

(4) For each computed cell box values, find the maxi-
mum score and let that be the pivot

(5) )e pivot of a computed cell box directly affects the
next cell boxes in the row or the column

2.2. Traceback. A simpler score matrix table that contains
only the pivot of each cell box calculation is constructed
from the original position-dependent arrays of the score
matrix table. Arrow pointers are used to direct a path from
the highest score or an optimal value in the matrix (which
actually occurs at the lower right end corner of the matrix)
and traced back to the next biggest value of the predecessors
until we reach the intersection of the first row and the
column with the initial gap.

2.3. Alignment

2.3.1. Alignment Generation from a Traceback. To write the
sequence characters that appear from the optimal alignment
path of the traceback stage, the following steps are followed:

(1) When the arrow is diagonal, write both characters in
the alignment

(2) When the arrow is vertical, write the corresponding
horizontal character, and in place of the vertical
character, leave a gap

(3) When the arrow is horizontal, write the corre-
sponding vertical character, and in place of the
horizontal character, leave a gap
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)us, for both the vertical and horizontal arrow posi-
tions, one character and a gap are written for the alignment,
where the gap explicitly replaces a character position in the
alignment. An alignment can only be inferred as the best if
the optimal value from the score matrix table corresponds to
the alignment score calculation (based on the scoring
scheme defined).

2.3.2. 0e Problem of Aligning Any Two Sequences. )e
problem of aligning any two sequences can be simplified as
discovering the optimal means of aligning any two arbitrary
sequences say 〈α〉 and 〈β〉 such that the character “−” noted
as a gap is filled into both 〈α〉 and 〈β〉 or either of them
where

(1) Any single character in 〈α〉 matches a single char-
acter in 〈β〉 or a gap

(2) )e final sum of scores from the scoring function
over the aligned pairs and the gap penalties as given
by the function of gap penalty is maximized

2.3.3. Letter Choice for Arbitrary Sequences. )e letter
choice of this study shall be that of DNA considered as a
string of four characters of adenine—A, guanine—G,
cytosine—C, and thymine—T.

3. Scheme for Scoring

Definition 1. )e constant gap penalty, v(k) � g × k, where
g is an assigned constant and k is the sequence length count
of i � 1, . . . , μ1 for the score matrix row and j � 1, . . . , μ2 for
the score matrix column.)is is the penalty awarded to gaps
and is also known as the linear gap function.

Definition 2. )e affine gap penalty is the penalty awarded to
gaps where a greatest consecutive sequence of k gaps is given
as v(k) � q + gk, where q is the penalty charged for opening
the gap and g is the penalty charged for extending it.

)us, more formally we define

(1) A constant linear gap as

v(k) � gk. (2)

(2) An affine gap as

v(k) �
q + gk, k≥ 1,

0, k � 0.
 (3)

Altschul’s theory: assign positive scores to an identity
and conserved replacements, and assign negative scores to
less likely replacements.

Remark 1. Needleman and Wunsch use the “identity ma-
trix” in scoring with 1 for a match and 0 for a mismatch.
Needleman–Wunsch’s score was criticised for not reflecting

observations from the nature because purine-purine or
pyrimidine-pyrimidine is less prone to be mutated in
comparison with mutations of purine-pyrimidine. Because
there is no definite defined score for DNA alignment, the
choice of scoring for this study is +5 for a match, −1 for a
mismatch, and −2 for a gap as proposed in [18] following the
above theory.

More formally, let

σ(α(i), β(j)) �
+5, for α(i), β(j) charactermatch,

−1, for α(i), β(j) charactermismatch,


(4)

∀i � 1, . . . , μ1 and∀j � 1, . . . , μ2.
Also, let the linear gap penalty, v(k) � gk, where g is a

constant of “−2” and k is the sequence length count of i �

1, . . . , μ1 for the score matrix row and j � 1, . . . , μ2 for the
score matrix column.

4. Results and Discussion

4.1. Pattern Investigations in the Score Matrix of Needle-
man–WunschAlgorithm. )e sequences α and β that will be
used are arbitrary sample sequences that were chosen based
on consideration of the following:

(1) μ1 � μ2 (equal character length of sequences)
(2) μ1 ≠ μ2 (unequal character length of sequences)

4.1.1. Equal Character Length (μ1 � μ2 � μ)

Example 1. Let 〈α〉 � CTTGA and 〈β〉 � CTAGA. Because
the length of the sequence characters of 〈α〉 and 〈β〉 is
μ1 � μ2 � 5, respectively, we align α and β in a score matrix
following the above formulation.

(1) Initialization: P(0, 0) � 0 for score matrix initiali-
zation, and then for the initial row pivot, Pm(i, 0) �

Pm(i − 1, 0) + gap penalty, where ∀k � i, we find the
gap penalty as follows:

for i � 1, Pm(1, 0) � P(0, 0) + gap penalty,

⟹ 0 +(−2) � −2,

for i � 2, Pm(2, 0) � Pm(1, 0) + gap penalty,

⟹ − 2 +(−2) � −4,

for i � 3, Pm(3, 0) � Pm(2, 0) + gap penalty,

⟹ − 4 +(−2) � −6,

for i � 4, Pm(4, 0) � Pm(3, 0) + gap penalty,

⟹ − 6 +(−2) � −8,

for i � 5, Pm(5, 0) � Pm(4, 0) + gap penalty,

⟹ − 8 +(−2) � −10,

(5)

and for the initial column pivot, Pm(0, j) � Pm(0, j − 1) +
gap penalty, ∀k � j, the gap penalty is obtained as follows:
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for j � 1, Pm(0, 1) � P(0, 0) + gap penalty,

⟹ 0 +(−2) � −2,

for j � 2, Pm(0, 2) � Pm(0, 1) + gap penalty,

⟹ − 2 +(−2) � −4,

for j � 3, Pm(0, 3) � Pm(0, 2) + gap penalty,

⟹ − 4 +(−2) � −6,

for j � 4, Pm(0, 4) � Pm(0, 3) + gap penalty,

⟹ − 6 +(−2) � −8,

for j � 5, Pm(0, 5) � Pm(0, 4) + gap penalty,

⟹ − 8 +(−2) � −10.

(6)

Before following with further calculation, some iden-
tification is placed on each cell box for easy noting as
shown in Table 1.

(2) Cell box calculations:

Pm(1, 1) � max

PD(1, 1) � P(0, 0) + σ(C, C) � 0 + 5 � 5,

PR(1, 1) � Pm(0, 1) + gap � −2 +(−2) � −4,

PL(1, 1) � Pm(1, 0) + gap � −2 +(−2) � −4.

⎧⎪⎪⎨

⎪⎪⎩

(7)

Remark 2. σ(C, C) in PD(1, 1) was “5” because that is the
assigned score for matched characters. Pm(1, 1) � max
PD(1, 1), PR(1, 1), PL(1, 1)  � max 5 −4 −4  � 5.

Pm(1, 2) � max

PD(1, 2) � Pm(0, 1) + σ(C, T) � −2 +(−1) � −3,

PR(1, 2) � Pm(0, 2) + gap � −4 +(−2) � −6,

PL(1, 2) � Pm(1, 1) + gap � 5 +(−2) � 3.

⎧⎪⎪⎨

⎪⎪⎩

(8)

Remark 3. σ(C, T) in PD(1, 2) was “−1” because that is the
assigned score for mismatched characters. Pm(1,2) �

max PD (1,2),PR(1,2),PL(1,2)} � max −3, −6, 3  � 3.

Pm(1, 3) � max

PD(1, 3) � Pm(0, 2) + σ(C, A) � −4 +(−1) � −5,

PR(1, 3) � Pm(0, 3) + gap � −6 +(−2) � −8,

PL(1, 3) � Pm(1, 2) + gap � 3 +(−2) � 1.

⎧⎪⎪⎨

⎪⎪⎩

(9)

Remark 4. σ(C, A) in PD(1, 3) was “−1” because that is the
assigned score for mismatched characters. Pm(1, 3) �

max PD (1, 3), PR(1, 3), PL(1, 3)} � max −5, −8, 1  � 1.
Consequently, the recursion follows similarly until all

the cell boxes are filled. In the event of a pivot tie in a cell box,
one tie value is picked. For the tabular display, these no-
tations are used interchangeably; PD(i, j) is the same as DV,
PL(i, j) is the same as LV, PR(i, j) is the same as RV, and
Pm(i, j) is the same as the pivot.

4.1.2. Pattern Results for Equal Character Length. With
reference to Tables 1 and 2 and Figure 1,

(1) )e filled-in cell boxes for column 1, i.e., cell boxes
(i, vi, xi, xvi, and xxi), have values coinciding with
that of row 1, .i.e., cell boxes (i, ii, iii, iv, and v)

(2) )e leading value (pivot) of each cell box in both row
1 and column 1 remains the same

(3) )e bottom value in column 1 switches to become
the beside value in row 1 and vice versa

(4) For each 3 pointed arrow intersecting any 4 cell
boxes, the beside value of a 2nd cell box also coin-
cides with the bottom value of a 3rd cell box

(5) For each cell box, the value of the preceding bottom
value is less than the value of the immediate next
adjacent diagonal value

4.1.3. Traceback and Alignment for Equal Character Length.
)e traceback and alignment stages for equal character
length of sequences are, respectively, shown in this section.

Figure 2 shows the pivot of each cell box calculation of
the score matrix table of CTTGA and CTAGA in Figure 1.
)us, Figure 2 is a simpler score matrix table constructed
from the original score matrix table of CTTGA and CTAGA
in Figure 1. )e arrow pointers direct the path from the
optimal value and traceback to the initialization value of
zero. Based on the traceback and the diagonal direction of
the arrow pointers, the alignment is written as

CTTGA,

CTAGA.
(10)

To confirm the correctness of the alignment done, we
check using calculations. Recall the scoring scheme:
match�+5, mismatch� −1, and gap� −2. We have four
alignment matches: C − C, T − T, G − G, and A − A and one
mismatched alignment: T − A . Hence,

5 + 5 − 1 + 5 + 5 � 19, (11)

which is the same as the optimal value from the score matrix
table. )e alignment is thus optimal.

4.1.4. Unequal Character Length (μ1 ≠ μ2)

Example 2. Suppose 〈α〉 �AGCTG and 〈β〉 TCAG, then to
fill in the score matrix values of the cell boxes, the prior-
stated recursive formulation is used. )is results in Figures 3
and 4.

Table 1: Identifying cell boxes of CTTGA and CTAGA.

C T T G A
0 −2 −4 −6 −8 −10

C −2 i ii iii iv v
T −4 vi vii viii ix x
A −6 xi xii xiii xiv xv
G −8 xvi xvii xviii xix xx
A −10 xxi xxii xxiii xxiv xxv
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4.1.5. Pattern Results for Unequal Character Length

(1) )e filled-in cell boxes for column 1, i.e.,
(i, vi, xi, and xvi) cell boxes, have consistent values
with that of row 1, i.e., (i, ii, iii, and iv), up until
where they terminate at (v) and at the inconsistent
(iii)

(2) Except for where an inconsistency is noted at (v) and
(iii), the pivot values for each cell box of row 1 and
column 1 remain the same

(3) For each 3 pointed arrows intersecting any 4 cell
boxes, the beside value of a 2nd cell box also coin-
cides with the bottom value of a 3rd cell box

GTC T A
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G
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9

6

–2 –4

3 1

3

–3
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–6

–6 –8 –10

–15

–1

8 11

–8

–10

–2

10 4

1 7

8

1476 12

–3 1254 19

Figure 2: Traceback in the score matrix of CTTGA and CTAGA.

Table 2: Filled-in table of CTTGA and CTAGA.
i. DV� 5 LV� −4 RV� −4 Pivot� 5
ii. DV� −3 LV� 3 RV� −6 Pivot� 3
iii. DV� −5 LV� 1 RV� −8 Pivot� 1
iv. DV� −7 LV� −1 RV� −10 Pivot� −1
v. DV� −9 LV� −3 RV� −12 Pivot� −3
vi. DV� −3 LV� −6 RV� 3 Pivot� 3
vii. DV� 10 LV� 1 RV� 1 Pivot� 10
viii. DV� 8 LV� 8 RV� −1 Pivot� 8
ix. DV� 0 LV� 6 RV� −3 Pivot� 6
x. DV� −2 LV� 4 RV� −5 Pivot� 4
xi. DV� −5 LV� −8 RV� 1 Pivot� 1
xii. DV� 2 LV� −1 RV� 8 Pivot� 8
xiii. DV� 9 LV� 6 RV� 6 Pivot� 9
xiv. DV� 7 LV� 7 RV� 4 Pivot� 7
xv. DV� 11 LV� 5 RV� 2 Pivot� 11
xvi. DV� −7 LV� −10 RV� −1 Pivot� −1
xvii. DV� 0 LV� −3 RV� 6 Pivot� 6
xviii. DV� 7 LV� 4 RV� 7 Pivot� 7
xix. DV� 14 LV� 5 RV� 5 Pivot� 14
xx. DV� 6 LV� 12 RV� 9 Pivot� 12
xxi. DV� −9 LV� −12 RV� −3 Pivot� −3
xxii. DV� −2 LV� −5 RV� 4 Pivot� 4
xxiii. DV� 5 LV� 2 RV� 5 Pivot� 5
xxiv. DV� 6 LV� 3 RV� 12 Pivot� 12
xxv. DV� 19 LV� 10 RV� 10 Pivot� 19
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Figure 1: Score matrix of the cell boxes of CTTGA and CTAGA.
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Figure 3: Score matrix of AGCTG and TCAG.
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Figure 4: Labelling of the cell boxes of AGCTG and TCAG.
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(4) For each cell box, the value of the preceding bottom
value is seen to be always less than the value of the
immediate next adjacent diagonal value

4.1.6. Traceback and Alignment for Unequal Character
Length. )e traceback and alignment stages for the example
on unequal character length of sequences are, respectively,
shown below. Figure 5 shows the pivot of each cell box
calculation of the score matrix table of AGCTG and TCAG
of Table 3. Based on the traceback and the direction of the
arrow pointers, the alignment is written as

AGCTG,

T − CAG.
(12)

We check the correctness of the alignment done using
calculations. Recall the scoring scheme: match�+5, mis-
match� −1, and gap� −2. We have two alignment matches:
G − G and C − C, two alignment mismatches: A T and T A,
and one gapped alignment: G − . Hence,

−1 − 2 + 5 − 1 + 5 � 6, (13)

which is the same as the optimal value from the score matrix
table. )e alignment is thus optimal.

4.2. Propositions and Proofs for Equal Sequence Length.
)e following propositions are a priori results deduced from
the pattern results of equal character length of sequences.

Definition 3. Let the linear gap penalty be v(k) � gk, where
g is a constant of −2 and k is the sequence length count of
k � 1, . . . , μ1 for the score matrix row and k � 1, . . . , μ2 for
the score matrix column.

Definition 4. Define P(0, 0) � 0 to be the initialization pivot
for the score matrix.

Definition 5. Define Pm(i, 0) � Pm(i − 1, 0) + gap penalty,
∀i � 1, . . . , μ1, to be the initial row pivot for the score matrix.

Definition 6. Define Pm(0, j) � Pm(0, j − 1) + gap penalty,
∀j � 1, . . . , μ2, to be the initial column pivot for the score
matrix.

Definition 7. Define

Pm(i, j) � max

PD(i, j) � Pm(i − 1, j − 1) + σ(α(i), β(j)),

PR(i, j) � Pm(i − 1, j) + gap penalty,

PL(i, j) � Pm(i, j − 1) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

(14)

∀i � 1, . . . , μ1 and ∀j � 1, . . . , μ2, where Pm(i, j) is the pivot
for each cell box calculation, PD(i, j) � Pm(i − 1, j − 1) +

σ(α(i), β(j)) is the diagonal value of a cell box, PR(i, j) �

Pm(i − 1, j)+ gap penalty is the right value of a cell box,
PL(i, j) � Pm(i, j − 1)+ gap penalty is the left value of a cell
box, and σ(α(i), β(j)) is the score for aligning the sequence
characters of α(i) and β(j).

Definition 8. Define

σ(α(i), β(j)) �
+5, for α(i), β(j) charactermatch,

−1, for α(i), β(j) charactermismatch,


(15)
∀i � 1, . . . , μ1 and ∀j � 1, . . . , μ2.

Proposition 2. Filled-in cell boxes for Pm(1, j),∀j �

1, . . . , μ2 are analogous to filled-in cell boxes for Pm(i, 1),∀i �

1, . . . , μ1 for equal length comparison of sequences.

Proof. By Definition 7, we have

Pm(1, j) � max

PD(1, j) � Pm(0, j − 1) + σ(α(1), β(j)),

PR(1, j) � Pm(0, j) + gap,

PL(1, j) � Pm(1, j − 1) + gap,

⎧⎪⎪⎨

⎪⎪⎩

Pm(i, 1) � max

PD(i, 1) � Pm(i − 1, 0) + σ(α(i), β(1)),

PR(i, 1) � Pm(i − 1, 1) + gap,

PL(i, 1) � Pm(i, 0) + gap,

⎧⎪⎪⎨

⎪⎪⎩

(16)
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0
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–2 –4
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–1–1

–1

–1 –1

–8

–2

–2 –2

1 1

2

246 6

Figure 5: Traceback in the score matrix of AGCTG and TCAG.

Table 3: Filled-in table of AGCTG and TCAG.
i. DV� −1 LV� −4 RV� −4 Pivot� −1
ii. DV� −3 LV� −3 RV� −6 Pivot� −3
iii. DV� −5 LV� −5 RV� −8 Pivot� −5
iv. DV� −1 LV� −7 RV� −10 Pivot� −1
v. DV� −9 LV� −3 RV� −12 Pivot� −3
vi. DV� −3 LV� −6 RV� −3 Pivot� −3
vii. DV� −2 LV� −5 RV� −5 Pivot� −2
viii. DV� 2 LV� −4 RV� −7 Pivot� 2
ix. DV� −6 LV� 0 RV� −3 Pivot� 0
x. DV� −2 LV� −2 RV� −5 Pivot� −2
xi. DV� 1 LV� −8 RV� −5 Pivot� 1
xii. DV� −4 LV� −1 RV� −4 Pivot� −1
xiii. DV� −3 LV� −3 RV� 0 Pivot� 0
xiv. DV� 1 LV� −2 RV� −2 Pivot� −2
xv. DV� −1 LV� −1 RV� −4 Pivot� −1
xvi. DV� −7 LV� −10 RV� −1 Pivot� −1
xvii. DV� 6 LV� −3 RV� −3 Pivot� 6
xviii. DV� −2 LV� 4 RV� −2 Pivot� 4
xix. DV� −1 LV� 2 RV� −1 Pivot� 2
xx. DV� 6 LV� 0 RV� −3 Pivot� 6
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∀i, j � 1, . . . , μ since μ1 � μ2 � μ. Again, by Definitions 5
and 6,

Pm(i, 0) � Pm(i − 1, 0) + gap,

⟹PL(i, 1) � Pm(i, 0) + gap

� Pm(i − 1, 0) + gap(  + gap,

(17)

also,

Pm(0, j) � Pm(0, j − 1) + gap,

⟹PR(1, j) � Pm(0, j) + gap

� Pm(0, j − 1) + gap(  + gap.

(18)

Using Definitions 5 and 6 and applying induction,
Pm(1, 0) � P(0, 0) + gap and Pm(0, 1) � P(0, 0) + gap, thus
Pm(1, 0) � Pm(0, 1) is true. Assume Pm(k, 0) � Pm(0, k) is
always true, then

Pm(k + 1, 0) � Pm(k, 0) + gap

� Pm(0, k) + gap

� Pm(0, k + 1),

∴Pm(i, 0) � Pm(0, j).

(19)

Recall that the gap is constant, so we write
PL(i, 1) � Pm(i, 0) + gap � PR(1, j) � Pm(0, j) + gap, thus
PL(i, 1) � PR(1, j) which completes the first part of our
proof.

Again, from PL(1, j) � Pm(1, j − 1) + gap, PR(i, 1) �

Pm(i − 1, 1) + gap, and by induction, let i � 1 � j, then

PL(1, j) � Pm(1, 0) + gap

� P(0, 0) + gap + gap

� P(0, 0) + 2 gaps,

PR(i, 1) � Pm(0, 1) + gap

� P(0, 0) + gap + gap

� P(0, 0) + 2gaps.

(20)

Assume Pm(k, 0) � Pm(0, k), then

Pm(k + 1, 0) � Pm(k, 0) + gap

� Pm(0, k) + gap

� Pm(0, k + 1),

∴PR(i, 1) � PL(1, j), where i � j,

(21)

which completes the second part of our proof.
Recall,

PL(i, 1) � Pm(i − 1, 0) + 2 gaps,

PR(1, j) � Pm(0, j − 1) + 2 gaps,

PL(i, 1) � PR(1, j)was established.

(22)

It follows that Pm(i − 1, 0) � Pm(0, j − 1) is obvious.
)us, PD(1, j) � Pm(0, j −1) +σ(α(1),β(j)) and PD(i,1) �

Pm(i −1,0) +σ(α(i),β(1)). We are left to show that
σ(α(1),β(j)) � σ(α(i),β(1)).

For i � j � 1, σ(α(1), β(j)) � σ(α(i), β(1)) since α(1)

and β(1) match. For i � j≠ 1, α(1) and β(j) mismatch and
α(i) and β(1) also mismatch. )us,

σ(α(1), β(j)) � σ(α(i), β(1)), ∀i, j ∈ 1, . . . , μ. (23)

Hence, PD(1, j) � PD(i, 1) since Pm(i − 1, 0) �

Pm(0, j − 1). □

Corollary 3. 0e right value of filled-in cell boxes for
Pm(1, j),∀j � 1, . . . , μ2 becomes the left value of filled-in cell
boxes for Pm(i, 1),∀i � 1, . . . , μ1 and vice versa.

Proof. From Proposition 2 and Definitions 5–7, it is clear
that

PL(i, 1) � PR(1, j),

PR(i, 1) � PL(1, j),

where i � j.

(24)

□

Corollary 4. 0e pivot values, Pm(1, j),∀j � 1, . . . , μ2 and
Pm(i, 1),∀i � 1, . . . , μ1, are the same for comparison of equal
length of sequences.

Proof. By Definition 7,
Pm(1, j) � max PD(1, j), PR(1, j), PL(1, j) , ∀j � 1, . . . , μ2,

Pm(i, 1) � max PD(i, 1), PR(i, 1), PL(i, 1) , ∀i � 1, . . . , μ1,

(25)

and by Proposition 2, we can write that Pm(1, j) � Pm(i, 1).
Hence, it is proved. □

Proposition 5. For each three pointed arrows intersecting
any four cell boxes, the left value of a 2nd cell box corresponds
to the right value of a 3rd cell box.

Proof. Let Pm(i, j), Pm(i + 1, j), Pm(i, j + 1), and
Pm(i + 1, j + 1) be any four cell boxes, then we are to show
that PL(i, j + 1) � PR(i + 1, j). By Definition 7,
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Pm(i, j) � max

PD(i, j) � Pm(i − 1, j − 1) + σ(α(i), β(j)),

PR(i, j) � Pm(i − 1, j) + gap penalty,

PL(i, j) � Pm(i, j − 1) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

Pm(i + 1, j) � max

PD(i + 1, j) � Pm(i, j − 1) + σ(α(i + 1), β(j)),

PR(i + 1, j) � Pm(i, j) + gap penalty,

PL(i + 1, j) � Pm(i + 1, j − 1) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

Pm(i, j + 1) � max

PD(i, j + 1) � Pm(i − 1, j) + σ(α(i), β(j + 1)),

PR(i, j + 1) � Pm(i − 1, j + 1) + gap penalty,

PL(i, j + 1) � Pm(i, j) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

Pm(i + 1, j + 1) � max

PD(i + 1, j + 1) � Pm(i, j) + σ(α(i + 1), β(j + 1)),

PR(i + 1, j + 1) � Pm(i, j + 1) + gap penalty,

PL(i + 1, j + 1) � Pm(i + 1, j) + gap penalty,

⎧⎪⎪⎨

⎪⎪⎩

PR(i + 1, j) � Pm(i, j) + gap penalty,

PL(i, j + 1) � Pm(i, j) + gap penalty.

(26)

Since the linear gap penalty is equal in both cases and it is
obvious that Pm(i, j) is the same in both cases, we write
PL(i, j + 1) � PR(i + 1, j). □
Corollary 6. For any two adjacent row cell boxes, the right
value of a preceding cell box is less than the diagonal value of
the next cell box.

Proof. Let Pm(i, j) and Pm(i, j + 1) be any two adjacent cell
boxes. )en, by Proposition 5, we write

PR(i, j) � Pm(i − 1, j) + gap penalty,

PD(i, j + 1) � Pm(i − 1, j) + σ(α(i), β(j + 1)).
(27)

Weare left to show that gap penalty < σ(α(i), β(j+ 1)). □

Remark 5. By Altschul’s theory, a match and mismatch are
chosen to be greater than a gap penalty.We recall the scoring
scheme of the constant g being “−2” in the linear gap penalty
gk and the diagonal score being “−1” when there is a
mismatch and “+5” when there is a match.

For any k count, ∀k � 1, . . . , μ, the linear gap penalty gk

decreases, and thus the gap penalty can never be greater than
or equal to any of the diagonal scores allocated for match and
mismatch. )us,

gap penalty σ(α(i), β(j + 1))
√√√√√√√√√√√√√√
mismatch diagonal score

match diagonal score

,

∀i, j � 1, . . . , μ.

(28)

Hence, PR(i, j)<PD(i, j + 1),∀i, j � 1, . . . , μ.

4.3. Proposition and Proof for Unequal Sequence Length.
)e following proposition holds a priori from the pattern
results of unequal character length of sequences. We state
and prove the following general results by adhering to the
same definitions stated earlier under the equal character
length of sequences.

Proposition 7. For each three pointed arrows intersecting
any four cell boxes, the left value of a 2nd cell box corresponds
to the right value of a 3rd cell box.

Proof. Let Pm(i, j), Pm(i + 1, j), Pm(i, j + 1), and Pm(i + 1,

j + 1) be any four cell boxes, then we are to show that
Pm(i + 1, j) � Pm(i, j + 1). Refer to the proof of Proposition
5. Despite the unequal sequence length of μ1 ≠ μ2, the
supposed disparity in length has no bearing on the
proof. □

Corollary 8. For any two adjacent row cell boxes, the right
value of a preceding cell box is less than the diagonal value of
the next cell box.

Proof. Refer to the proof of Corollary 6. Again, despite the
unequal sequence length of μ1 ≠ μ2, the supposed disparity in
length has no bearing on the proof. □
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5. Conclusion

In this paper, the score matrix of the Needleman–Wunsch
algorithm was exploited for possible patterns. Given any two
arbitrary sequences of equal or unequal length, a general
pattern was formulated as new a priori propositions and
corollaries. )ese new formulated propositions and corol-
laries are justified with their corresponding proofs.
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