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Using an algebraic point of view we present an introduction to the groupoid theory; that is, we give fundamental properties of
groupoids as uniqueness of inverses and properties of the identities and study subgroupoids, wide subgroupoids, and normal
subgroupoids. We also present the isomorphism theorems for groupoids and their applications and obtain the corresponding
version of the Zassenhaus Lemma and the Jordan-Hölder theorem for groupoids. Finally, inspired by the Ehresmann-Schein-
Nambooripad theorem we improve a result of R. Exel concerning a one-to-one correspondence between partial actions of groups
and actions of inverse semigroups.

1. Introduction

)e concept of groupoid from an algebraic point of view
appeared for the first time in [1]. From this setting, a
(Brandt) groupoid can be seen as a generalization of a group,
that is, a set with partial multiplication on it that could
contain many identities.

Brandt groupoids were generalized by Ehresmann in [2],
where the author added further structures such as topo-
logical and differentiable structures. Other equivalent defi-
nitions of groupoids and their properties are given in [3],
where a groupoid is defined as a small category where each
morphism is invertible.

In Definition 1.1 of [4], the author follows the definition
given by Ehresmann and presents the notion of groupoid as
a particular case of universal algebra, and he defines strong
homomorphism for groupoids and proves the correspon-
dence theorem in this context. )e Cayley theorem for
groupoids is also presented in )eorem 3.1 of [5].

Recently, some applications of groupoids to the study of
partial actions are presented in different branches, for in-
stance, in [6] the author constructs a Birget-Rhodes ex-
pansion GBR associated with an ordered groupoid G and
shows that it classifies partial actions of G on sets, in the
topological context in [7] is treated the globalization

problem, connections between partial actions of groups and
groupoids are given in [8, 9]. Also, ring theoretic and co-
homological results of global and partial actions of group-
oids on algebras are obtained in [10–16]. Galois theoretic
results for groupoid actions are obtained in [12, 17–19].
Finally, the globalization problem for partial groupoid ac-
tions has been considered in [7, 20, 21].

In [19], Paques and Tamusiunas give some structural
definitions in the context of groupoid such as abelian
groupoid, subgroupoid, and normal subgroupoid and
showed necessary and sufficient conditions for a sub-
groupoid to be normal. Furthermore, they built quotient
groupoids.

Due to the applications of the groupoids to partial ac-
tions and their usefulness, we will give an elementary in-
troduction to the theory of groupoids from an axiomatic
definition following Lawson [22].

Our principal goal in this work is to continue the al-
gebraic development of a groupoid theory. )e paper is
organized as follows. After the introduction, in Section 2, we
present groupoids from an axiomatic point and show some
properties of them. In Section 3 we recall the notions of some
substructures of groupoids, such as subgroupoid, wide
subgroupoid, and normal subgroupoid. In Section 4, we
prove the correspondence and isomorphism theorems for
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groupoids. In the final section we show an application
of section four, we prove the Zassenhaus Lemma and
Hölder theorem for groupoids, and we improve )eorem
4.2 of [23] using the Ehresmann-Schein-Nambooripad
theorem.

It is important to note that the notion of the groupoid
can be presented from categories, algebraic structures, and
universal algebra. In the last setting, the isomorphism
theorems are valid, but the idea is to do an algebraic pre-
sentation and verify which assumptions are necessary. So it
is possible to reach a wider audience.

2. Groupoids

Now, we give two definitions of groupoids from an algebraic
point of view.

Definition 1 (see [22], p. 78). Let G be a set equipped with a
partial binary operation on G × G which is denoted by
concatenation. If g, h ∈ G and the product gh is defined, we
write ∃gh. An element e ∈ G is called an identity if

∃eg implies eg � g,

∃g′e implies g′e � g′.
(1)

)e set of identities ofG is denoted byG0.)enG is said
to be a groupoid if the following axioms hold:

(i) ∃g(hl), if and only if ∃(gh)l and g(hl) � (gh)l

(ii) ∃g(hl), if and only if ∃gh and ∃hl

(iii) For each g ∈ G, there are unique identities d(g) and
r(g) such that ∃gd(g) and ∃r(g)g

(iv) For each g ∈ G, there is an element g− 1 ∈ G such
that ∃g− 1g, ∃gg− 1, d(g) � g− 1g, and r(g) � gg− 1

)e following definition of groupoid is presented in
Definition 1.1 of [24].

Definition 2. A groupoid is a set endowed with a product
map

G
2∃(g, h)⟼gh ∈ G, (2)

where the set G2 ⊆ G × G is called the set of composible
pairs and an inverse mapG ∋ g⟼g− 1 ∈ G such that for all
g, h, l ∈ G the following relations are satisfied.

(G1) (g− 1)− 1 � g

(G2) If (g, h), (h, l) ∈ G2, then (gh, l), (g, hl) ∈ G2 and
(gh)l � g(hl)

(G3) (g− 1, g) ∈ G2 and if (g, h) ∈ G2, then g− 1(gh) � h

(G4) (g, g− 1) ∈ G2 and if (l, g) ∈ G2, then (lg)g− 1 � l

We shall check that Definitions 1 and 2 are equivalent.
First, we need a couple of lemmas.

Lemma 1 (see [25], Lemma 1.1.4). Suppose that G is a
groupoid in the sense of Definition 1. Let g, h ∈ G. +en ∃gh,
if and only if d(g) � r(h).

Proof. Let g, h ∈ G such that ∃gh. By (iv) of Definition 1, we
have that ∃g− 1,∃h− 1, d(g) � g− 1g, and r(h) � hh− 1. Since
∃gh, then ∃g− 1ghh− 1. )at is, ∃d(g)r(h). Now, since d(g)

and r(h) are identities, then d(g) � d(g)r(h) � r(h).
Conversely, if d(g) � r(h), then ∃gr(h), and since gr(h) �

g(hh− 1) we have ∃g(hh− 1). Whence by (ii) of Definition 1,
we have that ∃gh. □

Lemma 2. Suppose that G is a groupoid in the sense of
Definition 1. +en, the element g− 1 in (iv) is unique and
(g− 1)− 1 � g.

Proof. For each g ∈ G, assume that there exists y, z ∈ G
such that ∃yg, ∃gy, ∃zg, ∃gz, yg � d(g) � zg, and gy �

r(g) � gz. Notice that yg � zg which implies that
(yg)g− 1 � (zg)g− 1, which is defined by (ii) of Definition 1,
and then by associativity, yr(g) � zr(g). )us, yd(y) �

zd(z), so y � z. It is analogous for gy � gz. In particular,
the inverse is unique.

Finally, the equality (g− 1)− 1 � g follows from the
uniqueness of the inverse of g− 1.

We give the following. □

Proposition 1. Let G be a set. +en, it is a groupoid in the
sense of Definition 1, if and only if it is a groupoid in the sense
of Definition 2.

Proof. Let G2 � (g, h) ∈ G × G |∃gh . By using (iv) of
Definition 1, we define G ∋ g⟼ g− 1 ∈ G. )en, by
Lemma 2 this map is well defined. We shall check
(G1)–(G4) of Definition 2:

(G1) It is the second assumption in Lemma 2.
(G2) If (g, h), (h, l) ∈ G2, then ∃gh and ∃hl. By (i) and

(ii), ∃(gh)l and ∃g(hl), that means (gh, l),

(g, hl) ∈ G2 and (gh)l � g(hl).

(G3) By item (iv), we get that (g− 1, g) ∈ G2. Let h ∈ G
with (g, h) ∈ G2. By Lemma 1, we get that d(g) �

r(h), and by using (iii), we obtain g− 1(gh) � h.

(G4) )is is proved analogously to the previous item.

Conversely, suppose that G is a set. We define a partial
binary operation onG by ∃gh, if and only if (g, h) ∈ G2 and
gh � m(g, h). We shall check that properties (i)–(iv) in
Definition 1 hold:

(i) Let g, h, l ∈ G such that ∃g(hl). )en
(g, hl), (h, l) ∈ G2 and by (G4), (l, l− 1) ∈ G2 and h �

(hl)l− 1. )us, (g, hl), (hl, l− 1) ∈ G2 and by (G2),
(g(hl), l− 1) ∈ G2 and [g(hl)]l− 1 � g[(hl)l− 1] � gh.
In particular, (g, h) ∈ G2. We conclude that
(g, h), (h, l) ∈ G2 and by using (G2), we get that
(gh)l � g(hl). Conversely, suppose that ∃(gh)l.
)en, (g, h), (gh, l) ∈ G2 and by (G3), we have
that (g− 1, g) ∈ G2 and g− 1(gh) � h. )us,
(g− 1, gh), (gh, l) ∈ G2 and by (G2), (h, l) ∈ G2.
Finally, since (g, h) ∈ G2 we obtain, again by (G2),
that (g, hl) ∈ G2. Hence, ∃g(hl).

(ii) )is is shown analogously to the previous items.
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(iii)(iv) If g ∈ G, then (g− 1, g), (g, g− 1) ∈ G2. )us, we
set r(g) � gg− 1 and d(g) � g− 1g. Hence, by
(G2), (G3), and (G4), ∃gd(g), ∃d(g)g, and the
equalities gd(g) � g � r(g)(g) hold. □

Remark 1. )e interested reader can find another two
equivalent definitions of groupoids in [26, 27].

From now on in this work G denotes a groupoid.
For the sake of completeness, we give the proof of some

known consequences of Definition 1.

Proposition 2 (see [25], Lemma 1.1.4). For each g, h, k, l ∈G
we have:

(i) If ∃gh, then d(gh) � d(h) and r(gh) � r(g).
(ii) ∃gh, if and only if ∃h− 1g− 1, and in this case (gh)− 1 �

h− 1g− 1.

Proof

(i) For the first equality, we prove that d(h) satisfies the
axiom (iii) from Definition 1. Indeed, assume that
∃gh. )en, ∃(gh)d(h), d(g) � r(h), and

(gh)d(h) � g(hd(h)) � gh. (3)

In a similar way, it is possible to show that
r(gh) � r(g).

(ii) We have that ∃gh, if and only if d(g) � r(h). Notice
that for any l ∈ G we have that

d(l) � l
− 1

l � l
− 1

l
− 1

 
− 1

� r l
− 1

 . (4)

)en, d(h− 1) � r(g− 1). )at is, ∃h− 1g− 1. Furthermore,

gh h
− 1

g
− 1

  � g hh
− 1

 g
− 1

� gr(h)g
− 1

� gd(g)g
− 1

� gg
− 1

� r(g) � r(gh),

h
− 1

g
− 1

 gh � h
− 1

g
− 1

g h � h
− 1

d(g)h � h
− 1

r(h)h � h
− 1

h � d(h) � d(gh).
(5)

)erefore, by the uniqueness of the inverse element, we
get that (gh)− 1 � h− 1g− 1.

)e following statements also follow from the definition
of groupoid. □

Proposition 3. Let g ∈ G. +en, the following statements
hold:

(i) d(g) � r g
− 1

 ,

(ii) d(d(g)) � d(g),

(iii) r(r(g)) � r(g),

(iv) d(r(g)) � r(g),

(v) r(d(g)) � d(g).

(6)

Proof

(i) )is is (4)
(ii) d(d(g)) � d(g− 1g) � d(g), where the last equality

follows from (i) of Proposition 2
(iii) r(r(g)) � r(gg− 1) � r(g), where the last equality

also follows from (i) of Proposition 2

Items (iv) and (v) are proved analogously. □

Remark 2. LetG be a groupoid. In ([12], p. 3660), Bagio and
Paques called an element e ∈ G an identity if e � d(g), for
some g ∈ G.

Proposition 4. Let G be a groupoid. An element e of G is an
identity in the sense of Bagio and Paques, if and only if it
satisfies (1).

Proof. Suppose that e � d(h) is an identity in the sense of
Bagio and Paques, for some h ∈ G. By (i) of Proposition 3,
e � d(h) � r(h− 1). Now, let g, g′ ∈ G such that ∃eg and
∃g′e. By Lemma 1 and (ii)–(v) of Proposition 3, we have that
d(g′) � r(e) � e � d(e) � r(g), then eg � r(g)g � g and
g′e � g′d(g′) � e. )erefore, e satisfies (1).

Conversely, suppose that e ∈ G satisfies (1). By (iii) of
Definition 1, we get∃ed(e) and e � ed(e). )us e � d(e), and it
follows that e is an identity in the sense of Bagio and Paques. □

Remark 3. It follows from the proof of Proposition 4 that
d(e) � e � r(e), ∃ee, and ee � e � e− 1 for any e ∈ G0.
Moreover, note that the elements of G0 are the unique
idempotents ofG. In fact, if ∃g2 and g2 � g, then (gg)g− 1 �

gg− 1 and so gr(g) � gg− 1 � r(g). Since d(g) � r(g), it
follows that g � gd(g) � gr(g) � r(g).

Proposition 5. Let e ∈ G0. +en, the set Ge �

g ∈ G | d(g) � r(g) � e  is a group.

Proof. By Remark 3, we have that d(e) � r(e) � e. )us
e ∈ Ge. If g, h ∈ Ge, then d(g) � e � r(h), and so ∃gh thanks
to Lemma 1. Now, (i) of Proposition 2 implies that d(gh) �

d(h) � e and r(gh) � r(g) � e. Hence, gh ∈ Ge. If g ∈ Ge,
then by Lemma 1, ∃ge and ∃eg and we have that ge �

gd(g) � g and eg � r(g)g � g. )erefore, e is the identity
element of Ge. Finally, let g ∈ Ge. By Proposition 3,
d(g− 1) � r(g) � e and r(g− 1) � d(g) � e. Hence, g− 1 ∈ Ge,
gg− 1 � g− 1g � e, and we conclude that Ge is a group. □

Definition 3. )e group Ge is called the isotropy group
associated with e. )e isotropy subgroupoid (see Definition 5)
or the group bundle associated toG is defined by the disjoint
union Iso(G) � ∪e∈G0

Ge.
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Remark 4. A concept of abelian groupoid was presented in
([19], p. 111) as follows: a groupoid G is abelian if d(g) �

r(g) for each g ∈ G; and gh � hg, for all g, h ∈ G with
d(g) � r(h).

We have the following.

Proposition 6. A groupoid G is abelian in the sense of
Paques and Tamusiunas, if and only if G � Iso(G) and Ge is
abelian for all e ∈ G0.

In the light of Proposition 6, we prefer to use the fol-
lowing definition of the abelian groupoid.

Definition 4 (see [28], Definition 1.1). A groupoid G is
called abelian if all its isotropy groups are abelian.

Note that if G is abelian in the sense of Paques and
Tamusiunas, then it is abelian in the sense of Definition 4.
Now, consider the groupoid G � g, g− 1, d(g), r(g)  with
d(g)≠ r(g). )en, we have that Gd(g) � d(g)  and
Gr(g) � r(g) . )at is,G is an abelian groupoid in the sense
of Definition 4, but it is not a union of abelian groups.

3. Normal Subgroupoids, the Quotient
Groupoid and Homomorphisms

In this section, we present a theory of substructures in a
groupoid. We follow the definition of subgroupoid given in
[19].

Definition 5. LetG be a groupoid andH a nonempty subset
of G.H is said to be a subgroupoid of G if it satisfies: for all
g, h ∈H,

(i) g− 1 ∈H
(ii) If ∃gh, then gh ∈H

If H is a subgroupoid of G, then it is called wide if
H0 � G0.

Remark 5. It is clear that ifH is a subgroupoid of G, then it
is a groupoid with the product (2), restricted to
H2 � (H × H) ∩ G2.

Example 1. Let G be a groupoid.

(1) Take a ∈ G such that d(a) � r(a). )e set C(a) �

{g ∈ Gd(a) | ga � ag} is a subgroupoid of G. Indeed,
first of all note that by assumption a ∈ C(a). If
x, y ∈ C(a), then x, y ∈ Gd(a), xa � ax, and
ya � ay. Since Gd(a) is a group, then ∃(xy)a and

(xy)a � x(ya) � x(ay) � (xa)y

� (ax)y � a(xy).
(7)

)at is, xy ∈ C(a). If x ∈ C(a), then x− 1 ∈ Gd(a).
Hence, we have that ∃x− 1a and x− 1a � ax− 1 since
ax � xa. Observe that this example generalizes the
concept of centralizer in groups.

(2) Suppose that G is abelian and n> 1. )en the set
Hn � an | a ∈ Iso(G){ } is a subgroupoid of G. If
x, y ∈Hn, then x � an, y � bn for some
a, b ∈ Iso(G). If ∃xy then ∃anbn, and this implies
that ∃ab and thus a, b ∈ Ge for some e ∈ G0. )en,
ab � ba, and so xy � (ab)n ∈H. Now, if x ∈H,
then x � an for some a ∈ G. )us,
x− 1 � (an)− 1 � (a− 1)n ∈Hn. Finally, note that for
g ∈ G, d(g) � d(g)n ∈Hn. Hence, G0 ⊆ H, and
we conclude that H is wide.

(3) Suppose that G is abelian. )en, the set Tor(G) �

g ∈ Iso(G) | gn ∈ G0 for some n ∈ N  is a wide
subgroupoid of G. First, it is clear that
G0 ⊆ Tor(G). If g, h ∈ Tor(G), then gn � e, hk � f

for some n, k ∈ N and some e, f ∈ G0. )us, we
obtain that d(g) � d(gn) � e � r(gn) � r(g) and
d(h) � d(hk) � f � r(hk) � r(h). If ∃gh, then
d(g) � r(h) and thus e � f and gh � hg, since G is
an abelian groupoid. )en
(gh)nk � gnkhnk � (gn)k(hk)n � d(g), that is,
gh ∈ Tor(G). Now, since gn � e we have
(g− 1)n � (gn)− 1 � e, and hence g− 1 ∈ Tor(G). We
conclude that Tor(G) is a wide subgroupoid of G.
Note that if we take a fixed n ∈ N and define the set
Dn � g ∈ G | gn ∈ G0 , then Dn is a wide sub-
groupoid of G and Dn ⊆ Tor(G). )at is, Dn is a
subgroupoid of Tor(G). Observe that this example
generalizes the concept of torsion subgroup in
abelian groups.

Proposition 7. LetG be a groupoid andH,K subgroupoids
of G. +en,

(i) If HK is non-empty, then HK is a subgroupoid of
G, if and only if HK � KH

(ii) IfH andK are wide andHK is a subgroupoid, then
HK is wide

Proof. )e proof of (i) is similar to the group case. To prove
(ii), it is enough to observe that G0 � H0 � K0 and if
e ∈ G0, then e � ee ∈HK.

Now, we present the notion of a normal subgroupoid and
prove several properties of them, which generalize well-
known results in group theory. We follow the definition
given in [19]. □

Definition 6. LetG be a groupoid. )e subgroupoidH of G
is said to be normal, denoted by H⊲G, if g− 1Hg≠∅ and
g− 1Hg ⊆ H, for all g ∈ G, where g− 1Hg � g− 1hg | h ∈

H ∩ Gr(g)}.

Remark 6. By the proof of Lemma 3.1 of [19], one has that
g− 1Hg≠∅, if and only if H is wide. Also the assertion
g− 1Hg ⊆ H is equivalent to g− 1Hr(g)g � Hd(g), for all
g ∈ G.

Several examples of normal groupoids are presented in
[19], p. 110-111.

4 International Journal of Mathematics and Mathematical Sciences



Given a wide subgroupoid H of G, in [19], Paques and
Tamusiunas define a relation on G as follows: for every
g, l ∈ G,

g ≡ Hl⟺ ∃l− 1
g and l

− 1
g ∈H . (8)

Furthermore, they prove that this relation is a congru-
ence, which is an equivalence relation that is compatible with
products. )e equivalence class of ≡H containing g is the
set gH � gh | h ∈H ∧ r(h) � d(g) . )is set is called the
left coset of H in G containing g. )en, we have the
following.

Proposition 8 (see [19], Lemma 3.12). Let H be a normal
subgroupoid ofG and letG/H be the set of all left cosets ofH
inG. +en,G/H is a groupoid such that ∃(gH)(lH), if and
only if ∃gl and the partial binary operation is given by
(gH)(lH) � glH.

)e groupoid G/H in Proposition 8 is called the quo-
tient groupoid of G by H.

Now, we present the notion of groupoid homomorphism
and prove several properties of them, which generalize well-
known results in homomorphisms of groups.

Definition 7. Let G and G′ be groupoids. A map
ϕ: G⟶ G′ is called groupoid homomorphism if for all
x, y ∈ G, ∃xy implies that ∃ϕ(x)ϕ(y), and in this case
ϕ(xy) � ϕ(x)ϕ(y).

Notice that j: G⟶ G/H defined by g⟼gH for all
g ∈ G, is a surjective groupoid homomorphism.

Definition 8. Let ϕ: G⟶ G′ be a homomorphism of
groupoids. We define the following sets:

(i) For H ⊆ G, write ϕ(H) � ϕ(h) ∈ G′ | h ∈H ,
the direct image ofH. In particular, the set ϕ(G) is
called the image of ϕ.

(ii) Ker(ϕ) � g ∈ G |ϕ(g) ∈ G0′ , the kernel of ϕ.
(iii) Let H′ ⊆ G′, ϕ− 1(H′) � g ∈ G |ϕ(g) ∈H′ , the

inverse image of H′ by ϕ.
(iv) ϕ is called a monomorphism if it is injective, an

epimorphism if it is surjective, and an isomorphism
if it is bijective.

Remark 7. IfG is abelian andH is a subgroupoid ofG, then
it is not difficult to show thatH is abelian. Moreover, ifG′ is
another groupoid, such that there is a groupoid epi-
morphism ϕ: G⟶ G′, then G′ is also abelian.

Proposition 9. Let ϕ: G⟶ G′ be a groupoid homomor-
phism. +en,

(i) For each a ∈ G, ϕ(d(a)) � d(ϕ(a)), ϕ(r(a)) �

r(ϕ(a)) and ϕ(a− 1) � (ϕ(a))− 1.
(ii) If H′ is a subgroupoid of G′, then ϕ− 1(H′) is a

subgroupoid of G. Moreover, if H′ is wide then
ϕ− 1(H′) is wide, and it contains Ker(ϕ).

(iii) If H′⊲G′, then ϕ− 1(H′)⊲G and
Ker(ϕ) ⊆ ϕ− 1(H′). In particular, Ker(ϕ)⊲G.

Proof
(i) Let a ∈ G. Since ∃ad(a) then ∃ϕ(a)ϕ(d(a)) and

ϕ(a) � ϕ(ad(a)) � ϕ(a)ϕ(d(a)). )us, by the
uniqueness of the identities ϕ(d(a)) � d(ϕ(a)).
Analogously, ϕ(r(a)) � r(ϕ(a)). Finally, since ∃aa− 1

and ∃a− 1a, then ∃ϕ(a)ϕ(a− 1) and ∃ϕ(a− 1)ϕ(a).
Moreover,

ϕ(a)ϕ a
− 1

  � ϕ aa
− 1

  � ϕ(r(a)) � r(ϕ(a)),

ϕ a
− 1

 ϕ(a) � ϕ a
− 1

a  � ϕ(d(a)) � d(ϕ(a)),
(9)

Which implies that ϕ(a− 1) � (ϕ(a))− 1.
(ii) It is not difficult to show that ϕ− 1(H′) is a sub-

groupoid of G. Now suppose that H′ is wide. By
item (i), we know that ϕ(G0) ⊆ G0′ ⊆ H′, that is,
G0 ⊆ ϕ− 1(H′). Finally, if x ∈ Ker(ϕ), then
ϕ(x) ∈ G0′ ⊆H′ and hence x ∈ ϕ− 1(H′), as
desired.

(iii) By item (ii), it is enough to see that
g− 1ϕ− 1(H′)g ⊆ ϕ− 1(H′) for all g ∈ G. Indeed, let
g− 1lg ∈ g− 1ϕ− 1(H′)g with l ∈ ϕ− 1(H′) and
d(l) � r(l) � r(g). )en, ∃lg and thus
ϕ(d(l)) � ϕ(r(g)). We have

d ϕ g
− 1

 ϕ(l)  � d(ϕ(l)) � r(ϕ(g)). (10)

)en, ∃(ϕ(g− 1)ϕ(l))ϕ(g), and since ϕ(l) ∈H′ and
H′⊲G′ we obtain that

ϕ g
− 1

lg  � ϕ g
− 1

 ϕ(l)ϕ(g) � ϕ(g)
− 1ϕ(l)ϕ(g) ∈H′.

(11)

Finally, to show that Ker(ϕ)⊲G, it is enough to observe
that ϕ− 1(G0′) � Ker(ϕ) and G0′ is normal in G′. □

3.1. Strong Isomorphism +eorems for Groupoids. In this
section, we present a special type of groupoid homomor-
phism, called the strong groupoid homomorphism. Using
these homomorphisms, we show the correspondence the-
orem and the isomorphism theorems for groupoids. )is
notion of strong groupoid homomorphism has been con-
sidered before by several authors (see [4], Remark 2.2).

Definition 9. Let ϕ: G⟶ G′ be a groupoid homomor-
phism. ϕ is called strong if for all x, y ∈ G, ∃ϕ(x)ϕ(y)

implies that ∃xy.

Example 2. Let X be a nonempty set and X2 � X × X. )en
X2 is a groupoid, where the product is given by:
(y, z)(x, y) � (x, z), for x, y, z ∈ X. )en, the map
f: G ∋ g ⟼ (d(g), r(g)) ∈ G2

0 is a strong groupoid ho-
momorphism with kernel Iso(G).
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Proposition 10. Let ϕ: G⟶ G′ be a strong groupoid
homomorphism. +en,

(i) If H<G, then ϕ(H)<G′, and Ker(ϕ)H �

ϕ− 1(ϕ(H)). In particular, Im(ϕ) � ϕ(G) and
Ker(ϕ)Hare subgroupoids of G′ andG, respectively.

(ii) If H⊲G, then ϕ(H)⊲ϕ(G).
(iii) ([29], Proposition 9) ϕ is an injective homomor-

phism, if and only if Ker(ϕ) � G0.
(iv) (+e Correspondence +eorem for Groupoids) +ere

exists a one-to-one correspondence between the
sets U � H |H<G∧Ker(ϕ)⊆H  and B �

{H′ |H′ <ϕ(G′)}. Moreover, this correspondence
preserves normal subgroupoids.

Proof

(i) It is clear that ϕ(H)≠∅. Let s, t ∈ ϕ(H) and
suppose that ∃st. )en, s � ϕ(x), t � ϕ(y) for
some x, y ∈H. Since ϕ is strong, we have that
∃xy. )us, st � ϕ(x)ϕ(y) � ϕ(xy) ∈ ϕ(H).
Now, if y ∈ ϕ(H), then ϕ(x) � y for some
x ∈H, and we have y− 1 � ϕ(x)− 1 �

ϕ(x− 1) ∈ ϕ(H).
Now, we check the equality Ker(ϕ)H � ϕ− 1

(ϕ(H)). If g ∈ ϕ− 1(ϕ(H)), then there exists
h ∈H with ϕ(g) � ϕ(h). Since ϕ is strong, we
get that ∃gh− 1 and gh− 1 ∈ Ker(ϕ). Hence, g �

(gh− 1)h ∈ Ker(ϕ)H. )e other inclusion is clear.
(ii)-(iii) )ese are similar to the group case.

(iv) First, define the functions α: U⟶B by
α(H) � ϕ(H) for each H ∈ U, and
β: B⟶ U by β(H′) � ϕ− 1(H′) for each
H′ ∈B. By (i) of Proposition 9 and (ii) of
Proposition 10, it has that β ∘ α � id and
α ∘ β � idB. )at is, α is a bijective function.
)e remaining proof follows from item (iii) of
Proposition 9 and (ii) above.

Now, we use strong homomorphisms to extend to the
groupoid context, a well-known result concerning the
product of groups. □

Proposition 11. LetH andK be subgroupoids ofG. IfK is
normal then

(i) HK is a subgroupoid of G
(ii) IfH is normal, thenHK is a normal subgroupoid of

G

(iii) If H is wide, then H ∩ K is a normal subgroupoid
of H

Proof

(i) Consider the groupoid epimorphism ϕ: G ∋ g⟼
gK ∈ G/K. )en, by the definition ofG/K the map
ϕ is strong and Ker(ϕ) � K. )us, by (i) of Prop-
osition 10 we get that KH � ϕ− 1ϕ(H) is a

subgroupoid of G. Hence, the result follows from
Proposition 7.

(ii) By the previous item, HK is a subgroupoid of G.
Moreover, it is clear thatHK is wide. Let g ∈ G and
x ∈HK ∩ Gr(g). )en, x � hk, with h ∈H, k ∈K,
d(h) � r(k) and r(h) � d(k) � r(g). )us, ∃g− 1hkg

and we have that

g
− 1

hkg � g
− 1

hr(k)kg � g
− 1

hr(g)kg

� g
− 1

hg  g
− 1

kg  ∈HK,
(12)

that is, HK is a normal subgroupoid of G.
(iii) It is clear that H ∩ K is a wide subgroupoid of H.

Let g ∈H and h ∈H ∩ K with r(h) � d(h) �

r(g). )en ∃g− 1hg and by assumptions it follows
that g− 1hg ∈H ∩ K.

Next we present the isomorphism theorems for
groupoids. □

Theorem 1 (the first isomorphism theorem). Let
ϕ: G⟶ G′ be a surjective strong groupoid homomorphism.
+en there exists a strong isomorphism ϕ: G/Ker(ϕ)⟶ G′
such that ϕ � ϕ ∘ j, where j is the canonical homomorphism
of G onto G/Ker(ϕ).

Proof. Let K � Ker(ϕ). We define ϕ: G/K⟶ G′ as
ϕ(xK) � ϕ(x), for each xK ∈ G/K. First of all, we show that
ϕ is a well defined function. Indeed, assume that xK � yK.
)en ∃y− 1x and y− 1x ∈ K. )at is ϕ(y− 1x) � d(l) for some
l ∈ G′, and then ϕ(y− 1)ϕ(x) � d(l). Since ϕ is surjective,
then l � ϕ(z), for some z ∈ G. Multiplying the above
equation by ϕ(y), we have that

ϕ(y)ϕ y
− 1

 ϕ(x) � ϕ(y)d(l)

� ϕ(y)d(ϕ(z))

� ϕ(y)ϕ(d(z))

� ϕ(yd(z)).

(13)

)en, d(y) � d(z). So ϕ(yd(z)) � ϕ(yd(y)) � ϕ(y),
whence ϕ(x) � ϕ(y). Hence, ϕ is well defined.

Now, note that ϕ is a surjective strong homomorphism.
Finally, we prove that ϕ is injective. Indeed, assume that
ϕ(xK) � ϕ(yK), that is, ϕ(x) � ϕ(y). )en, as ϕ is strong
we have that ϕ(y− 1x) ∈ G0′. )us, y− 1x ∈ K and we have
that xK � yK. □

Example 3

(1) Consider the identity function iG of the groupoid G.
)en, it is clear that iG is a surjective strong ho-
momorphism and Ker(iG) � G0. )us, by the first
isomorphism theorem, we obtain that G/G0 � G.

(2) Consider the function θ: Iso(G)⟶ Iso(G), de-
fined by θ(g) � d(g) for all g ∈ Iso(G). For
g, h ∈ Iso(G) suppose that ∃gh. )en, d(g) �

r(h) � d(h), ∃d(g)d(h), and
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θ(gh) � d(gh) � d(h) � d(g)d(h) � θ(g)θ(h). (14)

Now, let g, h ∈ Iso(G) such that ∃θ(g)θ(h). )en,
∃d(g)d(h) which implies that d(g) � d(h) and
since d(h) � r(h) we obtain ∃gh. In conclusion, θ is
a strong homomorphism, with Ker(θ) � Iso(G) and
Im(θ) � G0. Whence, by the first isomorphism
theorem, we obtain Iso(G)/Iso(G) � G0.

(3) Let G and G′ be a groupoids. )e set G × G′ is a
groupoid with the product defined by

∃(x, y) · (z, w) iff ∃x · z ∧ ∃y · w, and in this case
(x, y) · (z, w) � (x · z, y · w). Moreover, note that
(G × G′)0 � G0 × G0′. IfH⊲G andK⊲G′, thenH ×

K⊲G × G′ and G × (G′/H) × K � (G/H)×

(G′/K). Indeed, it is clear thatH × K⊲G × G′. For
the second affirmation, define ψ: G × G′ ⟶
(G/H) × (G′/K) by (g, g′)⟼ (gH, g′K), and
note that ψ is a strong homomorphism. Moreover,

Ker(ψ) � g, g′(  ∈ G × G′ ψ g, g′(  ∈ (G/H)0 × G′/K( 0
 

� g, g′(  ∈ G × G′ gH, g′K(  ∈ G0H × G0′K
 

� g, g′(  ∈ G × G′ g, g′(  ∈H × K
 

� H × K.

(15)

)us, by the first isomorphism theorem the result
follows.

Theorem 2 (the second isomorphism theorem). Let G be a
groupoid, M a wide subgroupoid of G, and N a normal
subgroupoid of G. +en, M ∩ N⊲M and

M

M ∩ N
�
MN

N
. (16)

Proof. First, note that by (i) of Proposition 11, MN is a
subgroupoid ofG. Moreover, sinceN⊲G we haveN⊲MN.
Also, it is clear that M ∩ N⊲M.

We consider ψ: M⟶ (MN/N) given by
ψ(m) � mN for all m ∈M. )en, it is clear that ψ is a strong
homomorphism. Furthermore, if (mn)N ∈ (MN/N), then
(mn)N � mN. )us, ψ is surjective. Now,

MN

N
 

0
� d(xN) xN ∈

MN

N
 


 

� d(x)N | x ∈MN{ }

� d(x)N | x � mn ∧ d(m) � r(n){ }

� d(n)N | n ∈N{ }.

(17)

On the other hand, Ker(ψ) � m ∈M | mN �{

d(n)N for some n ∈N} � M∩N. Indeed, if t ∈M ∩ N,
then tN � d(t− 1)N and thus t ∈ Ker(ψ). For the other
inclusion, if m ∈ Ker(ψ), then m ∈M andmN � d(n)N for
some n ∈N. )us, ∃d(n)m and d(n)m ∈N. )at is,
d(n) � r(m), and we have d(n)m � r(m)m � m ∈N.
Finally, by )eorem 1, we conclude that (M/M ∩ N) �

(MN/N), as desired. □

Remark 8. Given M and N as in )eorem 2, we saw in the
proof of the same theorem thatN⊲MN, which implies that

N0 ⊆ M0. Indeed, let e ∈N0. By Proposition 4, there is
n ∈ Nsuch that e � r(n). Since n � m′n′ with (m′, n′) ∈ (M ×

N) ∩ G2, then e � r(m′) ∈M0. Conversely, the condition
N0 ⊆ M0, clearly implies that N⊲MN. From this, we con-
clude that for M and N subgroupoids of G, we have that
N⊲MN, if and only if N0 ⊆ M0.

Theorem 3 (the third isomorphism theorem). Let G be a
groupoid, H⊲G and K⊲G with K ⊆ H. +en, (H/K)⊲
(G/K) and

G/K
H/K

�
G

H
 . (18)

Proof. Define φ: (G/K)⟶ (G/H) by φ(gK) � gH.
First of all, we show that φ is a well-defined function. Indeed,
if gK � lK, then ∃l− 1g and l− 1g ∈K. Since K<H, we
have l− 1g ∈H, and hence gH � lH. Now,

Ker(φ) � gK gH ∈
G

H
 

0


  � gK gH ∈ G0H

 

� gK | g ∈H  �
H

K
 .

(19)

)us, H/K⊲G/K and )eorem 1 implies that
G/K
H/K

�
G

H
 . (20)

□

4. Normal and Subnormal Series for Groupoids

In this section, we present some applications of the
isomorphism theorems of groupoids to normal and
subnormal series. In particular, we show that the Jordan-
Hölder )eorem is also fulfilled in the context of
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groupoids. First, we introduce the following natural
definitions.

Definition 10. Let G be a groupoid. )en,

(i) A subnormal series of a groupoid G, is a chain
of subgroupoids G(0) � G>G(1) > · · · >G(n)such
that G(i+1) is normal in G(i) for 0≤ i≤ n. )e factors
of the series are the quotient groupoids G(i)/G(i+1).
)e length of the series is the number of strict
inclusions. A subnormal series such that G(i) is
normal in G for all i, is called normal.

(ii) Let S: G � G(0) >G(1) > · · · >G(n) be a subnormal
series. A one-step refinement of this series is any
series of the form G � G(0) > · · · >G(i) >N>
G(i+1) > · · · >G(n) or G � G(0) > · · · >G(n) >N,
where N is a normal subrgoupoid of G(i) and G(i+1)

is normal in N (if i< n ). A refinement of a sub-
normal series S is any subnormal series obtained
from S by a finite sequence of one-step refinements.
A refinement of S is called to be proper if it is larger
than the length of S.

(iii) A subnormal series G � G(0) >G(1) > · · · >G(n) �

G0 is a composition series if each factor is simple;
that is, its only normal subgroupoids are G and G0,

and it is solvable if each factor is abelian.

Remark 9. It follows from (iv) of Proposition 10 that ifN is
a normal subgroupoid of a groupoid G, every normal
subgroupoid of G/N is of the form H/N where H is a
normal subroupoid ofG, which containsN. )us, ifG≠N,
thenG/N is simple, if and only ifN is a maximal element in
the set of all the normal subgroupoids M of G, such that
M≠G.

Proposition 12. Let G be a groupoid. +en,

(i) If G is finite, then it has a composition series
(ii) Every refinement of a solvable series is a solvable

series
(iii) A subnormal series is a composition series, if and only

if it has no proper refinements

Proof
(i) Let G(1) be a maximal normal subgroupoid of G.

)en,G/G(1) is simple by (iv) of Proposition 10. Let
G(2) be a maximal normal subgroupoid ofG(1), and
so on. Now, since G is finite, this process must end
with G(n) � G0. )us, G � G(0) >G(1) > · · · >
G(n) � G0 is a composition series.

(ii) Here we use Remark 7 to observe that if G(i)/G(i+1)

is abelian and G(i+1)⊲H⊲G(i), then H/G(i+1) is
abelian since it is a subgroupoid of G(i)/G(i+1).
Moreover, G(i)/H is abelian since it is isomorphic
to (G(i)/G(i+1))/(H/G(i+1)) by )eorem 3.

(iii) It follows from (iv) of Proposition 10 and that a
subnormal series G � G(0) >G(1) > · · · >G(n) � G0

has a proper refinement, if and only if there is a
subgroupoid H such that for some i, G(i+1)⊲
H⊲G(i) withH proper in G(i) and G(i+1) proper in
H. □

Definition 11. Two subnormal seriesS andT of a groupoid
G are equivalent, if there is a one-to-one correspondence
between the nontrivial factors ofS and the nontrivial factors
of T, such that the corresponding factors are isomorphic
groupoids.

Lemma 3. If S is a composition series of a groupoid G, then
any refinement of S is equivalent to S.

Proof. Let S: G � G(0) >G(1) > · · · >G(n) � G0. By Prop-
osition 12 (iii), S has no proper refinement. )us, the only
possible refinements of S are obtained by inserting addi-
tional copies of each G(i). Whence, any refinement of S has
exactly the same nontrivial factors as S. )erefore, it is
equivalent to S. □

Lemma 4 (Zassenhaus theorem for groupoids). Let
A∗,A,B∗,B be wide subgroupoids of a groupoidG such that

(i) A∗ is normal in A

(ii) B∗ is normal in B

+en,A∗(A ∩ B) andB∗(A ∩ B) are subgroupoids
of G such that

(i) A∗(A ∩ B∗) is a normal subgroupoid of
A∗(A ∩ B)

(ii) B∗(A∗ ∩ B) is a normal subgroupoid of
B∗(A ∩ B)

(iii) (A∗(A ∩ B)/A∗(A ∩ B∗)) �

(B∗(A ∩ B)/B∗(A∗ ∩ B))

Proof. (i) Since B∗ is normal in B, A ∩ B∗ �

(A ∩ B) ∩ B∗ is a normal subgroupoid of A ∩ B thanks
to (iii) of Proposition 11; similarly, A∗ ∩ B is normal in
A ∩ B. )en, D � (A∗ ∩ B)(A ∩ B∗) is a normal sub-
groupoid ofA ∩ B by (ii) of Proposition 11. Also, by this same
proposition, we have that A∗(A ∩ B) and B∗(A ∩ B) are
subgroupoids of A and B respectively. Now, we define

τ: A
∗
(A ∩ B) ∋ ac⟼ τ(ac) � Dc ∈

(A ∩ B)

D
 ,

(21)

for all a ∈ A∗, c ∈ A ∩ B. )e map τ is well defined since
ac � a1c1 with a, a1 ∈ A∗; c, c1 ∈ A ∩ B, implies that

c1c
− 1

� a
− 1
1 a ∈ (A ∩ B) ∩ A∗ � A

∗ ∩ B ⊆ D, (22)

whence Dc1 � Dc. )e map τ is clearly a strong epi-
morphism, and the equality Ker(τ) � A∗(A ∩ B∗) is
shown in an analogous way to the group case.

8 International Journal of Mathematics and Mathematical Sciences



)us, Proposition 9 (iv) implies that A∗(A ∩ B∗) is
normal in A∗(A ∩ B), and by the first isomorphism theo-
rem, we get A∗(A ∩ B)/A∗(A ∩ B∗) � (A ∩ B)/D.

A symmetric argument shows that B∗(B ∩ A∗) is
normal inB∗(A ∩ B) and (B∗(A ∩ B)/ B∗(A∗ ∩ B)) �

((A ∩ B)/D). Whence (iii) follows. □

Proposition 13 (Schreier theorem for groupoids). Any two
subnormal (resp. normal) series of a groupoid G have sub-
normal (resp. normal) refinement, which are equivalent.

Proof. It follows from Lemma 4, (ii) of Proposition 11, and
Proposition 7 (1). □

Proposition 14 (Jordan-Hölder theorem for groupoids).
Any two composition series of a groupoid G are equivalent.

Proof. It follows from Proposition 13 and Lemma 3. □

4.1. Some Remarks on the Equivalence between Inductive
Groupoids and Inverse Semigroups. Recall that an inverse
semigroup, is a semigroup S such that for any s ∈ S there is a
unique s∗ ∈ S such that s∗ � s∗ss∗ and s � ss∗s. Now, letX be
a set and consider the inverse semigroup

G(X) � f: A⟶ B | A ⊆ X, B ⊆ X and f is a bijection .

(23)

We recall the following.

Definition 12. Let S be a semigroup. An action of S on X is a
semigroup homomorphism ϕ: S⟶ G(X).

It follows from )eorem 4.2 of [23]) that partial actions
of a group G on X are in one-to-one correspondence with
actions of E(G) on X, where E(G) is the semigroup gen-
erated by the symbols [g] | g ∈ G  under the following
relations: for g, h ∈ G,

g
− 1

 [g][h] � g
− 1

 [gh],

[g][h] h
− 1

  � [gh] h
− 1

 ,

[g][1] � [g].

(24)

)e semigroup E(G) was introduced in [23], and it is
called the Exel semigroup ofG.

Remark 10. Now, we present some facts about E(G).

(1) )e semigroup E(G) is a monoid with 1E(G) � [1].

(2) ([23], Proposition 2.5). For each g ∈ G let cg �

[g][g− 1]. )en, cg is an idempotent of E(G), each
element α ∈ E(G) may be uniquely written (up to the
order of the si’s) as

α � cs1
, cs2

, . . . , csn
[g], (25)

for some s1, s2, . . . , sn, g ∈ G, with g≠ si ≠ sj ≠g, i≠ j

and si ≠ 1, for i ∈ 1, . . . , n{ }. From equation (25), it
follows that any idempotent in E(G) has the form
cs1

cs2
. . . csn

for some (uniquely) s1, s2, . . . , sn, g ∈ G.

(3) ([23], )eorem 3.4) )e set E(G) is an inverse
semigroup. In particular, the idempotents of E(G)

commute (see [22], )eorem 3)).

Given an inverse semigroup S and s, t ∈ S, one defines
the restricted product

s · t exists if and only if s
∗
s � tt
∗
. (26)

It follows from Proposition 3.1.4 and Proposition 4.1.1
that (S, ·, ≤ ) is an inductive groupoid (see [22], p. 108),
where ≤ is the natural partial order defined on S. )en, by
using the restricted product in G(X), we have that

G
2
(X) � (f, g) ∈ G(X) × G(X) | img � domf , (27)

and G(X) is a groupoid with the product given by com-
position of maps restricted to G2(X). Moreover, G(X)0 �

idA | A ⊆ X .

With respect to the semigroup E(G), we have the fol-
lowing result.

Proposition 15. Let α � cs1
cs2

. . . csn
[g] and β � ct1

ct2
. . .

ctm
[l] where s1, s2, . . . , sn, t1, t2, . . . , tm, g, l ∈ G are as in (25)

of Remark 10. +en αα∗ � β∗β, if and only if s1, s2, . . . ,

sn, g} � t1, t2, . . . , tn, l− 1 .

Proof. We have that αα∗ � cs1
, cs2

, . . . , csn
[g][g− 1]cs1

,

cs2
, . . . , csn

� cs1
, cs2

, . . . , csn
, cg. )en,

αα∗ � β∗β⟺ cs1
, cs2

, . . . , csn
, cg � ct1

, ct2
, . . . , ctm

, ct− 1

⟺ s1, s2, . . . , sn, g  � t1, t2, . . . , tn, l
− 1

 ,

(28)

where the last equivalence follows from (2) of Remark 10.
Using the restricted product to provide E(G) with a

groupoid structure we get by Proposition 15 that,

E(G)
2

� cs1
, . . . , csn

[g], ct1
, . . . , ctm

[l]  s1, . . . , sn, g 


� t1, . . . , tn, l
− 1

 ,

(29)

and E(G)0 � cs1
cs2

. . . csn
| si ≠ sj, i≠ j, n ∈ N .

From [7], it follows that a global action β of a groupoidG
on X is a family of bijections β � βg: Xg− 1⟶ Xg | g ∈ G 

such that

(i) X � %∪e∈G0
Xe

(ii) βe � idXe
, for all e ∈ G0

(iii) βg ∘ βh � βgh, for all (g, h) ∈ G2

)en according to ([7], Proposition 10), global actions of
G on X correspond to groupoid homomorphism
G⟶ G(X). On the other hand, in the case when G is a
group we obtain the definition of a partial group action on a
set (see [2], Definition 1.2)
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If G is an inductive groupoid, then Proposition 4.1.7 of
[22]) implies that (G,⊗) is an inverse semigroup, where ⊗
denotes the pseudo product defined on G (see [22], p. 112).

)en, we have the following. □

Proposition 16. For every group G and any set X, there is a
one-to-one correspondence between

(1) Partial actions of G on X
(2) Unital semigroup actions of E(G) on X

(3) Groupoid homomorphisms E(G)⟶ G(X)

(4) Groupoid actions of E(G) on X

Proof. We have already observed that there is a one-to-one
correspondence between partial actions of G on X and
semigroup actions of E(G) on X, and between groupoid
homomorphisms E(G)⟶ G(X), and global actions of G

on X. Moreover, given a semigroup action ϕ: E(G)⟶
G(X), then let βα � ϕ(α) and Xα � im(ϕ(α)). Since
ϕ([1]) � idX, one has that the family β � βα:

Xα− 1⟶ Xα}α∈E(G) is a global action of E(G) on X. Con-
versely, given a global action β � βα: Xα− 1 ⟶ Xα}α∈E(G) of
E(G) on X, let φ: E(G) ∋ α⟼ βα ∈ G(X). )en, φ is an
action of E(G) on X. Indeed, if α, β ∈ E(G), then by
Proposition 4.1.7, we have that αc � α ⊗ c and ϕ(αc) �

ϕ(α ⊗ c) � ϕ(α)⊗ ϕ(c) � ϕ(α) ∘ ϕ(c), as desired. □
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[16] A. Paques and D. Flôres, “Duality for groupoid (co)actions,”
Communications in Algebra, vol. 42, no. 2, pp. 637–663, 2014.

[17] W. Cortes and T. Tamusiunas, “A characterisation for a
groupoid galois extension using partial isomorphisms,”
Bulletin of the Australian Mathematical Society, vol. 96, no. 1,
pp. 59–68, 2017.

[18] A. Paques and T. Tamusiunas, “A Galois-Grothendieck type
correspondence for groupoid actions,” Algebra and Discrete
mathematics, vol. 17, no. 1, pp. 80–97, 2014.

[19] A. Paques and T. Tamusiunas, “)e Galois correspondence
theorem for groupoid actions,” Journal of Algebra, vol. 509,
pp. 105–123, 2018.

[20] D. Bagio and H. Pinedo, “Globalization of partial actions of
groupoids on nonunital rings,” Journal of Algebra and Its
Applications, vol. 15, no. 5, Article ID 1650096, 2016.
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