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In this paper, we establish a set of convenient conditions of controllability for semilinear fractional finite dimensional control
systems involving conformable fractional derivative. Indeed, sufficient conditions of controllability for a semilinear conformable
fractional system are presented, assuming that the corresponding linear systems are controllable. +e present method is based on
conformable fractional exponential matrix, Gramian matrix, and the iterative technique. Two illustrated examples are carried out
to establish the facility and efficiency of this technique.

1. Introduction

Controllability concepts have played a substantial role in
several fields in engineering, control theory, and applied
mathematics. In 1960, the controllability was first defined by
Kalman [1] as a property of shifting the systems from any
initial state value into any state value at a terminal time. +is
definition was divided into two notions: an exact and an
approximate controllability which become more suitable for
dealing with control systems in infinite dimensional spaces.
+e purpose of those notions is the existence of control
systems which are approximately controllable, but are not
exact (see [2]). In fact, the term exact controllability would
refer to as a controllability which is the same as defined by
Kalman. However, the definition of approximate control-
lability is determined by transferring the systems from any
initial state value into some small neighbourhood of any
point at terminal time in the state space. Later on, many
researchers conducted pioneering studies in an attempt to
obtain proper controllability conditions (exact and ap-
proximate) for the linear and nonlinear control systems (see,
for example, [3–8] and the references cited therein).

Many problems in the real world can be modelled purely
by fractional differential equations (for more details, refer to

[9, 10]). +is new calculus has pointedly attracted the
mathematicians to focus clearly on revealing better results.
+e concept of controllability was extended to fractional
control systems by various investigators. For instance,
Sakthivel et al. [11] utilized fixed point approach to prove the
controllability of nonlinear fractional systems. Vijayakumar
et al. [12] obtained the controllability conditions for frac-
tional integrodifferential neutral control systems with
nonlocal conditions. Ma and Liu [13] employed analytic
methods and resolvent operator to investigate controllability
conditions and continuous dependence of a fractional
neutral integrodifferential equation involving state-depen-
dent delay. Jneid [14] derived sufficient conditions of ap-
proximate controllability for semilinear integrodifferential
systems of fractional order with nonlocal conditions by
using compact semigroup operator and Schauder fixed-
point theorem. Sakthivel et al. [15] studied the approximate
controllability conditions for nonlinear fractional stochastic
differential inclusions, providing that the corresponding
linear part is approximately controllable. Chokkalingam and
Baleanu [16] obtained a set of sufficient conditions for
controllability for fractional functional integrodifferential
systems involving the Caputo fractional derivative of order
α ∈ (0, 1] in Banach spaces.
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Previous works concerning controllability problems for
fractional systems have been limited to Riemann, Liouville,
and Caputo derivatives, while only one study concerning
exact controllability involving conformable fractional de-
rivative (CFD) as a definition of fractional derivative has

been done by Jneid [17] till now. In this work, we aim at
bringing up this kind of systems to the attention of inves-
tigators. Moreover, we derive controllability results for the
semilinear conformable fractional system with initial con-
dition ξ:

T
q
0x(t) � Ax(t) + Bu(t) + f(t, x(t), u(t)), 0< t≤ τ, 0< q≤ 1,

x(0) � ξ,

⎧⎨

⎩ (1)

where T
q
0 is a conformable fractional derivative x ∈ C(0, τ;

Rn), u ∈ C(0, τ;Rm),A ∈ Rn×n andB ∈ Rn×m, andf: [0, τ] ×

Rn × Rm⟶ Rn is an appropriate nonlinear function.
+e rest of this paper is divided into five sections. In

Section 1, we provide needed fundamental information re-
lated to conformable fractional derivatives and we establish
the mild solution of nonlinear systems involving conformable
fractional derivative in terms of fractional exponential matrix
by using Laplace transform. +e controllability conditions for
the linear systems are obtained in Section 3. In Section 4, an
iterative analysis approach and controllability conditions are
exhibited. We give two suitable examples to show the use-
fulness and effectiveness of this technique in Section 5. Finally,
a short conclusion is given in Section 6.

2. Preliminaries

Let 0< q≤ 1 and I � (0, τ], through the entire article.

Definition 1 (see [18]). +e CFD of a given function
f: (0,∞)⟶ R, at t> 0 of order q is given as

T
q
0f(t) � lim

ϵ⟶0

f t + εt1− q(  − f(t)

ϵ
, (2)

provided that the right side of this expression exists as a finite
number.

Using this new definition of derivative, one can have the
following properties which are similar to those of the
classical derivative:

(a) For all constant c,T
q
0(c) � 0.

(b) For all s ∈ R,T
q
0(ts) � sts− q.

(c) T
q
0(etq/q) � etq/q.

Definition 2 (see [18]). Given a function f: (0,∞)⟶ R,

the conformable fractional Laplace transform of f at t> 0 of
order q is given as

T
q
0 f(t) (s) � F

q
0(s) � 

∞

0
e

− stq/q
f(t)t

q− 1dt. (3)

Theorem 1 (see [18]). Given a differentiable function
f: (0,∞)⟶ R,

T
q
0 T

q
0f(t) (s) � sF

q
0(s) − f(0). (4)

Moreover,

F
q
0(s) � T f (qt)

1/q
  (s), (5)

where T is the classical Laplace transform.
Consider the conformable fractional system as follows:

T
q
0x(t) � Ax(t) + f(t), t ∈ I,

x(0) � ξ,

⎧⎨

⎩ (6)

where T
q
0 is the conformable fractional derivative operator,

x, f ∈ C(0, τ;Rn), and A is an n × n− matrix. Now, apply
conformable fractional Laplace transform on system (6) to
obtain

X
q
0(s) � ξ

1
sId − A

+ F
q
0(s)

1
sId − A

, (7)

where Id is an n × n− identity matrix. Utilizing the relation
given in (5) and applying the inverse Laplace transform, one
can get the solution of system (6) in this way:

x(t) � e
A tq/q( )ξ + 

t

0
e

A tq/q( )− sq/q( )( )f(s)s
q− 1ds, (8)

where eA(tq/q) � 
∞
k�0(Aktkq/qkk!) is called conformable

fractional exponential matrix.

3. Linear Control Systems

Let us consider a linear conformable fractional control
system that is described by

T
q
0x(t) � Ax(t) + Bu(t), t ∈ I,

x(0) � ξ,

⎧⎨

⎩ (9)

where ξ ∈ Rn is an initial condition, T
q
0 is the conformable

fractional derivative operator, x ∈ C(0, τ;Rn), u ∈ C(0, τ;

Rm), A ∈ Rn×n, and B ∈ Rn×m.

Lemma 1. -e mild solution of system (9) on I in con-
formable fractional sense is given by

x
u
(t) � e

A tq/q( )ξ + 
t

0
e

A tq/q( )− sq/q( )( )Bu(s)s
q− 1ds. (10)

Proof. +is result follows simply from the forgoing section. □

Denote the set of admissible controls by Uad � C(0, τ;

Rm) and the reachable set of system (1) by

Rξ,τ(f) � x
u
(τ) ∈ Rn

; x
u ∈ C 0, τ;R

n
(  , (11)
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where there exists u ∈ Uad such that xu satisfies system (1).

Definition 3. System (9) is said to be controllable on I if
Rξ,τ(0) � Rn, for any ξ ∈ Rn.

In other words, for any given ξ, h ∈ Rn, system (9) can be
reached to the intended state h at terminal time τ from any
initial state ξ. +e controllability Gramian matrix for the
linear system (9) is defined by

q
Qt− r � 

t

r
s

q− 1
e

A sq/q( )BB
∗
e

A∗ sq/q( )ds, 0≤ r≤ t≤ τ.

(12)

For simplicity, we use qQt and Qt− r instead of qQt− 0, and
qQt, respectively.

Theorem 2. System (9) is controllable on I if and only if Qτ is
invertible.

Proof. Let Qτ be invertible. +en, Q− 1
τ exists and we can

define a control u as follows:

u(t) � B
∗
e

A∗ τq/q( )− τq/q( )( )Q
− 1
τ h − e

A τq/q( )ξ , 0≤ t≤ τ,

(13)

with h and ξ arbitrarily chosen from Rn. Obviously,
u ∈ C(0, τ;Rm).

Now, substituting this control into equation (10) at the
terminal time t � τ, we get

x
u
(τ) � e

A tq/q( )ξ + 
τ

0
e

A tq/q( )− sq/q( )( )

· BB
∗
e

A∗ tq/q( )− sq/q( )( )Q
− 1
τ × h − e

A tq/q( )ξ s
q− 1ds

� e
A tq/q( )ξ + QτQ

− 1
τ h − e

A tq/q( )ξ 

� h,

(14)

which implies the controllability of system (9).
Conversely, let system (9) be controllable on [0, τ].

Assume the contrary that qQτ is not invertible. +erefore,
there exists a nonzero vector y ∈ Rn so that

y
∗
Qτy � 0

� 
τ

0
s

q− 1
y
∗
e

A τq/q( )− sq/q( )( )B
�����

�����
2
ds.

(15)

Hence,

y
∗
e

A τq/q( )− sq/q( )( )Bs
q− 1

� 0, ∀s ∈ [0, τ]. (16)

Let h � 0. Since system (9) is controllable, for every
initial state value ξ, we can obtain a control u leading the
solution xu of (9) into 0 at terminal time τ.

Select ξ � − eA(τq/q)y. +us,

x
u
(τ) � e

A τq/q( )ξ + 
τ

0
e

A τq/q( )− sq/q( )( )Bu(s)s
q− 1ds � 0.

(17)

+is yields

y � 
τ

0
e

A τq/q( )− sq/q( )( )Bu(s)s
q− 1ds. (18)

Multiplying through by y∗ yields

y
∗
y � 

τ

0
y
∗
e

A τq/q( )− sq/q( )( )Bu(s)s
q− 1ds � 0, (19)

which contradicts that y≠ 0. Hence, the controllability
matrix qQτ is invertible. □

4. Semilinear Control Systems

Let us consider a semilinear conformable fractional control
system that is described by

T
q
0x(t) � Ax(t) + Bu(t) + f(t, x(t), u(t)), t ∈ I,

x(0) � ξ,

⎧⎨

⎩

(20)

where A, B, ξ, x, and uf are defined as in the previous
section.

For brevity, for any τ > 0, let X � C(I;Rn). It is clear that
the Cartesian product X × Uad is a Banach space equipped
with the norm

‖(·, ·)‖ � ‖(·)‖X +‖(·)‖Uad, (21)

where ∀x ∈ X and ∀u ∈ Uad, and

‖x‖X � max
t∈I

‖x(t)‖,

‖u‖Uad � max
t∈I

‖u(t)‖.
(22)

Let us assume the following:

(A1) f is bounded and satisfies Lipschitz continuity on
X × Uad. +at is, for every t ∈ I,z1, z2 ∈ Rn, and
v1, v2 ∈ Rm, there exist M> 0 and N> 0 so that

f t, z1, v1( 
����

����≤M,

f t, z1, v1(  − f t, z2, v2( 
����

����≤N z1 − z2
����

���� + v1 − v2
����

���� .

(23)

(A2) For every τ > 0,Qτ is invertible.

Define the operator F: X × Uad⟶ X × Uad as

F(x, u)(t) � (X(t), U(t)), (24)

where

International Journal of Mathematics and Mathematical Sciences 3



X(t) � e
A tq/q( )ξ+

q
Qte

A τq/q( )− tq/q( )( )Q
− 1
τ h − e

A tq/q( )ξ 

+ 
t

0
e

A tq/q( )− sq/q( )( )s
q− 1

f(s, x(s), u(s))ds,

− 
t

0
Qt− se

A∗ τq/q( )− tq/q( )( )Q
− 1
τ− se

A τq/q( )− sq/q( )( )

· s
q− 1

f(s, x(s), u(s))ds,

(25)

U(t) � B
∗
e

A∗ τq/q( )− tq/q( )( ) Q
− 1
τ × h − e

A τq/q( )ξ ⎡⎣

− 
t

0
Q

− 1
τ− ss

q− 1
e

A τq/q( )− sq/q( )( )f(s, x(s), u(s)).

(26)

Introduce the iterative method as follows:

x
u
0(t) � e

A tq/q( )ξ + Qte
A τq/q( )− tq/q( )( )Q

− 1
τ h − e

A τq/q( )ξ ,

x
u
n+1(t) � x0(t) + 

t

0
e

A tq/q( )− sq/q( )( )s
q− 1

· f s, xn(s), un(s)( ds

− 
t

0
Qt− se

A∗ τq/q( )− tq/q( )( )Q
− 1
τ− se

A tq/q( )− sq/q( )( )s
q− 1

· f s, xn(s), un(s)( ds,

(27)

u0(t) � B
∗
e

A∗ τq/q( )− tq/q( )( )Q
− 1
τ × h − e

A τq/q( )ξ 

un+1(t) � u0(t) − B
∗
e

A∗ τq/q( )− tq/q( )( )

× 
t

0
Q

− 1
τ− ss

q− 1
e

A τq/q( )− sq/q( )( )f s, xn(s), un(s)( .

(28)

Denote Φn(t) � (xn(t), un(t) for all t ∈ I and
n � 0, 1, 2, . . ..

P1 � maxt∈I t
q− 1

e
A τq/q( )− tq/q( )( )

�����

�����,

P2 � maxt∈I B
∗
e

A∗ τq/q( )− tq/q( )( )
�����

�����,

P3 � maxt∈I e
A∗ τq/q( )− tq/q( )( )

�����

�����,

c � maxt∈I Q
− 1
t

����
����.

(29)

Lemma 2. Let the assumptions (A1) and (A2) hold true and
let n≥ 1. -en,

Φn+1 − Φn

����
����≤ L

n
1L

n
2
τn+1

n + 1!
, (30)

where

L1 � MP1 1 +
P2

c
+

Qτ
����

����P3

c
 ,

L2 � P1N 1 +
Qτ

����
����P3

c
  +

P1P2M

c
.

(31)

Proof. Let us start to estimate ‖Φ1 − Φ0‖. By the definition of
norm, we have

Φ1 − Φ0
����

���� � max
t∈I

x1(t) − x0(t)
����

����

+ max
t∈I

u1(t) − u0(t)
����

����,

x
u
1(t) − x

u
0(t)

����
���� � 

t

0
e

A tq/q( )− sq/q( )( )s
q− 1

�������

· f s, x0(s), u0(s)( ds

− 
t

0
Qt− se

A∗ τq/q( )− tq/q( )( )

· Q
− 1
τ− se

A τq/q( )− sq/q( )( )s
q− 1

· f s, x0(s), u0(s)( ds

������

≤ P1M +
Qτ

����
����P3P1M

c
 t.

(32)

Similarly,

u1(t) − u0(t)
����

���� � t
1− q

B
∗
e

A∗ τq/q( )− tq/q( )( )
�����

· 
t

0
Q

− 1
τ− ss

q− 1
e

A τq/q( )− sq/q( )( )

· f s, x0(s), u0(s)( ‖

≤
P2P1M

c
t.

(33)

Combining (32) and (33), we obtain

Φ1(t) − Φ0(t)
����

����≤L1t, (34)

where
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L1 � MP1 1 +
P2

c
+

Qτ
����

����P3

c
 ,

x
u
2(t) − x

u
1(t)

����
���� � 

t

0
e

A tq/q( )− sq/q( )( ) − Qt− se
A∗ τq/q( )− tq/q( )( )Q

− 1
τ− se

A τq/q( )− sq/q( )( ) 

�������

· f s, x2(s), u2(s)(  − f s, x1(s), u1(s)( ( s
q− 1ds

����

≤P1N 
t

0
x2(s) − x1(s)

����
���� + u2(s) − u1(s)

����
����ds

+
Qτ

����
����P3P1N

c


t

0
x2(s) − x1(s)

����
���� + u2(s) − u1(s)

����
����ds

≤P1N 1 +
Qτ

����
����P3

c
  

t

0
x1(s) − x0(s)

����
���� + u1(s) − u0(s)

����
����ds.

(35)

In a similar manner, we get

u2(t) − u1(t)
����

���� � − B
∗
e

A∗ τq/q( )− tq/q( )( )
�����

· 
t

0
Q

− 1
τ− ss

q− 1
e

A τq/q( )− sq/q( )( )

· f s, x1(s), u1(s)(  + B
∗
e

A∗ τq/q( )− tq/q( )( )

· 
t

0
Q

− 1
τ− ss

q− 1
e

A τq/q( )− sq/q( )( )

· f s, x0(s), u0(s)( ‖

≤
P1P2M

c


t

0
x1(s) − x0(s)

����
����

+ u1(s) − u0(s)
����

����ds.

(36)

Combining (35) and (36) yields

Φ2 − Φ1
����

����≤ L2 
t

0
x1(s) − x0(s)

����
���� + u1(s) − u0(s)

����
����ds,

(37)

where

L2 � P1N 1 +
Qτ

����
����P3

c
  +

P1P2M

c
. (38)

Substituting (34) into (37), we obtain

Φ2 − Φ1
����

����≤ L2 
t

0
Φ1(t) − Φ0(t)

����
����ds,

≤L1L2
t2

2!
≤ L1L2

τ2

2!
.

(39)

Applying mathematical induction on n ∈ N, we get the
following estimation:

Φn+1 − Φn

����
����≤ L

n
1L

n
2
τn+1

n + 1!
. (40)

□

Lemma 3. Let assumptions (A1) and (A2) hold true. -en,
the sequence of functions Φn defined as in (27) and (28) is
uniformly convergent.

Proof. Identify Φn+1(t) � Φ0(t) + [Φ1(t) − Φ0(t)]+ Φ2(t)−

· · · + [Φn+1(t) − Φn(t)] as a partial sum of

Φ0(t) + 
∞

k�0
Φk+1(t) − Φk(t) . (41)

Using the relation (40), we have

Φn+1(t)
����

����≤ Φ0(t)
����

���� + 
n

k�0
Φk+1(t) − Φk(t)

����
����

≤ Φ0
����

���� + L1τ + L1L2
τ2

2!
+ L

2
1L

2
2
τ3

3!

+ · · · + L
k
1L

k
2
τk+1

k + 1!
.

(42)

It is easy to see that the sum in the equation (41) is
convergent, and hence the sum in the equation (42) also
converges as n⟶∞. +is implies that the sequence Φn

converges since it is a partial sum of a convergent series.
According to Weierstrass M-test, this convergence is uni-
form and hence the limit function, say, Φ, for the sequence
Φn is continuous. □

Theorem 3. Let the assumptions (A1) and (A2) hold true.
-en, the nonlinear map F admits only one fixed point in
X × Uad.

Proof. +anks to Lemma 3 there is a pair (x, u) ∈ X × Uad so
that (xn, un)⟶ (x, u) as n⟶∞.+erefore, by taking the
limit on both sides in (28) and (42), we see that the pair
(x, u) is a fixed point of F. Suppose that there are two distinct
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fixed points of F say, (x, u) and (y, v) in X × Uad. +en, as in
proof of Lemma 2,

‖F(x, u)(t) − F(y, v)(t)‖≤C 
t

0
‖F(x, u)(s) − F(y, v)(s)‖ds,

(43)

for some constant C.

Let S(t) � 
t

0 ||F(x, u)(s) − F(y, v)(s)||ds. It is clear that
S(0) � 0 and ∀t≥ 0, S(t)≥ 0. Differentiating with respect
to t, we obtain S′(t) � ‖F(x, u)(t) − F(y, v)(t)‖ and S′(t) −

CS(t)≤ 0. Multiplying by exponential quantity e− Ct gives

e
− Ct

S(t) ′ ≤ 0. (44)

Now, integrating through from zero to t yields

e
− Ct

S(t)≤ 0. (45)

Since for all t≥ 0,e− Ct > 0, then for all t≥ 0,S(t)≤ 0.

+erefore, for all t≥ 0,S(t) � 0, and consequently S′(t) � 0.

+us, F(x, u)(t) � F(y, v)(t) for all t≥ 0. +is contradicts
the assumption that (x, u) and (y, v) are two distinct fixed
points. +is proof is completed. □

Theorem 4. Let assumptions (A1) and (A2) hold true. -en,
the semilinear control system (20) is controllable on I.

Proof. Fix ξ ∈ Rn and h ∈ Rn. From +eorem 3, there is a
unique mild solution x ∈ X as defined in (25) which cor-
responds to a unique control u ∈ Uad as defined in (26).
Hence, x(τ) � h. +erefore, the semilinear system (20) is
controllable on I. □

5. Examples

Example 1. Consider the following conformable fractional
control system:

T
q
0x(t) � y(t) + u(t) +

��������
x2(t) + 5


,

T
q
0y(t) � u(t) + cos(u(t)),

⎧⎨

⎩ (46)

where 0≤ t≤ 1,(x(0), y(0) ∈ R2,u ∈ C(0, 1;R). +is system
can be expressed in the following general form:

T
q
0z(t) � Az(t) + Bu(t) + f(t, z(t), u(t)), (47)

where

z �
x

y
 ,

A �
0 1

0 0
 ,

B �
1

1
 ,

f(t, z(t), u(t)) �

��������
x2(t) + 5



cos(u(t))
⎡⎣ ⎤⎦.

(48)

By simple calculations, we obtain

e
A tq/q( ) �

1
tq

q

0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (49)

+e controllability Gramian matrix is

Q1 � 
1

0
s

q− 1
e

A sq/q( )BB
∗
e

A∗ sq/q( )ds,

� 
1

0
s

q− 1

1 + sq

q
 

2
1 +

sq

q

1 +
sq

q
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ds.

(50)

After a simple computation, we get

Q1 �

1
q

+
1
q2

+
1
3q3

1
q

+
1
2q2

1
q

+
1
2q2

1
q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (51)

Hence, for every 0< q≤ 1,det(Q1) � − (1/q4)≠ 0, which
means that Q1 is invertible. In addition, the nonlinear
function f is bounded and satisfies Lipschitz condition with
respect to z and uwith the constant N � 1; then, by+eorem
4, the given control system (46) is controllable on [0, 1].

Example 2. Consider the following conformable fractional
control system:

T
q
0x(t) � x(t) + u(t) + cosx sinx,

T
q
0y(t) � y(t) + v(t) + sin(u(t) + v(t)),

⎧⎨

⎩ (52)

where 0≤ t≤ 1,(x(0), y(0) ∈ R2,u, v ∈ C(0, 1;R). +is sys-
tem can be expressed in the following general form:

T
q
0z(t) � Az(t) + Bu(t) + f(t, z(t), w(t)), (53)

where

z �
x

y
 ,

A �
1 0

0 1
 ,

B �
1 0

0 1
 ,

f(t, z(t), w(t)) �
cosx sinx

sin(u(t) + v(t))
 .

(54)

By easy calculations, we have

e
A tq/q( ) �

e tq/q( ) 0

0 e tq/q( )
⎡⎣ ⎤⎦. (55)

+e controllability Gramian matrix is
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Q1 � 
1

0
s

q− 1
e

A sq/q( )BB
∗
e

A∗ sq/q( )ds,

� 
1

0
s

q− 1 e 2sq/q( ) 0

0 e 2sq/q( )
⎡⎣ ⎤⎦ds.

(56)

After a simple computation, we get

Q1 � 2e
2/q 1 0

0 1
 . (57)

Hence, for every 0< q≤ 1,det(Q1) � 2e2/q ≠ 0, which
means that Q1 is invertible. In addition, the nonlinear
function f is bounded and satisfies Lipschitz condition with
respect to z and w with the constant N � 1; then, by +e-
orem 4, the given control system (52) is controllable on
[0, 1].

6. Conclusion

In this work, the controllability conditions for semilinear
conformable fractional deterministic systems are derived
under a normal condition, that is, the associated linear
system is controllable. +e iterative technique is used here to
construct a suitable sequence which is under some condi-
tions uniformly convergent to a mild solution of the
semilinear system. +e present results show that this tech-
nique is very effective in finding the mild solution of
semilinear control systems involving conformable fractional
derivative. Finally, it should be mentioned that the result of
this paper can be expanded to diverse kinds of conformable
fractional systems in finite and infinite dimensional spaces as
well.
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