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We extend the well-known characterizations of convergence in the spaces lp (1≤p<∞) ofp-summable sequences and c0 of vanishing
sequences to a general characterization of convergence in a Banach space with a Schauder basis and obtain as instant corollaries
characterizations of convergence in an infinite-dimensional separable Hilbert space and the space c of convergent sequences.

“+e method in the present paper is abstract and is phrased in terms
of Banach spaces, linear operators, and so on. +is has the advantage
of greater simplicity in proof and greater generality in applications.”

Jacob T. Schwartz

1. Introduction

In normed vector spaces of sequences, termwise conver-
gence, being a necessary condition for convergence of a
sequence (of sequences), falls short of being characteristic
(see, e.g., [1]). ,us, the natural question is as follows: what
conditions are required to be, along with termwise con-
vergence, necessary and sufficient for convergence of a se-
quence in such spaces?

It turns out that, in the Banach spaces lp (1≤p<∞) of
p-summable sequences with p-norm,

x ≔ xk( 􏼁k∈N↦‖x‖p ≔ 􏽘
∞

k�1
xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
p⎡⎣ ⎤⎦

1/p

, (1)

(N ≔ 1, 2, . . .{ } is the set of natural numbers) and c0 of
vanishing sequences with ∞-norm,

x ≔ xk( 􏼁k∈N↦‖x‖∞ ≔ sup
k∈N

xk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (2)

only one additional condition is needed. ,e following
characterizations of convergence in the foregoing spaces are
well known.

Proposition 1 (characterization of convergence in lp
(1≤p<∞)). In the (real or complex) space lp (1≤p<∞),

x
(n)
k􏼐 􏼑

k∈N≕x
(n)⟶ x ≔ xk( 􏼁k∈N, n⟶∞, (3)

iff

(1) ∀k ∈ N: x
(n)
k ⟶ xk, n⟶∞,

(2) ∀ε> 0∃K ∈ N∀n ∈ N: 􏽐
∞
k�K+1 |x

(n)
k |p < ε.

See, e.g., Proposition 2.16 in [2] and Proposition 2.17 in
[1].

Remarks 1

(i) Condition (1) is termwise convergence.
(ii) Condition (2) signifies the uniform convergence of

the series,

􏽘
∞

k�1
x

(n)
k

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
p
, (4)

to their respective sums over n ∈ N.
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Proposition 2 (characterization of convergence in c0). In
the (real or complex) space c0,

x
(n)
k􏼐 􏼑

k∈N≕x
(n)⟶ x ≔ xk( 􏼁k∈N, n⟶∞, (5)

iff

(1) ∀k ∈ N: x
(n)
k ⟶ xk, n⟶∞,

(2) ∀ε> 0∃K ∈ N∀n ∈ N: supk≥K+1|x
(n)
k |< ε.

See, e.g., Proposition 2.15 in [2] and Proposition 2.16 in
[1].

Remarks 2

(i) Condition (1) is termwise convergence.
(ii) Condition (2) signifies the uniform convergence of

the sequences (x
(n)
k )k∈N to 0 over n ∈ N.

One cannot but notice that both characterizations share
the same condition (1) and that condition (2) in each can be
reformulated in the following equivalent form:

(2C) ∀ε> 0∃K0 ∈ N∀K≥K0 ∀n ∈ N: ‖RKx(n)‖< ε,
where ‖ · ‖ stands for p-norm ‖ · ‖p (1≤p<∞) or
∞-norm, respectively, and the mapping RK: X⟶ X,
K ∈ N, (X ≔ lp (1≤p<∞) or X ≔ c0) is defined as follows:

x ≔ xk( 􏼁k∈N↦RKx ≔ 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽
K terms

, xK+1, xK+2, . . .⎛⎝ ⎞⎠, K ∈ N.

(6)
,us, we have the following combined characterization

encompassing both lp (1≤p<∞) and c0.

Proposition 3 (combined characterization of convergence). In
the (real or complex) space X ≔ lp (1≤p<∞) or X ≔ c0,

x
(n)
k􏼐 􏼑

k∈N≕x
(n)⟶ x ≔ xk( 􏼁k∈N, n⟶∞, (7)

iff

(1) ∀k ∈ N: x
(n)
k ⟶ xk, n⟶∞,

(2C) ∀ε> 0∃K0 ∈ N∀K≥K0 ∀n ∈ N: ‖RKx(n)‖< ε,

where ‖ · ‖ stands for p-norm ‖ · ‖p (1≤p<∞) or∞-norm,
respectively, and the mapping RK: X⟶ X, K ∈ N, is de-
fined by (6).

In view of the fact that both lp (1≤p<∞) and c0 are
Banach spaces with a Schauder basis, our goal to show that a
two-condition characterization of convergence, similar to the
foregoing combined characterization, holds for all such spaces
appears to be amply motivated. We establish a general
characterization of convergence in a Banach space with a
Schauder basis and obtain as instant corollaries character-
izations of convergence in an infinite-dimensional separable
Hilbert space and the Banach space c of convergent sequences.

2. Preliminaries

Here, we briefly outline certain preliminaries essential for
our discourse.

Definition 1 (Schauder basis). A Schauder basis (also a
countable basis) of a (real or complex) Banach space (X, ‖ · ‖)

is a countably infinite set en􏼈 􏼉n∈N in X such that

∀x ∈ X ∃! ck(x)( 􏼁k∈N ∈ F
N

: x � 􏽘
∞

k�1
ck(x)ek, (8)

(F ≔ R or F ≔ C) the series called the Schauder expansion
of x and the numbers ck(x) ∈ F , k ∈ N, the coordinates of x

relative to en􏼈 􏼉n∈N.

See, e.g., [1–4].
For an infinite-dimensional separable Hilbert space

(X, (·, ·), ‖ · ‖) ((·, ·) stands for inner product and ‖ · ‖ for
inner product norm), an orthonormal basis en􏼈 􏼉n∈N is a
Schauder basis, and for an arbitrary x ∈ X,

x � 􏽘
∞

k�1
ck(x)ek, with ck(x) � x, ek( 􏼁, k ∈ N, (9)

(see, e.g., [1, 2]).
As we mention above, the sequence spaces lp

(1≤p<∞), c0, and c are examples of Banach spaces with a
Schauder basis. For lp (1≤p<∞) and c0, the standard
Schauder basis is the set

en ≔ δnk( 􏼁k ∈ N􏼈 􏼉n∈N (10)

(δnk is the Kronecker delta) and for an arbitrary x ≔ (xk)k∈N
in the foregoing spaces,

x � 􏽘
∞

k�1
ck(x)ek, with ck(x) � xk, k ∈ N, (11)

(see, e.g., [1–4]).
For the Banach space c of convergent sequences

equipped with ∞-norm (see (2)), the standard Schauder
basis is en􏼈 􏼉n∈Z+

(Z+ ≔ 0, 1, 2, . . .{ } is the set of nonnegative
integers) with

e0 ≔ (1, 1, 1, . . .), (12)

and for an arbitrary x ≔ (xk)k∈N ∈ c,

x � 􏽘
∞

k�0
ck(x)ek, with c0(x) � lim

m⟶∞
xm, ck(x)

� xk − c0(x), k ∈ N,

(13)

see, e.g., [1–4].
Banach spaces with more sophisticated Schauder bases

encompass Lp(a, b) (1≤p<∞) and C[a, b] (−∞< a<
b<∞) with ∞-norm,

C[a, b] ∋ x↦‖x‖∞ ≔ max
a≤t≤b

|x(t)|, (14)

(see, e.g., [3, 4]).
A Banach space with a Schauder basis is infinite-di-

mensional and separable (see, e.g., [1–3]). However, an
infinite-dimensional separable Banach space need not have a
Schauder basis (see [5]).

,e set of F-termed sequences,
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Y ≔ y ≔ ck( 􏼁k∈N ∈ F
N

􏽘

∞

k�1
ckek converges inX

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

⎧⎨

⎩

⎫⎬

⎭, (15)

with termwise linear operations and the norm,

Y∋y ≔ ck( 􏼁k∈N↦‖y‖Y ≔ sup
n∈N

􏽘

n

k�1
ckek

���������

���������
, (16)

is a Banach space and the linear operator,

Y∋y ≔ ck( 􏼁k∈N↦Ay ≔ 􏽘
∞

k�1
ckek ∈ X, (17)

is subject to the inverse mapping theorem (see, e.g., [1–3, 6]).
,e boundedness of the inverse operator A−1: X⟶ Y

implies boundedness, and hence, continuity, for the linear
Schauder coordinate functionals,

X∋x � 􏽘
∞

k�1
ck(x)ek↦cn(x) ∈ F , n ∈ N, (18)

with

cn

����
����≤

2 A
−1����

����

en

����
����

, n ∈ N, (19)

(see, e.g., [1–3]) as well as for the linear operators:

X∋x � 􏽘
∞

k�1
ck(x)ek↦Snx ≔ 􏽘

n

k�1
ck(x)ek,

Rnx ≔ 􏽘
∞

k�n+1
ck(x)ek, n ∈ N,

(20)

with

I � Sn + Rn, n ∈ N, (21)

(I is the identity operator on X) and

Sn

����
����≤ A

−1����
����, Rn

����
����≤ 2 A

−1����
����, n ∈ N, (22)

(see, e.g., [3]).

Remark 3. Here and henceforth, we use the notation ‖ · ‖ for
the operator norm.

3. General Characterization

,e following statement appears to be a perfect illustration
of the profound observation by Schwartz found in [7] and
chosen as the epigraph.

Theorem 1 (general characterization of convergence). Let
(X, ‖ · ‖) be a (real or complex) Banach space with a Schauder
basis en􏼈 􏼉n∈N and corresponding coordinate functionals cn(·),
n ∈ N.

For a sequence (xn)n∈N and a vector x in X,

xn⟶ x, n⟶∞, (23)

iff

(1) ∀k ∈ N: ck(xn)⟶ ck(x), n⟶∞,
(2) ∀ε> 0∃K0 ∈ N∀K≥K0 ∀n ∈ N: ‖RKxn‖< ε.

Proof. “Only if” part.
Suppose that, for a sequence (xn)n∈N and a vector x in X,

xn⟶ x, n⟶∞. (24)

,en, by the continuity of the Schauder coordinate
functionals cn(·), n ∈ N, we infer that condition (1) holds.

Let ε> 0 be arbitrary. ,en,

∃N ∈ N∀n≥N: xn − x
����

����<
ε

4 A
−1����

����
. (25)

Since x ∈ X,

RKx ≔ 􏽘
∞

k�K+1
ck(x)ek⟶ 0, K⟶∞, (26)

and hence,

∃K0 ∈ N∀K≥K0: RKx
����

����<
ε
2
. (27)

In view of (22), (25), and (27), we have

∀K≥K0,∀n≥N: RKxn

����
���� � RKxn − RKx + RKx

����
����

≤ RK xn − x( 􏼁
����

���� + RKx
����

����

≤ RK

����
���� xn − x
����

���� + RKx
����

����

< 2 A
−1����

����
ε

4 A
− 1����

����
+
ε
2

�
ε
2

+
ε
2

� ε.

(28)

Furthermore, since xn ∈ X, n � 1, . . . , N − 1, we can
regard K0 ∈ N in (27) to be large enough so that

∀K≥K0,∀n � 1, . . . , N − 1: RKxn

����
���� � 􏽘

∞

k�K+1
ck xn( 􏼁ek

���������

���������
< ε.

(29)

,us, condition (2) holds as well.
,is completes the proof of the “only if” part.
“If” part. Suppose that, for a sequence (xn)n∈N and a

vector x in X, conditions (1) and (2) are met.
For an arbitrary ε> 0 and K0 ∈ N, from condition (2), by

condition (1),

∃N ∈ N∀n≥N: SK0
xn − x( 􏼁

�����

�����≤ 􏽘

K0

k�1
ck xn( 􏼁 − ck(x)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 ek

����
����<
ϵ
3
.

(30)

Since x ∈ X, we can also regard that K0 ∈ N in condition
(2) to be large enough so that

RK0
x

�����

�����<
ε
3
. (31)

International Journal of Mathematics and Mathematical Sciences 3



,en, in view of (21), (30), and (31) and by condition (2),

∀n≥N: xn − x
����

���� � SK0
xn − x( 􏼁 + RK0

xn − x( 􏼁
�����

�����

≤ SK0
xn − x( 􏼁

�����

����� + RK0
xn

�����

����� + RK0
x

�����

�����

<
ε
3

+
ε
3

+
ε
3

� ε.

(32)

,is concludes the proof of the “if” part and the entire
statement. □

Remarks 4

(i) Condition (1) is the convergence of the coordinates
of xn to the corresponding coordinates of x relative
to ek􏼈 􏼉k∈N.

(ii) Condition (2) signifies the uniform convergence of
the Schauder expansions,

􏽘

∞

k�1
ck xn( 􏼁ek, (33)

of xn relative to ek􏼈 􏼉k∈N over n ∈ N.

Now, the combined characterization of convergence
(Proposition 3) is an instant corollary of the foregoing
general characterization.

4. Characterization of Convergence in an
Infinite-Dimensional Separable
Hilbert Space

For an infinite-dimensional separable Hilbert space
(X, (·, ·), ‖ · ‖) relative to an orthonormal basis en􏼈 􏼉n∈N, in
view of (9), the general characterization of convergence
(,eorem 1) acquires the following form.

Corollary 1 (characterization of convergence in a separable
Hilbert space). Let (X, (·, ·), ‖ · ‖) be a (real or complex)
infinite-dimensional separable Hilbert space with an ortho-
normal basis en􏼈 􏼉n∈N.

For a sequence (xn)n∈N and a vector x in X,

xn⟶ x, n⟶∞, (34)

iff

(1) ∀k ∈ N: (xn, ek)⟶ (x, ek), n⟶∞,
(2) ∀ε> 0∃K ∈ N ∀n ∈ N: 􏽐

∞
k�K+1 |(xn, ek)|2 < ε.

Remarks 5

(i) Condition (1) is the convergence of the Fourier
coefficients of xn to the corresponding Fourier
coefficients of x relative to ek􏼈 􏼉k∈N.

(ii) Condition (2) signifies the uniform convergence of
the Fourier series expansions,

􏽘

∞

k�1
xn, ek( 􏼁ek, (35)

of xn relative to ek􏼈 􏼉k∈N over n ∈ N.
(iii) ,e characterization of convergence in lp (Propo-

sition 1) for p � 2 is now a particular case of the
prior characterization.

5. Characterization of Convergence in c

Another immediate corollary of the general characterization
of convergence (,eorem 1) is the realization of the latter in
the space c of convergent sequences equipped with∞-norm
(see (2)) relative to the standard Schauder basis en􏼈 􏼉n∈Z+

(see
Section 2).

Indeed, in c relative to en􏼈 􏼉n∈Z+
, for an arbitrary

x ≔ (xk)k∈N,

x � 􏽘
∞

k�0
ck(x)ek, with c0(x) � lim

m⟶∞
xm, ck(x)

� xk − c0(x), k ∈ N,

(36)

(see (13)) and

SKx ≔ 􏽘
K

k�0
ck(x)ek � lim

m⟶∞
xm, x1 − lim

m⟶∞
xm, . . . , xK − lim

m⟶∞
xm, 0, . . .􏼒 􏼓,

RKx ≔ 􏽘
∞

k�K+1
ck(x)ek � 0, . . . , 0􏽼√√√􏽻􏽺√√√􏽽

K+1 terms
, xK+1 − lim

m⟶∞
xm, . . .⎛⎝ ⎞⎠, K ∈ Z+,

(37)

(cf. (20)).
,us, the general characterization of convergence

(,eorem 1), in view of the obvious circumstance that, for
any x ≔ (xk)k∈N ∈ c, the sequence,

RKx
����

���� � sup
k≥K+1

x
(n)
k − lim

m⟶∞
x

(n)
m

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, K ∈ Z+, (38)

is decreasing, acquires the following form.

Corollary 2 (characterization of convergence in c). In the
(real or complex) space c,

x
(n)
k􏼐 􏼑

k∈N≕x
(n)⟶ x ≔ xk( 􏼁k∈N, n⟶∞, (39)
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iff

(1) limm⟶∞x(n)
m ⟶ limm⟶∞xm, n⟶∞, and

∀k ∈ N: x
(n)
k ⟶ xk, n⟶∞,

(2) ∀ε>0∃K∈Z+∀n∈N:supk≥K+1|x
(n)
k −limm⟶∞x(n)

m |<ε.

Remarks 6

(i) Condition (1), beyond termwise convergence, in-
cludes convergence of the limits.

(ii) Condition (2) signifies the uniform convergence of
the sequences (x

(n)
k )k∈N to their respective limits

over n ∈ N.
(iii) ,e characterization of convergence in c0 (Propo-

sition 2) is a mere restriction of the prior charac-
terization to the subspace c0 of c.

6. Concluding Remark

As is easily seen, the general characterization of convergence
(,eorem 1) is consistent with the following characteriza-
tion of compactness, which underlies the results of [8].

Theorem 2 (characterization of compactness, Theorem
III.7.4 in [3]). In a (real or complex) Banach space (X, ‖ · ‖)

with a Schauder basis, a set C is precompact (a closed set C is
compact) iff

(1) C is bounded,
(2) ∀ε> 0∃K0 ∈ N∀K≥K0 ∀x ∈ C: ‖RKx‖< ε.
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