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In this paper, we propose a novel robust algorithm for image recovery via affine transformations, the weighted nuclear, L∗,w, and the L2,1
norms. .e new method considers the spatial weight matrix to account the correlated samples in the data, the L2,1 norm to tackle the
dilemma of extreme values in the high-dimensional images, and the L∗,w norm newly added to alleviate the potential effects of outliers
and heavy sparse noises, enabling the new approach to be more resilient to outliers and large variations in the high-dimensional images
in signal processing. .e determination of the parameters is involved, and the affine transformations are cast as a convex optimization
problem. Tomitigate the computational complexity, alternating iteratively reweighted directionmethod ofmultipliers (ADMM)method
is utilized to derive a new set of recursive equations to update the optimization variables and the affine transformations iteratively in a
round-robin manner. .e new algorithm is superior to the state-of-the-art works in terms of accuracy on various public databases.

1. Introduction

Robust methods have been successfully applied to numerous
computer vision tasks, including face recognition [1], signal
processing, scene categorization [2], point cloud segmen-
tation using image processing [3, 4], and object detection [5].
Image representation, mainly the face recovery and align-
ment, has been an important research topic and can be
found in applications in a variety of areas such as surveil-
lance systems, sparse coding, image denoising, communi-
cations, computational imaging, and computer vision
[6–12]. However, analyzing visual data is a difficult task due
to miscellaneous adverse effects such as illuminations,
outliers, and sparse noises. It is thus of importance devel-
oping a new approach for image alignment and recovery via
a convex optimization, which are resilient to various an-
noying effects.

Since the inception of the pioneering work of robust
principal component analysis (RPCA) by Candes et al. [13],
a myriad of algorithms has been addressed for robust sparse-
low-rank image recovery, e.g., [14, 15]. However, these
methods do not work well when the outliers and heavy
sparse noises are heavily skewed. By assuming the dictionary
images are registered, Wagneret al. [16] parameterize the
misalignment of the test image with an affine transforma-
tion. .ese parameters are optimized using generalized
Gauss–Newton methods after linearizing the affine trans-
formation constraints. By minimizing the sparse registration
error iteratively and sequentially for each class, their
framework is able to deal with a Lagrange of variations in
translation, scaling, rotation, and even 3D pose variations.
Due to the adoption of holistic features, sparse coding is
more robust and less likely to overfit. In [7, 17], a novel
algorithm through using sparsity priors for image processing
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was addressed. To overcome this drawback, Oh et al. [18]
considered a new partial singular value thresholding (PSVT)
algorithm, which replaced the nuclear norm in RPCA [13]
with the partial sum of singular values to improve the re-
covery of the low-rank part. Lu et al. [19] proposed a tensor
robust principal component (T-RPCA) algorithm to find the
clean tuber low-rank component. However, T-RPCA is not
scalable and robust when the number of tensors becomes
large. To tackle the potential effects of outliers and heavy
sparse noises and impulse noises, there are several algo-
rithms proposed via different norms, for instance, L2,1 norm
by weakly convex optimization by [20, 21], Lq norm by [22],
and then novel matrix completion technique without a prior
rank information by [23–26], which proposed a novel al-
gorithm for image recovery via pruning out the potential
impact of outliers and heavy sparse noises. However, the
proposed methods need to be improved to become more
faithful for image recovery in high-dimensional images
particularly in signal processing.

.is paper proposes a new robust algorithm via affine
transformation, the L∗,w and L2,1 norms, and spatial weight
matrix to reduce the potential impacts of outliers and noises
in image and signal processing. To be more resilient to
various adverse annoying effects such as occlusions and
outliers, the new approach takes the advantages of the novel
ideas’ affine transformations, L∗,w and L2,1 norms, for more
faithful low-rank sparse image representation. Conse-
quently, the distorted or misaligned images can be rectified
by affine transformations to render more accurate robust
sparse coding for image representation outcomes. .e
overall problem is first cast as a convex optimization pro-
gramming, in which the affine transformations, low-rank
sparse coding, and subspace recovery are carried out si-
multaneously. Additionally, the weighted nuclear norm L∗,w
and the L2,1 norm are also taken into account to prune out
the potential impacts of outliers and extreme values from the
datasets. Afterward, the iterative reweighted alternating
directionmethod (ADMM) approach is employed and a new
set of equations is established to update the optimization
variables and affine transformations iteratively in a round-
robin manner. Simulation results which were conducted
reveal that the proposed approach excels the state-of-the-art
works for face recovery on some public datasets. .e major
contributions of this paper include

(1) .e affine transformations involved is used to correct
and align distorted or misaligned images so that the
proposed method is becoming popular.

(2) .e iterative reweighted nuclear norm model along
with L2,1 norm and the spatial weight matrix is
combined to find the true underlying images, as such
tackle the potential impacts of outliers and heavy
sparse noises in signal processing.

(3) .e newly developed method take the potential ef-
fects of outliers and heavy sparse noises into account
to further propose via the iteratively reweighted
ADMM approach to solve the convex optimization
problem, and a new set of updating equations is

developed to iteratively update the optimization
parameters and affine transformations.

(4) In the new proposed method, the L2,1 and weighted
nuclear norms are incorporated including the spatial
weight matrix instead of the L1 norm to prune out
the potential impacts of noises in the signal pro-
cessing. Integrating the L2,1 and weighted nuclear
norms into the low-rank representation to enhance
the quality of image recoveries will suppress the
effect of noisy data. As a result, our proposed model
can be used for image recovery and alignment
simultaneously.

(5) We conduct experiments on several benchmark
datasets, and the experimental results demonstrate
the effectiveness of our new method.

.is paper is structured as follows. Section 2 describes
the formulation of the new problem. Section 3 illustrates the
new set of updating equations to solve the formulated
convex optimization problem and experimental simulation
results are provided in Section 4 to justify the effectiveness of
the proposed method. Section 5 draws some concluding
remarks to summarize the paper. .e summary indicating
the comparison of the proposed method with other related
approaches is summarised in Table 1.

2. Problem Formulation

Consider n images, I0i􏼈 􏼉 ∈ Rw×h, i � 1, . . . , n, where w and h

denote the weight and height of the images, respectively. All of
these images contain the same objects and are highly cor-
related with each other. In many scenarios, these images are
corrupted by occlusions and outliers. We can stack these
images into a matrix: M � [vec(I01)|vec(I

0
2)| . . . |vec

(I0n)] ∈ Rm×n, where vec(·) denotes the vector stacking op-
erator. We can decomposeM into a summation of a low-rank
component and a sparse error matrix [41, 42]: M � A + E,
whereA ∈ Rm×n is a clean low-rank and E ∈ Rm×n denotes a
sparse error matrix incurred by outliers or corruptions.

In practice, I0i are generally not well aligned, entailing the
above low-rank sparse decomposition to be imprecise. To
take account of this, inspired by [39, 43, 44], we apply affine
transformations τi to the potentially misaligned input im-
ages I0i to get a collection of transformed images Ii � I0i oτi,
where the operator o indicates the transformation. We can
then stack these aligned images into a matrix and obtain
Moτ � [vec(I1)|vec(I2)| . . . |vec(In)] ∈ Rm×n. .e aligned
images can be treated as samples taken from a union of low-
dimensional subspaces, which, if well aligned, should exhibit
a low-rank subspace structure as the rank of the transformed
images is as small as possible, up to some outliers and heavy
sparse errors. Solving for the variables corresponding to the
constraints Moτ � A + E is intractable due to its nonline-
arity. To resolve this dilemma, we assume that the change
produced by these affine transformations τi is small and an
initial of τi is known. We can then linearizeMoτ by using the
first-order Taylor approximation as Mo(τ+Δτ) ≈ Moτ+

􏽐
n
i�1 JiΔτvivT

i , where Moτ ∈ R
m×n is the transformed image,

Δτ ∈ Rp×n with p being the number of variables,
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Ji � (zvec(Iioτi)/zτi) ∈ R
m×p denotes the Jacobian of the ith

image with respect to τi, and vi is the standard basis for Rn.
In this way, we obtain approximate transformations to re-
cover the low-rank component and sparse noises from high-
dimensional images.

To make the new approach more resilient to outliers
and heavy sparse noises, the L2,1 norms, which combines
the advantages of the L1 and L2 norms, are used to manifest
the sparsity and the low-rank properties. It can also tackle
the sparse errors in data points which are highly correlated
across all data points in the images. In [8, 38], the joint
dictionary learning methods are used but the issue of the
affine transformation is not considered, [45, 46], while used
an image transformation without considering the L2,1 and
weighted nuclear norms. Moreover, the L2,1 regularizer is
considered as the rotational invariant of the L1 norm and
handles the collineraity between features, which is pre-
ferred to overcome the difficulty of robustness to outliers
[47, 48]. In an effort to overcome inherent shortcoming of
the nuclear norm, that is, the equal penalization of each
singular value regardless of its magnitude [13], a weighted
nuclear norm is based on similar premises to those of the
weighted version of the l1 norm [49] and has been proven to
provide significant merits in terms of data recovery per-
formance. Our objective is to recover the low-rank com-
ponent and sparse components exactly solving a convex
program whose objective is combination of the weighted
nuclear norm the L1,2 norms. By incorporating the
weighted nuclear and L2,1 norms along with a set of affine
transformations and through further considering the
spatial weight matrix into account also boosts the per-
formance of algorithm tackling the potential impacts of
outliers, noises, and heavy sparse noises between images
also, the new method can thus be posted as a convex
optimization problem with

min
A,E,Δτ

w1‖A‖∗,w + w2λ1‖E‖2,1

s.tMoτ + 􏽘
n

i�1
JiΔτviv

T
i � A + E,

(1)

where ‖A‖∗,w � 􏽐
min(m,n)
i�1 wiσi(A) denotes the weighted

version of the nuclear norm of A, in which σi(A) indicates
the singular values of A, λ1 denotes the regularization pa-
rameters, and ‖E‖2,1 � 􏽐

n
i�1 (􏽐

m
j�1 E

2
ji)

1/2denotes the L2,1
norm of E, andw1 andw2 are used to balance the importance
of the two types of low-rank priors. Analytically shown in
[49], the weighted nuclear norm is convex. An interesting
case arises when a reweighted version of this is adopted by
defining the weights as follows:

wi �
1

δi(A) + ε
, (2)

where ε is a small constant. It should be noted that, by
setting wi, the weighted nuclear norm becomes concave
penalizing more heavily smaller values and less the larger
ones, and the first weighted nuclear norm term in (1)
imposes the low-rank component lying in the low-di-
mensional subspaces. .e fourth term regularizes the
error E to be sparse.

3. Proposed Algorithm

To solve the convex optimization problem in (1), we consider
the augmented Lagrangian function given by

L(A,E,Δτ) � w1‖A‖∗,w + w2λ1‖E‖2,1 +〈Z1,B − A − E〉

+
μ1
2

‖B − A − E‖
2
F,

(3)

where Z1 ∈ R
m×n is the Lagrangian multipliers, μ1 and μ2 are

the penalty parameters, and B � Moτ + 􏽐
n
i�1 JiΔτvivT

i .
Equation (3) is convex as it depends on the nonnegative
matrix factorization. By using augmented Lagrange multi-
plier with adaptive penalty [50], equation (2) can be re-
written as

L(A,E,Δτ) � w1‖A‖∗,w + w2λ1‖E‖2,1 +
μ1
2

B − A − E +
Z1

μ1

��������

��������

2

F

.

(4)

Solving (2) directly is computationally prohibitive;
thereby, we consider to iteratively update the variables al-
ternatively via alternating iteratively reweighted direction
method of multipliers (ADMM)method [51]. In this section,
we present a geometric robust subspace algorithm to
minimize the recovering errors as defined in equation (1). It
is well known that the robust subspace geometric algorithm
assisted by the weighted nuclear norm affine transformation,
and the L2,1 norms boost the performance of the proposed
method.

Firstly, to update A, we fix E and Δτ, so A(k+1) can be
determined by

A(k+1)
� argmin

A
L A,E(k)

,Δτ(k)
􏽮 􏽯, (5)

where k is the iteration index. By ignoring all irrelevant
terms of A, equation (5) can be simplified as

Table 1: Comparison of the proposed approach with other related algorithms in terms of the objective function and constraints.

Methods Objective function Constraints
[27–30] minA,E‖A‖∗ + λ‖E‖1 M � A + E
[22, 31–34] minA,E‖A‖∗ + λ‖E‖1 Moτ + 􏽐

n
i�1 JiΔτvivT

i � A + E
[9, 35, 36] minC,E,Q,A‖C‖∗ + λ‖E‖2,1 M � AC + E,C � Q
[36–40] minA,E,C,Q,Δτ‖A‖∗ + ‖C‖∗ + λ1‖Q‖2,1 + λ2‖E‖2,1 Moτ + 􏽐

n
i�1 JiΔτvivT

i � AC + E,C � Q, Q≽0
Proposed method minA,E,Δτw1‖A‖∗,w + w2λ1‖E‖2,1 Moτ + 􏽐

n
i�1 JiΔτvivT

i � A + E
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A(k+1)
� argmin

A
w1‖A‖∗,w +

μ(k)
1
2

B(k)
− A − E(k)

+
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭.

(6)

We can then use the linear augmented direction method
with the soft shrinkage operator in [41] and update A(k+1)

by (6).
Secondly, to update E, we keep A and Δτ as constants, so

E(k+1) can be determined by

E(k+1)
� argmin

E
L A(k+1)

,E,Δτ(k)􏽮 􏽯. (7)

Again, by ignoring all irrelevant terms of E, equation (7)
can be simplified as

E(k+1)
� argmin

E
w2λ1‖E‖2,1 +

μ(k)
1
2

B(k)
− E +

Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭ .

(8)

By using lemma [52], the update of the ith column of
E(k+1) and E(k+1)

i is given by

E(k+1)
i �

V(k)
i

�����

�����2
− W2λ2/μ

(k)
1􏼐 􏼑

V(k)
i

�����

�����2

V(k)
i , if V(k)

i

�����

�����2
≥

w2λ1
μ(k)
1

,

0, otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

where ‖.‖2 denotes the Euclidean norm and
V(k) � (B(k) − A(k) + (Z(k)

1 /μ(k)
1 )).

Lastly, to get an update of Δτ, we keep A and E as
constants, and Δτ(k+1) can be determined by

Δτ(k+1)
� argmin

Δτ
L A(k+1)

,E(k+1)
,Δτ􏽮 􏽯. (10)

By ignoring all irrelevant terms of Δτ, we can obtain

Δτ(k+1)
� argmin

Δτ

μ(k)
1
2

B(k)
− A(k+1)

− E(k+1)
+
Z(k)
1

μ(k)
1

���������

���������

2

F

⎧⎨

⎩

⎫⎬

⎭.

(11)

Solving (11) with the threshold operators [22, 43], we can
get an update of Δτ(k+1) as

Δτ(k+1)
� 􏽘

n

i�1
J+

i A(k+1)
+ E(k+1)

− Moτ −
Z(k)
1

μ(k)
1

⎛⎝ ⎞⎠viv
T
i , (12)

where J+
i denotes the Moore–Penrose pseudoinverse of Ji [53].

Following the same steps as the above, the Lagrangian
multiplier Z1 is updated by

Z(k+1)
1 � Z(k)

1 + μ(k+1)
1 B(k)

− A(k+1)
− E(k+1)􏽮 􏽯. (13)

Likewise, the regularization parameters μ1 is updated,
respectively, by

μ(k+1)
1 � min μmax, ρμ

(k)
1􏽮 􏽯, (14)

where ρ is a properly chosen constant and μmax is a tunable
parameter adjusting the convergence of the proposed
method..ese updating equations proceed in a round-robin
manner until convergence.

4. Experimental Simulations

In this section, we evaluate the effectiveness of proposed
algorithm on handwritten digits’ datasets including the
MNIST [54], Dummy Face Images [55], and Algore Video
Face images [43]. In this work, novel ideas affine trans-
formation, the spatial weight matrix, the weighted nuclear
norm, and the L2,1 norms are taken into consideration to
boost the performance of the proposed method. Similar to
[39, 43], parameters in our experiments are chosen heu-
ristically. Different datasets are taken into account to ex-
amine the effectiveness of the proposed method as
compared to the baselines’ RASL [43] and NQLSD [22]. To
further see the performance, the numerical simulations,
using the peak signal-noise ratio, are considered. As shown
in Table 2, the PSNR is very high for all datasets. To further
check the image similarity quantitatively to describe the
performance of our algorithm using the statistical measures
of similarity, mainly the peak signal-to-noise ratio (PSNR)
[56],

PSNR(f, 􏽢f) � 10log
2552/(1/m×n) 􏽐

m

i�1 􏽐
n

i�1 fij−􏽢fij( 􏼁
2

􏼐 􏼑
10 , (15)

where both the original image f and the recovered image 􏽢f

are of size m × n.

4.1. Handwritten Images. In this experiment, different
datasets are considered to examine the effectiveness of the
proposed method. First, 30 handwritten digits of the size
29 × 29 are taken from the MNIST database [54]. We
compare the PSNR performance of the proposed method
with the aforementioned five baselines, as shown in Table 2,
from which we can see that NQLSD has better performance
than RASL, as NQLSD employs the local linear approxi-
mation with a quadratic penalty approach to tackle the
potential setback of outliers and sparse noises in the im-
ages. .e proposed method is superior to the other two
baselines, as it considers an iterative linearization via affine
transformation, weighted nuclear norm, and spatial weight
matrix and considers the L2,1 norms. As an illustration,
some visual images of the recovered handwritten digits
based on the aforementioned methods are shown in
Figure 1(d), from which we can see that the proposed
method recovers the handwritten images better as com-
pared to the two baselines. We can also observe from
Table 2 that the proposed approach provides the best
performance.
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4.2. Dummy Face Images. To further check the effectiveness
of the proposed method, we consider dummy face images,
from which the proposed method is more clear than the
other state of the art of the works (see Figure 2(d)). .e
proposed method is more clear than the other state of the art
of the works. To further justify the effectiveness of the
proposed method, we computed the PSNRs of the dummy
face images where we observe that the proposed method is
more boosted than the other two baselines (Table 2). .is
result is resembled with the results illustrated via
visualization.

4.3. Al Gore Video Face Images. Finally, we conduct an
experiment on a more complicated face images from videos
sequences taken from the Al Gore talking [43]. From these
datasets and video sequences, 7 different video face images
with the size 232 × 312 are taken into account, where the
simulation results are illustrated in Figure 3(d), from which
the performance of the proposed method is visually clearer
than the two baselines. .e comparison of PSNR using the
proposed method along with two baselines is given in Ta-
ble 2, from which we can see that the NQLSD yields better
performance than the RASL. .is is because NQLSD
combines the penalized and further decomposes the errors
than the RASL. We can further note from Table 2 that the
proposed method still outperforms all baselines, as it further
considers the L2,1 norms, weighted spatial matrix, and the
affine transformations. .is is because affine transformation
corrects the distorted images, while the L2,1 norms prune out
the potential impacts of extreme values and the dilemma of

spatial dependency between images tackled via the spatial
weight matrix.

4.4. Natural Face Images. Next, we conduct simulations on
more challenging images taken from the Labeled Natural
Faces database. In this experiment, 7 natural face images
with the size 80 × 60 are considered. We compare the
proposed method with the aforementioned two baselines in
terms of PSNR for image recovery. .e comparison results
are given in Table 2, from which we can see that the NQLSD
outperforms RASL, as NQLSD considers the penalized
parameters than RASL. Again, an illustration, some re-
covered natural face images based on the proposed method
and aforementioned baselines are given in Figure 4, where
the recovered natural face images are depicted in
Figure 4(d). .e recovered images by the aforementioned
algorithms are shown in Figure 4(d), from which we can see
that the visual quality of the proposed method is better than
all of the baselines. .is is in line with the numerical results
in Table 2. .e performance of the new model is boosted
because we incorporated more novel ideas such as the affine
transformations, the weighted nuclear norm, and the L2,1
norm incorporating the issue of the spatial weight matrix to
cast the extreme values.

4.5. Complicated Windows. To further examine the effec-
tiveness of the proposed algorithm, we considered com-
plicated windows, as shown in Figure 5(d), from which we
can recognize that the proposed method is more clear than
the other state of the art of the works. To justify the

(a) (b)

(c) (d)

Figure 1: Some recovered handwritten digits. (a) Original, (b) NQLSD, (c) RASL, and (d) proposed method.

Table 2: Performance comparisons on various datasets via the peak signal-noise ratio (PSNR) (dB).

Datasets Proposed method NQLSD [22] RASL [43]
Handwritten images 77.41 70.23 69.20
Dummy face images 93.75 89.01 80.45
Al Gore face images 99.51 92.45 90.40
Natural face images 105.89 102.003 89.66
Complicated images 123.47 120.03 118.05
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(a) (b)

(c) (d)

Figure 3: Some recovered video sequence face images. (a) Original, (b) NQLSD, (c) RASL, and (d) proposed method.

(a) (b)

(c) (d)

Figure 2: Some recovered dummy face images. (a) Original, (b) NQLSD, (c) RASL, and (d) proposed method.

(a) (b)

Figure 4: Continued.
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effectiveness of the proposed method, numerical experi-
mental simulations justify the performance improvement, as
given in Table 2, which justifies that the proposed method is
more better than the state of the art of the works. .is is
because the new method is more resilient with outliers and
heavy sparse noises as it is assisted with novel ideas such as
the affine transformations, the weighted nuclear norm, and
the L2,1 norm incorporating the issue of the spatial weight
matrix to cast the extreme values.

5. Conclusion

In this paper, a new algorithm is proposed to prune out the
potential impacts of gross errors from the corrupted images
via affine transformations, the weighted nuclear norm L∗,w,
the L2,1 norms, and the spatial weight matrix. Considering all
mentioned novel ideas are useful to get a trustful method in
the areas of high-dimensional images particularly in signal
processing, the optimal parameters corresponding to affine
transformations and other potential optimizing parameters
involved in a new proposed convex optimization problem
are found. .e ADMM approach is then employed and a
new set of equations is established to alternatively update the

optimization variables and the affine transformations.
Conducted simulations show that the new method out-
performs the state-of-the-art methods in terms of accuracy
on five public databases.
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