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In this paper, we present some properties of integrable distributions which are continuous linear functional on the space of test
function D(R2). Here, it uses two-dimensional Henstock–Kurzweil integral. We discuss integrable distributional solution for
Poisson’s equation in the upper half space R3

+ with Dirichlet boundary condition.

1. Introduction

In this paper, we find an integrable distributional solution
for Poisson’s equation in the upper half space. Poisson’s
equation is a second-order elliptic partial differential
equation which has many applications in physics and en-
gineering. &ere are three types of boundary conditions for
Poisson’s equation: Dirichlet condition, Neumann condi-
tions, and Robin conditions. &is article is mainly con-
cerning on Poisson’s equation with Dirichlet boundary
condition (1):

△u � f, inΩ ⊂ Rn
,

u � g, on zΩ .
􏼨 (1)

Partial differential equations (PDEs) are more difficult to
solve than ordinary differential equations (ODEs). &ere-
fore, numerical approximations are widely used in appli-
cation. &ere are standard numerical methods such as finite
difference and finite element etc. to solve (1). In numerical
approaches to solving PDEs, particularly in finite difference
methods, we may face two ways of accuracy loss because of
discretization of domain and approximating partial deriv-
atives by difference formulas. Finite element methods will

improve the accuracy of problems with irregular boundaries,
but still abide by approximations as one has to do mini-
mizing functionals with smaller class of functions [1]. Also,
artificial neural network methods can be used for approx-
imate nonsmooth solutions. See [2] for application of ar-
tificial neural network methods for Poisson’s equation with
boundary value problems in domain R2. &is method trains
data to optimize the algorithm which gives numerical so-
lutions to partial differential equations. Convergent prop-
erties and accuracy of solution are not discussed in the given
method of [2]. Finite element method can be used to solve
elliptic problems with Henstock–Kurzweil integrable
functions. Such an approximation is used in [3] for ODEs,
where existence and uniqueness of the solution are not
discussed. &e proposed analytical approach in our paper
will direct to a solution, where if its explicit form is not
available, one has to only do a numerical integration.

&ere are several methods to find analytical solution for
Dirichlet problem such as Green’s function, Dirichlet’s
principle, layer potentials, energy methods, and Perron’s
method. In 1850 [4], George Green gives theoretical ap-
proach for Dirichlet problem which is now called as Green’s
function. &is assumes that Green’s function exists for any
domain which is not true. However, this idea influences
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modern techniques and distributional theory. Using Green’s
function, one can obtain a general representation solution
for Poisson’s equation.

General representation solution depends on the domain
Ω and nature of the functions f and g. For Lebesgue in-
tegration, it is required that the conditions g ∈ C(zΩ) and
f ∈ C(Ω) get a unique analytical solution
u ∈ C2(Ω)∩C(Ω) for (1), where Ω needs to be open and
bounded in Rn ([5], pg. 28). In classical solution, it is worth
to use Henstock–Kurzweil integral (HK-integral) instead of
the Lebesgue integral.

HK-integral is more advanced, and it includes the
Lebesgue and Riemann integral. &is integral was first in-
troduced by Henstock and Kurzweil in 1957. It has many
advantages such as convergence theorems, integration on
unbounded intervals/functions, Fubini’s theorem, and
fundamental theorem of calculus with full generality, for
details see [6–9]. If HK is the space of HK-integrable
functions, then it has proper inclusion L1 ⊊ HK. For an
example, a highly oscillating function f(x) � (1/x)

sin(1/x3) is neither Lebesgue nor Riemann integrable. But f

is HK-integrable. &ere are only few articles which use HK-
integration to find analytical solution for Dirichlet problem
[10, 11]. Talvila uses HK-integration to find solution for
Dirichlet problem in the upper half plane, see example in
[10]. Also, the same author obtains useful results of Poisson
kernel in the unit disk via HK-integral with application into
Dirichlet problem [11]. However, both articles [10, 11] prove
its results in R2 and do not extend into R3. It is an obvious
fact that properties of HK-integration are not easily ex-
tended for higher dimension. Even the HK-integration is
superior to Lebesgue integration, there are a few drawbacks.
Most significantly, there is no known natural topology for
HK, so that it is not a Banach space.&erefore, there are not
much functional analysis tools to work with the problem.
However, there is a natural seminorm on HK defined by
Alexiewicz [12].

Looking at an alternative, we moved into distribution
theory; specially the space of integrable distribution AC

which is isomorphic to completion of the spaceHK, which
is presented in Section 2. It seems the concept of integrable
distribution is first introduced by Mikusiński and Ostas-
zewski [13] and further developed by several authors
[14, 15]. In recent years, integrable distributional solution for
differential equations has been used by many authors
[16–19]. We define derivative (in distributional sense) ofAC

and the integral on it. In Section 3, the space of Har-
dy–Krause variation functions is identified as a multiplier for
HK. Here it uses Henstock–Stieltjes integral and integra-
tion by parts defined on AC. In [15], example 14.4, Talvila
discussed the Dirichlet boundary condition of Laplace
equation in the half space. &ere it uses Poisson Kernel, and
proof of integrable distributional solution for the Laplace

equation is not given.We extend the proof of this problem in
Section 4 and obtain integrable distributional solution for (1)
when f � 0.

2. Integrable Distributions

Distribution theory was frequently used with the advent of
Laurent Schwartz [20] in 1950. Distributions or generalized
functions are an important functional analysis tool in
modern analysis, especially in the field of PDE’s. When
functions are nonsmooth, then distribution theory allows to
perform operations: translation, differentiation, convolution
etc. Here, we use integrable distributions which are a special
class of distributions that will be important for applications
of distribution theory to partial differential equations, for
details see [13, 14, 21]. &ere are several articles on solving
ordinary and partial differential equations using integrable
distributions [16, 17, 19]. Integrable distribution has used to
find a distributional solution for Poisson’s equation with
Dirichlet boundary condition for the upper half plane. &is
article extends the distributional solution for Poisson’s
equation for the 3-dimensional upper half space.

Let the space of test functions is
D(R2) � ϕ: R2⟶ R|ϕ ∈ C∞􏼈 and ϕ has compact sup-
port}. &en, D(R2) forms a normed space under usual
pointwise operations. &e dual space,D′(R), is called as the
space of distributions. &at is, the distributions are the
continuous linear functionals on D(R2). For a given dis-
tribution T, denotes its action on test function ϕ ∈ D(R2) by
〈T, ϕ〉. For an example, if f is a locally HK-integrable
function, then its corresponding distribution is defined
〈Tf,ϕ〉 � 􏽒

∞
− ∞ 􏽒
∞
− ∞ fϕ. Hereafter, all integral will be HK-

integral unless stated otherwise. Next, consider derivative of
a distribution, sometimes called as distributional derivative
or weak derivative. If F is continuously differentiable, then
􏽒
∞
− ∞ F′ϕ � − 􏽒

∞
− ∞ Fϕ′ for any test function ϕ. &e compact

support of ϕ was used in this integration by parts. With this
suggestion, we define the distributional derivative of a
distribution F ∈ D′(R) by 〈zαF, ϕ〉 � (− 1)|α|〈F, zαϕ〉 for
any ϕ ∈ D(R2). &erefore, in particular,
〈z12F, ϕ〉 � 〈F, z12ϕ〉, where z12 � z2/zy zx. Now, consider
a specific type of distributions called as integrable distri-
butions. &is definition seems to have been first introduced
by Mikusiński and Ostaszewski [13]. After that, it was de-
veloped in detail in the plane by Ang et al. [14] and onR and
R

2 by Talvila [15, 21].
For the extended real numbers R, consider C0(R

2
) be

the space of continuous functions so that both
limx⟶− ∞F(x, y) and limy⟶− ∞F(x, y) exit for any

F ∈ C(R
2
). &en, define BC(R 2) � F ∈ C0(R

2
)􏼚 |F(− ∞,

y) � F(x, − ∞) � 0,∀x, y ∈ R}. &en, BC(R
2
) forms a

Banach space under the uniform norm ‖·‖∞. Next, define the

2 International Journal of Mathematics and Mathematical Sciences



integrable distribution as the derivative of function in
BC(R

2
).

Definition 1. Let f ∈ D′(R2) be distribution. &e space of
integrable distributions is defined and denoted by

AC R
2

􏼒 􏼓 � f ∈ D′ R2
􏼐 􏼑|f � z12F, F ∈BC R

2
􏼒 􏼓􏼚 􏼛. (2)

Here, f � z12F be the sense of distributional derivative,
i.e., 〈f, ϕ〉 � 〈z12F, ϕ〉 � 〈F, z12ϕ〉 for ϕ ∈ D(R2). &e
function F is called as a primitive of f. Generally, primitive
is not unique and differed by a constant. However, with our
choice F(− ∞, y) � F(x, − ∞) � 0, primitive is unique for
any given f ∈ D′(R2).

Theorem 1. Any given f ∈ AC(R
2
) has a unique primitive

in BC(R
2
).

Proof. Let F1 and F2 are primitives of f ∈ AC(R
2
). &en,

f � z12F1 � z12F2 so that z12(F1 − F2) � 0. &is implies
F1 − F2 � X(x) + Y(y) for some X, Y ∈ C(R

2
). Since

(F1 − F2) ∈BC(R
2
), for a fixed y0

0 � lim
x⟶− ∞

F1 − F2( 􏼁 � lim
x⟶− ∞

X(x) + lim
x⟶− ∞

Y y0( 􏼁. (3)

&erefore, limx⟶− ∞X(x) � − Y(y0) for any x ∈ R. &is
implies that X(x) is a constant function. For fixed x0, letting
y⟶ − ∞ gives Y(y) is a constant function for the same
argument. &ose constant functions sums into 0, and hence
F1 � F2. □

&e uppercase letter is denoted the primitive of any
integrable distribution f. If f ∈ AC(R

2
) with the primitive

F ∈BC(R
2
), then for any test function ϕ ∈ D(R2),

〈f, ϕ〉 �〈z12F, ϕ〉 �〈F, z12ϕ〉 � 􏽚
∞

− ∞
􏽚
∞

− ∞
Fz12ϕ, (4)

where it uses HK-integral, and here onward the same, unless
otherwise stated. Since the linearity of derivatives, AC(R

2
)

forms a vector space with usual operations of functionals. To
get Banach space structure of AC(R

2
), it requires to define

the suitable norm. Using the unique primitive of
f ∈ AC(R

2
), we define the Alexiewicz norm as

‖f‖ � sup 􏽚
x

− ∞
􏽚

y

− ∞
f

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: (x, y) ∈ R2

􏼚 􏼛 � sup
R2

|F| � ‖F‖∞.

(5)

Note that the space HK with the Alexiewicz norm is a
normed space, but not a Banach space [12, 22]. Absence of
Banach space structure ofHK is main disadvantage on it. It
is one of the reasons to move into AC(R

2
).

Theorem 2. AC(R
2
) is a Banach space with the Alexiewicz

norm ‖·‖.

Proof. First, prove ‖ · ‖ is a norm.

(i) If f ≡ 0, then clearly ‖f‖ � 0. If ‖f‖ � 0 and then
‖F‖∞ � 0. &is implies F ≡ 0 and hence
f � z12F ≡ 0.

(ii) For any λ ∈ R and f ∈ AC(R
2
),

‖λf‖ � sup 􏽚
x

− ∞
􏽚

y

− ∞
λf

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: (x, y) ∈ R2

􏼚 􏼛

� |λ|sup 􏽚
x

− ∞
􏽚

y

− ∞
f

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: (x, y) ∈ R2

􏼚 􏼛 � |λ|‖f‖.

(6)

(iii) If f, g ∈ AC(R
2
), the primitive of (f + g) is

(F + G). &en,

‖f + g‖ � ‖F + G‖∞ ≤ ‖F‖∞ +‖G‖∞ � ‖f‖ +‖g‖. (7)

&erefore, AC(R
2
) is a normed space. To show com-

pleteness, let any fn􏼈 􏼉⊆AC(R
2
) be Cauchy sequence in ‖·‖.

&en, Fn􏼈 􏼉⊆BC(R
2
) is a Cauchy sequence in ‖·‖∞ because

‖fn − fm‖ � ‖Fn − Fm‖∞. ButBC(R
2
) is a Banach space, so

that there exists a F ∈BC(R
2
) and Fn⟶ F in ‖·‖∞. Let

f � z12F. &en, f ∈ AC(R
2
) and ‖fn − f‖ � ‖Fn −

F‖∞⟶ 0. &is shows fn⟶ f ∈ AC(R
2
) in ‖·‖ and

hence the lemma. □

Alexiewicz norm dose not induce an inner product in
AC(R

2
) because the norm does not satisfy the parallelogram

law. &erefore,AC(R
2
) is not a Hilbert space under the norm

‖·‖. However, the space AC(R
2
) with ‖·‖ is isomorphic to

BC(R
2
) with ‖·‖∞. &e mapping f⟶ F gives a linear

isomorphism between the spaces. Uniqueness of primitive
gives the mapping is injective, and by the definition it is
surjective mapping. Furthermore, the mapping preserves norm
since ‖f‖ � ‖F‖∞. &us, the space AC(R

2
) is identified with

the space of continuous functions vanish at infinity.

Proposition 1. (AC(R
2
), ‖·‖) is isometrically isomorphic to

(BC(R
2
), ‖·‖∞).

Next, we define the integral of an integrable distribution,
as it uses the primitive F ∈BC(R

2
) of f ∈ AC(R

2
).

Definition 2 (see [15], Definition 4.3) Let f ∈ AC(R
2
) with

the primitive F ∈BC(R
2
). We define integral of f on I �

[a, b] × [c, d]⊆R2 by

􏽚
I
f � 􏽚

b

a
􏽚

d

c
f � F(a, c) + F(b, d) − F(a, d) − F(b, c).

(8)

&is integral is uniquely defined by uniqueness of the
primitive, &eorem 1. Also, it is very general and includes
the Riemann integral, Lebesgue integral, and HK-integral.
Norm preservation of Proposition 1 gives that the corre-
sponding integral values agree on each integral as presented
in &eorem 3.
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Theorem 3. For any test function ϕ ∈ D(R2), if f ∈ L1(R2)

is identity with the corresponding distribution
f: ϕ⟼ (L)􏽒

R2fϕ (or with HK-integral), then

(i) f ∈ AC(R
2
)

(ii) AC(R
2
) is the completion of L1(R2) (or HK(R2))

with respect to the norm:

‖f‖ � sup (L) 􏽚
x

− ∞
􏽚

y

− ∞
f

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
: (x, y) ∈ R2

􏼚 􏼛. (9)

(or in the sense of HK-integral)
(iii) 􏽒

R2f � (L)􏽒
R2f(or � (HK)􏽒

R2f)

Proof

(i) Let f ∈ L1(R2). For any (x, y) ∈ R2, we define
FL(x, y) � (L) 􏽒

x

− ∞ 􏽒
y

− ∞ f. &en, FL is a primitive
of f in the Lebesgue integral (or HK-integral).
&en, FL ∈ C0(R2) since the primitive of Lebesgue
integral (or HK-integral) is continuous. Clearly,
FL(− ∞, y) � FL(x, − ∞) � 0 for any (x, y) ∈ R2.
&erefore, f ∈ AC(R

2
).

(ii) From (i), L1(R2) ⊂ AC(R
2
). Let any f ∈ AC(R

2
).

&en, it needs to show f ∈ L1(R2). We prove this by
showing f is a limit point of L1(R2). Since
f ∈ AC(R

2
) there is F ∈BC(R

2
). Now choose a

sequence Fn􏼈 􏼉 ⊂ C2(R
2
) so that ‖Fn − F‖∞⟶ 0.

Since Fn converges to F uniformly and
F(− ∞, y) � F(x, − ∞) � 0, we can assume that
Fn(− ∞, y) � Fn(x, − ∞) � 0 for each n. Now, take
fn � zFn in the distributional sense. &en,
fn � zFn ∈ C(R2) ⊂ L1(R2). Moreover, ‖fn − f‖ �

‖Fn − F‖∞⟶ 0. Hence, f is a limit point of
L1(R2).

(iii) Any Lebesgue integrable function is HK-integrable
with the same value. &us, the result. □

Note that if f ∈ L1(R2), then its Alexiewicz norm and L1

norm are not equivalent, for an example see [15] (pg. 9). &e
norms are equivalent if f≥ 0 for almost everywhere. From
the definition of integral of f ∈ AC(R

2
) and its unique

primitive, we obtain following fundamental theorem of
calculus.

Theorem 4 (fundamental theorem of calculus).

(i) If F ∈ C(R2) then 􏽒
x

− ∞ 􏽒
y

− ∞ zF � F(x, y)

+ F(∞,∞) − F(− ∞, y) − F(x, − ∞)

(ii) Let f ∈ AC(R
2
) and F(x, y) � 􏽒

x

− ∞ 􏽒
y

− ∞ f. 8en
F ∈BC(R

2
) and f � zF

Proof. See [15]. □

3. Multiplier for Integrable Distributions

We will turn now to our discussion on multipliers for
AC(R

2
). A multiplier for a class of functionsF is a function

g such that fg ∈F for each f ∈ F. For an example, in
Lebesgue integral, g ∈ L∞(Rn) if and only if fg ∈ L1(Rn)

for each f ∈ L1(Rn). i.e., the space L∞(Rn) is multipliers for
L1(Rn). For HK-integral in one-dimensional case 2, space of
bounded variation functions, BV, is multipliers for HK

[9], (&eorem 6.1.5). In multidimension case, there is no
unique way to extend the notion of variation to function.
Adams and Clarkson [23] give six such extensions but
mostly recognized by Vitali variation and Hardy–Krause
variation. To establish integration by parts formula and
multipliers for AC(R

2
), we begin with Hardy–Krause

variation.
Two intervals in R

2 are nonoverlapping if their inter-
section is of Lebesgue measure zero. A division of R2 is a
finite collection of nonoverlapping intervals whose union is
R

2. If φ: R
2⟶ R, then its total variation (in the sense of

Vitali) is given by

V12φ � sup
D

􏽘
i

φ ai, ci( 􏼁 + φ bi, di( 􏼁 − φ ai, di( 􏼁 − φ bi, ci( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(10)

where the supremum is taken over all divisions D of R2 and
interval Ii � [ai, bi] × [ci, di] ∈ D.

Definition 3 (Hardy–Krause bounded variation). A function
φ: R

2⟶ R is said to be Hardy–Krause bounded variation
if the following conditions are satisfied.

(i) V12φ is finite

(ii) &e function x⟼φ(x, y0) is bounded variation on
R for some y0 ∈ R

(iii) &e function y⟼φ(x0, y) is bounded variation
on R for some x0 ∈ R

&e set of functions in Hardy–Krause variation is
denoted by BVHK(R

2
). As in [15], BVHK(R

2
) forms a

Banach space with norm defined by
‖φ‖BV � ‖φ‖∞ + ‖V1φ‖∞ + ‖V2φ‖∞ + V12φ. Here, V1φ and
V2φ are bounded variation to the functions of (ii) and (iii) in
Definition 3. For any multidimensional case, any function of
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Hardy–Krause variation is a multiplier for HK-integrable
functions, see [9]. &erefore, define following integration by
parts, as a two-dimensional case which is presented in ([9],
&eorem 6.5.9).

Definition 4 (integration by parts). Let f ∈ AC(R
2
) with its

primitive F ∈BC(R
2
). If g ∈BVHK(R

2
), then define

integration by parts on [a, b] × [c, d]⊆R2.

􏽚
b

a
􏽚

d

c
fg � F(a, c)g(a, c) + F(b, d)g(b, d) − F(a, d)g(a, d) − F(b, c)g(b, c)

− 􏽚
b

a
F(x, d)d1g(x, d) + 􏽚

b

a
F(x, c)d1g(x, c)

− 􏽚
d

c
F(b, y)d2g(b, y) + 􏽚

d

c
F(a, y)d2g(a, y)

+ 􏽚
b

a
􏽚

d

c
F(x, y)d12g(x, y).

(11)

Here, dg(x, y) is Henstock–Stieltjes integral of relevant
variables, see in detail [24].&is integration by parts formula
induces the space of Hardy–Krause bounded variation
functions, BVHK(R

2
), as a multiplier for AC(R

2
). &is

multiplier is important to define convolution and obtain
convergence theorem.

It needs to obtain continuity of the Alexiewicz norm
since the Dirichlet boundary condition is taken on it. For any
(s, t) ∈ R2, the translation of f ∈ AC(R

2
)⊆D′(R

2) is de-
fined by 〈τ(s,t)f, ϕ〉 � 〈f, τ(− s,− t)ϕ〉 for ϕ ∈ D(R2), where
τ(s,t)ϕ(x, y) � ϕ(x − s, y − t). Translation is invariant and
continuous under the Alexiewicz norm.

Theorem 5. Let f ∈ AC(R
2
) and (s, t) ∈ R2. 8en, (i)

τ(s,t)f ∈ AC(R
2
), (ii) ‖f‖ � ‖τ(s,t)f‖, and (iii)

‖f − τ(s,t)f‖⟶ 0 as (s, t)⟶ (0, 0). i.e., continuity of f in
the Alexiewicz norm.

Proof. Let F ∈BC(R
2
) be the primitive of f ∈ AC(R

2
).

&en, τ(s,t)F is a continuous function.

(i) For any ϕ ∈ D(R2), applying change of variable in
integral,

〈τ(s,t)f, ϕ〉 �〈f, τ(− s,− t)ϕ〉

� 􏽚
R

􏽚
R

f(x, y)ϕ(x + s, y + t)dxdy

� 􏽚
R

􏽚
R

f(x − s, y − t)ϕ(x, y)dxdy

� 􏽚
R

􏽚
R

z12F(x − s, y − t)ϕ(x, y)dxdy

� 􏽚
R

􏽚
R

z12 τ(s,t)F(x, y)􏼐 􏼑ϕ(x, y)dxdy.

(12)

&erefore, τ(s,t)F ∈BC(R
2
) is the primitive of

τ(s,t)f.
(ii) Clearly, ‖F‖∞ � ‖τ(s,t)F‖∞ for any (s, t) ∈ R2.

&erefore, ‖f‖ � ‖τ(s,t)f‖.
(iii) If f ∈ AC(R

2
), then (f − τ(s,t)f) ∈ AC(R

2
) so that

f − τ(s,t)f
����

���� � F − τ(s,t)F
����

����∞ � sup
(x,y)∈R2

|F(x, y) − F(x − s, y − t)|⟶ 0,
(13)

when (s, t)⟶ (0, 0) because of uniform continuity ofF. □

4. Integrable Distributional Solution for
Poisson Equation

Poisson’s kernel and its convolution are used to find a
classical solution to the Dirichlet problem. In this section, we
use convolution and convergence theorem on AC(R

2
) to

find integrable distributional solution. If g ∈BVHK(R
2
),

then τ(− s,− t)g ∈BVHK(R
2
). From integration by parts, the

convolution

f∗g(x, y) � 􏽚
R

􏽚
R

fτ(− s,− t)gdsdt

� 􏽚
R

􏽚
R

f(x − s, y − t)g(x, y)dsdt

(14)

exists for f ∈ AC(R
2
) and g ∈BVHK(R

2
). Proposition 2

gives some basic properties of convolution which help with
our problem.
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Proposition 2. If f ∈ AC(R
2
) and g ∈BVHK(R

2
), then

(i) f∗g exists on R2 and (ii) f∗g � g∗f.

Proof. See [15], &eorem 14.1. □

Convergence theorems on Banach space are important
when solving partial differential equations. &ere are several
convergence theorems in AC such as strong convergence in
AC, weak/strong convergence in BV, and weak/strong
convergence inD. Details are discussed in the plane by Ang,
Schmitt and Vy [14] and on R by Talvila [2]. Now, we move
into the convergence theorem onAC(R

2
) which will help to

interchange limit of integral.

Proposition 3. Let φn be a sequence inBVHK(R
2
) so that

‖φn‖BV<∞ and limn⟶∞φn � φ pointwise on R
2 for a

function φ. If g ∈ AC(R
2
), then g ∈BVHK(R

2
) and

lim
n⟶∞

􏽚
R

􏽚
R

gφn � 􏽚
R

􏽚
R

gφ. (15)

Proof. See [15], Proposition 9.1. □

Let us move into the main problem. As in [25] (pg. 84),
Poisson’s equation with Dirichlet boundary condition is
easily reduced to the case where either f � 0 or g � 0 in (1).
&erefore, consider integrable distributional solution for the
following problem:

△u � 0, inR3
+,

u � g, on zR
3
+,

⎧⎨

⎩ (16)

where R3
+ � (x, y, z) ∈ R3: z> 0􏼈 􏼉. For z> 0, consider

Poisson’s kernel for the upper half space in 3-dimension

K(x, y, z) �
z x

2
+ y

2
+ z

2
􏼐 􏼑

− (3/2)

2π
. (17)

Note that 􏽒
R

􏽒
R

Kdxdy � 1. If g ∈ C(R2)∩ L∞(R2),
then classical solution for the problem is given by the fol-
lowing convolution:

u(x, y, z) � K(x, y, .)∗g(x, y)

� 􏽚
R

􏽚
R

K(x − s, y − t, .)g(s, t)dtds.
(18)

&is convolution gives integrable distributional solution
for (16).

Theorem 6. Let g ∈ AC(R
2
) and define u(x, y, z) by (18).

8en,

(i) For each x, y ∈ R and z> 0, the convolution
K(x, y, .)∗g(x, y) � u(x, y, z) exists and
u ∈ AC(R

2
)

(ii) △u(x, y, z) � 0 in R3
+

(iii) lim
z⟶0+

‖u(x, y, z) − g(x, y)‖ � 0, for x, y ∈ R

Proof

(i) Fix x, y ∈ R and z> 0. &en, the function
(s, t)⟼K(x − s, y − t, z) is of Hardy–Krause
variation on R2. From Proposition 2, K∗g exists
on the upper half space. Also, u � K∗
g ∈ AC(R

2
) because any function of Hardy–K-

rause variation is a multiplier for HK-integrable
functions.

(ii) Fix x, y ∈ R and z> 0. To get ux, let xn⟶ x

be a sequence so that xn ≠x. For any (s, t) ∈ R2,
define

φn(s, t) �
K xn − s, y − t, z( 􏼁 − K(x − s, y − t, z)

xn − x
.

(19)

&en, ux � lim
n

􏽒
R

􏽒
R

g(s, t)φn(s, t)dsdt. Since
K(x − s, y − t, z) of Hardy–Krause bounded vari-
ation, so does φn(s, t) for each n. Since g ∈ AC(R

2
),

from Proposition 3

ux � 􏽚
R

􏽚
R

lim
n⟶∞

g(s, t)φn(s, t)dsdt

� 􏽚
R

􏽚
R

g(s, t)Kx(x − s, y − t, z)dsdt.

(20)

Repeat the same argument to obtain uxx, uy, uyy, uz,
and uzz. From the linearity of integral,

△u(x, y, z) � 􏽚
R

􏽚
R

g(s, t)△K(x − s, y − t, z)dsdt.

(21)

But Poisson kernel is harmonic, so that
△u(x, y, z) � 0 in R3

+.
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(iii) Let any α, β ∈ R. For Poisson kernel
􏽒
R

􏽒
R

Kdxdy � 1. Using Fubini–Tonelli theorem
and interchanging iterated integral,

􏽚
α

− ∞
􏽚
β

− ∞
(u − g)dxdy � 􏽚

α

− ∞
􏽚
β

− ∞
[u(x, y, z) − g(x, y)]dxdy

� 􏽚
α

− ∞
􏽚
β

− ∞
[g(x, y)∗K(x, y, z) − g(x, y)]dxdy

� 􏽚
α

− ∞
􏽚
β

− ∞
􏽚
R

􏽚
R

K(s, t, z)[g(x − s, y − t) − g(x, y)]dsdtdxdy

� 􏽚
α

− ∞
􏽚
β

− ∞
􏽚
R

􏽚
R

z

2π s
2

+ t
2

+ z
2

􏼐 􏼑
3/2 [g(x − s, y − t) − g(x, y)]dsdtdxdy

� 􏽚
α

− ∞
􏽚
β

− ∞
􏽚
R

􏽚
R

1

2π s
2

+ t
2

+ 1􏼐 􏼑
3/2 [g(x − zs, y − zt) − g(x, y)]dsdtdxdy

� 􏽚
R

􏽚
R

1

2π s
2

+ t
2

+ 1􏼐 􏼑
3/2 􏽚

α

− ∞
􏽚
β

− ∞
[g(x − zs, y − zt) − g(x, y)]dxdydsdt

≤􏽚
R

􏽚
R

K(s, t, 1)‖g(x − zs, y − zt) − g(x, y)‖dsdt

≤ 2‖g‖.

(22)

Since α and β are arbitrary,

‖u(x, y, z) − g(x, y)‖≤􏽚
R

􏽚
R

K(s, t, 1)‖g(x − zs, y − zt) − g(x, y)‖dsdt≤ 2‖g‖. (23)

To let z⟶ 0+, apply dominated convergence theorem
(HK-integral) for the sequence of functions:

gn(s, t) � K(s, t, 1) g x −
1
n

s, y −
1
n

t􏼒 􏼓 − g(x, y)

�������

�������
. (24)

&en, |gn(s, t)|≤ 2‖g‖K(s, t, 1) ∈HK(R2) since
􏽒
R

􏽒
R

K(s, t, 1)dsdt � 1. It gives

lim
n⟶∞

􏽚
R

􏽚
R

gn(s, t)dsdt � lim
n⟶∞􏽚

􏽚
R

K(s, t, 1)‖g(x − zs, y − zt) − g(x, y)‖dsdt

� 􏽚
R

􏽚
R

lim
n⟶∞

gn(s, t)dsdt

� 􏽚
R

􏽚
R

K(s, t, 1) lim
n⟶∞

g x −
1
n

s, y −
1
n

t􏼒 􏼓 − g(x, y)

�������

�������
d s dt.

(25)

From part (iii) of &eorem 5, we get limn⟶∞‖g(x −

(1/n)s, y − (1/n)t) − g(x, y)‖ � 0 so that limit of (23),
limz⟶0+ ‖u(x, y, z) − g(x, y)‖ � 0, and this completes the
theorem. □
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Next, we give an example which will apply &eorem 6.

Example 1. Consider the problem (16) in which

g(x, y) �

sin x siny

xy
, x≠ 0 andy≠ 0,

0, x � 0 ory � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

&en, g is HK-integrable but not absolutely integrable.
Hence, g ∈ AC(R

2
)∖L1(R2). From &eorem 6,

u(x, y, z) � 􏽚
R

􏽚
R

K(x − s, y − t, .)g(s, t)dtds

� 􏽚
R

􏽚
R

z

2π
(x − s)

2
+(y − t)

2
+ z

2
􏽨 􏽩

− (3/2) sin s sin t

st
􏼒 􏼓dtds,

(27)

exists and gives solution for the example. Note that
Kg ∈HK(R2) since K ∈BVHK(R

2
) is a multiplier for

HK(R2). However, the solution does not exist with the
Lebesgue integral. For contraposition, suppose that
Kg ∈ L1(R2). &en, it follows from Fubini’s theorem [9]
(&eorem 2.5.5) that the function

h: s⟼K(x − s, y − t, z)g(s, t), (28)

belongs to L1(R1) for almost all t ∈ R. &at is,

h(s) �
z sin t

2πt
􏼒 􏼓

sin s

s (x − s)
2

+(y − t)
2

+ z
2

􏽨 􏽩
3/2 ∈ L

1
R

1
􏼐 􏼑

� h0(s)
sin s

s
􏼒 􏼓,

(29)

where h0(s) � (z sin t/2πt)(1/[(x − s)2 + (y − t)2 + z2]3/2).
&is contradicts that h(s) ∉ L1(R1). To see that, suppose
h(s) ∈ L1[0, 1] ⊂ L1(R1). Since h0(s) ∈ L∞[0, 1] is multi-
plier for L1[0, 1], it follows that sin s/s ∈ L1[0, 1]. &is im-
plies that sin s/s absolutely integrable on [0, 1], which is a
contradiction. Hence, h(s) ∉ L1(R1).

Even HK-integral exists in (27), it may not be able to
evaluate and get explicit function. In that case, numerical
integration can be applied. Numerical integration should be
done with respect to s and t while fixing x, y, and z, details in
[26]. &is reduces solving the partial differential equation
into applying numerical integration for the double integral
(27).

5. Discussion

In this work, integrable distributional solution is obtained
for Poisson equation with the Dirichlet boundary condition
in the upper half space. Boundary conditions are taken in the
Alexiewicz norm. Lebesgue integral uses for the classical
solution to Poisson equation. Because of the proper inclu-
sion L1 ⊊ HR, we may use HK-integral to solve Poisson
equation. However, there are some limitations due to the

absence of any natural topology. &at is, HK is not a
Banach space; nevertheless, there is a natural seminorm
called Alexiewicz. &is is one of the main reasons to move
into the space of integrable distribution AC(R

2
), which

contains HK and leads to a Banach space with Alexiewicz
norm.

Integrable distribution is defined as derivative (distri-
butional sense) of function in BC(R

2
). In this definition,

any f ∈ AC(R
2
) identifies with the unique primitive

F ∈BC(R
2
). &is unique primitive allows to define a

Alexiewicz norm ‖·‖ on AC(R
2
) and leads to a Banach

space. Alexiewicz norm does not induce an inner product in
AC(R

2
) because it does not satisfy the parallelogram law.

&erefore, AC(R
2
) is not a Hilbert space under the norm

‖·‖. However, the space (AC(R
2
), ‖·‖) is isometrically iso-

morphic to the space (BC(R
2
), ‖·‖∞). Integral on AC(R

2
)

is uniquely defined by uniqueness of the primitive. AC(R
2
)

is the completion of L1(R2) (or HK(R2)) with respect to
the corresponding Alexiewicz norm.

In one-dimensional HK-integral, space of bounded
variation functions, BV, is multipliers for HK. In mul-
tidimension case, there are several extensions to variation of
function. To establish integration by parts formula and
multipliers for AC(R

2
), we begin with Hardy–Krause

variation. &e space of Hardy–Krause bounded variation
functions, BVHK(R

2
), as a multiplier for AC(R

2
). &is

multiplier is important to define convolution and obtain
convergence theorem. BVHK(R

2
) is used to define con-

volution and obtain convergence theorem on AC(R
2
).

&ere are several convergence theorems in AC such as
strong convergence in AC, weak/strong convergence in
BV, and weak/strong convergence in D. Convergence
theorem on AC(R

2
) and dominated convergence theorem

in HK(R2) are used to obtain integrable distributional
solution. Finding of this article gives solution for Poisson
equation for broader initial condition in the upper half
space. Dirichlet problem in R3 is considered, and the so-
lution has obtained by HK-integration where it is not
possible from Lebesgue integral. Because of function’s
complexity, it may not be able to have solution in explicit

8 International Journal of Mathematics and Mathematical Sciences



form. It would help keep an analytical outlook in the so-
lution, which would be better than solving the partial dif-
ferential equation by numerical methods such as finite
difference methods and finite element methods.

&ere is potential to find integrable distributional so-
lution for Poisson equation in other boundary conditions,
Neumann and Robin. But it needs to develop suitable
convergence theorems on AC and its multipliers BVHK.
Also, it is possible to consider Poisson equation in unit ball
with the relevant Poisson kernel. Talvila, in [15], gives some
construction to develop integrable distribution on Rn, in-
tegration by parts, and mean value theorem and defines
AC(R

n
) and BC(R

n
) for multidimensional case. Hence,

integrable distributional solution is possible to obtain for
Poisson equation with Dirichlet boundary condition in Rn

+

with suitable convergence theorem.
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