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Abstract. 
Any continuous function with values in a Hausdorff topological space has a closed graph and satisfies the property of intermediate value. However, the reverse implications are false, in general. In this article, we treat additional conditions on the function, and its graph for the reverse to be true.

1. Introduction
The motivation of this work derives from the intermediate value theorem (IVT) and the closed graph theorem [1]. We discuss the results presented in [2], showing that the reverse of the IVT may be true under certain additional assumptions.
A continuous function in a Hausdorff space is known to satisfy the following facts:(1)The intermediate value property (IVP).(2)Its graph is closed.(3)The inverse image of each closed set is closed.
The reverse of the two first results is false in general. That means if a function satisfies the IVP or its graph is closed, it is not necessarily continuous. The objective of this work is to provide some conditions in which this reverse is true. In this sense, we prove in Theorem 2 that every function from a locally connected metric space into a locally sequentially compact space, which has a sequentially closed graph and satisfies the IVP, is continuous. Theorem 1 is a generalization of Theorem 2 for functions having a closed graph from locally connected space into locally compact spaces. In Theorem 1, we have a generalization in normed spaces of the result given in [2]. In Theorem 6, we show that the sequential closeness of the graph implies that the inverse image of a sphere is sequentially closed.
We know that the closeness of the graph implies the continuity of linear maps between Banach spaces [3]. The same result is given in Corollary 2 for functions, not necessarily linear, between normed spaces satisfying the IVP in the case if the codomain is a finite dimensional normed space.
From now, Let  and  be Hausdorff topological spaces and  be a map from  into . The graph of  is defined by
Definition 1. Let  be a Hausdorff topological space.(1)The function  is said to be satisfying the intermediate value property (IVP) if the image of every connected subset of  is connected in .(2)A subset  of  is said to be sequentially closed if it contains the limit of every convergent sequence  in .(3)A subset  of  is said to be sequentially compact if every sequence in  admits a limit point in .(4)The space  is said to be locally sequentially compact if every  admits a basis of sequentially compact neighbourhoods.(5)The space  is said to be locally connected if every  admits a basis of connected neighbourhoods.
Remark 1. Every sequentially closed subspace of a locally sequentially compact space is locally sequentially compact.
In [1], we have the following classical results.
Proposition 1. If  is continuous, then its graph is closed and it satisfies the IVP.
Theorem 1. Let  be a connected subset in a topological space . For every subset  of  such that  and , we have , where .
Now, consider the following examples.
Example 1. (1)The function satisfies the IVP, but it is not continuous at 0.(2)The function has a closed graph, but it is not continuous at 0.(3)By the Darboux theorem [4] (asserting that the derivative of a differentiable function on the real line satisfies the IVP), the derivative of any real function which is not in  on the real line satisfies the IVP but it is not continuous.(4)Using the expansion of reals in basis 13, the work given in [5] gives a construction of functions satisfying the IVP which are nowhere continuous.(5)Let  be an uncountable set and  be the real or the complex field. Set  with  andThen,  is a linear subspace of the space  of bounded sequences in . Define a duality between  end  for all  and  byThe setswhere  is a finite subset of  and , form a basis of a zero neighbourhood of a linear topology on  called the weak topology on  with respect to the duality between  and  denoted by .
The sets  where  is a convex balanced compact subset in the weak topology of  and  form a basis of a zero neighbourhood of a linear topology on  called the Mackey topology on  with respect to the duality between  and  denoted by .
The Mackey topology on  is the strongest topology for which the topological dual is the space of the linear mapsLet  be provided with the Mackey topology  and  be the Banach space of summable families . The canonical injection from  into  is a map with a closed graph that is not continuous. For more details, see [6].
In the following, we study conditions making the reverse of IVT true.
Theorem 2. Suppose that  is a locally connected metric space and  is locally sequentially compact. If  satisfies the IVP and its graph is sequentially closed, then  is continuous.
Proof. Suppose that  is not continuous at . Since  is locally connected, there exists a connected neighbourhood  of  such thatSet ; then,  is neighbourhood of . Therefore, there exists a connected neighbourhood  of  such that , and so we construct a decreasing sequence  of connected neighbourhoods of  such thatOn the other hand, since  is not continuous at  and  is locally sequentially compact, there exists a sequentially compact neighbourhood  of  such thatThen,Since  is connected for all , by Theorem 1, we haveHence, for all , there exists  such that . With the sequential compactness of , there is a subsequence  of  which converges to . Since the sequence  is in  and converges to , then  and , which is a contradiction because  is a neighbourhood of . Then,  is continuous at .
Remark 2. By the previous theorem,(1)The graph of the function  given in Example 1 is not a closed set.(2)The function , given in Example 2, does not satisfy the IVP.
Theorem 3. Let  be a locally connected topological space and  be locally compact. If  satisfies the IVP and its graph is closed, then  is continuous.
Proof. Suppose that  is not continuous at . Since  is locally compact, there is a compact neighbourhood  of  such that  for all neighbourhood  of . By the local connectedness of , there is a generalized sequence  of connected neighbourhoods of , which is a basis of neighbourhoods of  in . Then,Since  satisfies the IVP,  is connected for all . By Theorem 1, there exists a generalized sequence  such thatBy the compactness of ,  is compact. Then, there exists a subsequence  such that  converges to . Then, the generalized sequence  converges to . Since  is closed, then . Therefore,  and , which contradicts that  is a neighbourhood of . Thus,  is continuous.
Since the normed spaces are locally connected and the finitely dimensional normed spaces are locally compact, we have the following corollary.
Corollary 1. Each function from a normed vector space into a finitely dimensional normed vector space which satisfies the IVP and with closed graph is continuous.
In [2], the following theorem gives the reverse of the IVT under weak assumptions.
Theorem 4. Let  be a real valued function on an interval  of  satisfying the IVP. If for all  is closed in , then  is continuous.
Proposition 2. Let  be a function; then:(1)If the graph of  is closed, then for every  is closed in .(2)If the graph of  is sequentially closed, then for every  is sequentially closed in .(3)If  is continuous, then for every  is closed in .
Proof. (1)Let  be a generalized sequence in  that converges to .  is a sequence in  that converges to . Since  is closed, then . Hence, . Therefore,  is closed in .(2)In the same way, we show (2).(3)The continuity of  implies that the graph of  is closed, and then we have (3).
Remark 3. (1)The reverse of 1 and 2 is false, in general. As in Example 2, since  is injective,  is closed in , but  has no closed graph.(2)Theorem 2 is a corollary of Theorem 4 and Proposition 2.
The following theorem is a generalization of the real case in Theorem 4.
Theorem 5. Suppose that  is a normed vector space over  or  and  is locally connected metric space. If  satisfies the IVP and the inverse image of every sphere in  is sequentially closed in , then  is continuous.
Proof. Suppose that  is not continuous at . As in the proof of Theorem 2, there is  and a sequence  in  that converges to , and for all , where are the ball and the sphere of radius , respectively. Hence,  is in  which is closed. Then,  and : a contradiction. Thus,  is continuous.
Theorem 6. Suppose that  is a finite dimensional normed vector space. If the graph of  is sequentially closed, then the inverse image of every sphere in  is sequentially closed in .
Proof. Let  be the sphere of center  and of radius . Let  be a sequence in  that converges to . Let us show that . We know that the sequence  is in . Since  is a finite dimensional normed space, then  is compact. Hence, there is a subsequence  of  that converges to . Since the graph  of  is sequentially closed and  is a sequence in  that converges to , then  in  and . Hence,  and . Therefore,  is sequentially closed in .
Theorem 7. Suppose that  is a finite dimensional normed space. If the graph of  is closed, then the inverse image of every sphere in  is closed in .
Proof. Let  be the sphere of center  and of radius . Let  be in the closure ; then, there exists a generalized sequence  in  that converges to . Then, the sequence  is in  which is compact. Hence, there is a subsequence  that converges to . The graph  of  is closed and  is in ; then, . Hence,  and . Therefore,  is closed in .
Corollary 2. Suppose that  is a finite dimensional normed space over  or  and  is locally connected metric space. If  satisfies the IVP and its graph is sequentially closed, then  is continuous.
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