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+is paper presents a new approach to determine the number of solutions of three-variable Frobenius-related problems and to
find their solutions by using order reducing methods. Here, the order of a Frobenius-related problem means the number of
variables appearing in the problem.We present two types of order reductionmethods that can be applied to the problem of finding
all nonnegative solutions of three-variable Frobenius-related problems. +e first method is used to reduce the equation of order
three from a three-variable Frobenius-related problem to be a system of equations with two fixed variables. +e second method
reduces the equation of order three into three equations of order two, for which an algorithm is designed with an interesting open
problem on solutions left as a conjecture.

1. Introduction

Given positive integers a1, a2, . . . , aℓ with
gcd(a1, a2, . . . , aℓ) � 1, we say n ∈ N is representable if

n � m1a1 + m2a2 + · · · + mℓaℓ, (1)

for some m1, m2, . . . , mℓ ∈ N. +e well-known linear
Diophantine problem asks for the largest integer
g � g(a1, a2, . . . , aℓ) that is not representable. +e linear
Diophantine problems of Frobenius have many alternative
names, such as the Frobenius coin problem, the postage
stamp problem, and the chicken McNugget problem (cf. for
example, Bardomero and Beck [1]).

Sylvester [2] showed that g(a1, a2) � (a1 − 1)(a2 − 1),
that is, for any two relatively prime positive integers a1 and
a2, the greatest integer that cannot be written in the form
m1a1 + m2a2 for nonnegative integers m1 andm2 is
(a1 − 1)(a2 − 1) − 1 � a1a2 − a1 − a2.

A consequence of the theorem is that there are exactly
(m − 1)(n − 1)/2 positive integers, which cannot be
expressed in the form am + bn. +e proof is based on the fact

that, in each pair of the form (k, (m − 1)(n − 1) − k − 1),
exactly one element is expressible.

+ere are many stories surrounding the origin of the
Chicken McNugget theorem. However, the most popular by
far remains that of the Chicken McNugget. Originally,
McDonald’s sold its nuggets in packs of 9 and 20. +us, to
find the largest number of nuggets that could not have been
bought with these packs creates the Chicken McNugget
+eorem (the answer worked out to be 151 nuggets). More
description on the history of McNugget problem can be
found, for example, in [3, 4].

In Chapman and O’Neill [5], the McNugget number of
order 3 is defined. We call n a McNugget number associated
with (p, q, ℓ), if there exists an ordered triple (x, y, z) of
nonnegative integers such that

px + qy + ℓz � n, (2)

for p, q, ℓ, and n> 0 and p≤ q≤ ℓ, where a, b, and c≥ 0. +e
paper [5] considers the case of (p, q, ℓ) � (6, 9, 20), namely,
the nonnegative solutions of
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6x + 9y + 20z � n. (3)

+e nonnegative solutions of equation (3) give the
partitions of n into parts 6, 9, and 20. +e number of those
partitions is presented in the sequence A214772. It is worth
noting that the coefficients of equation (3) are not pairwise
relatively prime. In this paper, we consider the following
related problems: (P1) for a given number n, how many
solutions, if exist, does equation (2) have? (P2) How to solve
for all solutions with respect to given n?

Alfonśın [3], Hsu et al. [6], and Bardomero and Beck [1]
presented a method to solve the problems similar to
equation (3) by using the generating function. However, a
large amount partial fraction steps are needed because the
numbers 6, 9, and 20 are big. Chou et al. [7] gave a matrix
method, which can be used to solve equation (3). However,
this method needs to solve a complicated system of in-
equalities. In this paper, we present a simple approach to
solve the above two problems, which can be extended to a
general three-variable Frobenius-related problem. More
materials on the linear Diophantine problem of Frobenius
can be found in [8–11].

Denote the number of the solutions of equation (2) for a
given n by N(p, q, ℓ, n). Let A � a1, a2, . . . , ak􏼈 􏼉 be a set of k

relatively prime positive integers. Let pA(n) denote the
partition function of n with parts in A, that is, pA is the
number of partitions of n with parts belonging to A. +us, if
a, b, and c are relatively prime positive integers, then
N(a, b, c, n) � p a,b,c{ }(n). To find p a1,a2 ,a3{ }(n), where
a1, a2, a3􏼈 􏼉 are relatively primes, we reduce it to pA(n) with
relatively prime A � a, b{ } and use the following formula to
figure p a,b{ }(n): for A � a, b{ }, where (a, b) � 1, n � qab + r

with 0≤ r< ab. Brown, Chou, and one of the authors [12]
found the table as follows:

p a,b{ }(n) �

q + 1, if ab − a − b< r< ab;

q, if r � ab − a − b;

q + 1, if r< ab − a − b and aa′(r) + bb′(r) + r � 2ab;

q, if r< ab − a − b and aa′(r) + bb′(r) + r � ab,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where a′(n) and b′(n) are defined by a′(n) ≡ − nb with
1≤ a′(n)≤ b and b′(n)b ≡ − na with 1≤ b′(n)≤ a, respec-
tively. +en, N(p, q, ℓ, n) can be found accordingly.

In the next section, we use the table to give the number of
solutions of equation (2).+e process to derive the result also
suggests an order reduction algorithm. In Section 3, we will
present another order reduction algorithm based on the
Bézout’s lemma. A conjecture about the solution structure is
also given.

2. The Number of Solutions of Equation (2)

First, we establish the following result about the number of
the solutions of equation (2).

Theorem 1. Let N(p, q, ℓ, n) be the number of the solutions
of equation (2), and let (p, q) � u. Denote the set
A � p/u, q/u􏼈 􏼉. 8en,

N(p, q, ℓ, n) � 􏽘

[(n− jℓ)/(uℓ)]

k�0
pA((n − jℓ)/(u − ℓk) − ℓk), (5)

where j ∈ 0, 1, . . . , u − 1{ } satisfies n − ℓj ≡ 0(mod u).

Proof. If (p, q) � u, then equation (2) can be written as
x

u
p +

y

u
q �

1
u

(n − ℓz). (6)

If x, y, and z are solutions of the above equation for a
given n, we need n − ℓz ≡ 0(mod u). If n ≡ j1u with
j1 ∈ 0, 1, . . . , u − 1{ }, then we may find z � uk + j for k≥ 0
and some j ∈ 0, 1, . . . , u − 1{ } such that

n − ℓz � n − ℓ(uk + j) � αu + j1( 􏼁 − ℓ(uk + j)

≡ j1 − ℓj(mod u) ≡ 0(mod u),
(7)

provided that ℓj ≡ j1(mod u). Since
n − ℓz � n − ℓ(uk + j)≥ 0, we have 0≤ k≤ (n − jℓ)/uℓ. Since
(p/u, q/u) � 1, the number of the solution of equation (6) is

p p/u,q/u{ }
n − zℓ

u
􏼒 􏼓 � p p/u,q/u{ }

n − jℓ
u

− ℓk􏼒 􏼓, (8)

and the number of solutions of equation (2) is given by
equation (5). □

Theorem 2. Let N(p, q, ℓ, n) be the number of the solutions
of equation (2), and let (p, q) � u. Denote A � p/u, q/u􏼈 􏼉.
8en,

N(p, q, ℓ, n) � 􏽘

0≤z≤[n/ℓ]

u|(n− zℓ)

pA

n − zℓ
u

􏼒 􏼓 � 􏽘

0≤z≤[n/ℓ]

u|(n− zℓ)

(1 + M(z)),

(9)
where

M(z) �
u

pq
n − zℓ − pa1(z) − qb1(z)( 􏼁, (10)

if n − zℓ − pa1(z) − qb1(z)≥ 0, and − 1 otherwise, i.e.,
M(z) � max − 1, u(n − zℓ − pa1(z) − qb1(z))/(pq)􏼈 􏼉, a1(z),
and b1(z) are the smallest nonnegative integers satisfying

pa1(z) ≡ (n − zℓ)(mod q),

qb1(z) ≡ (n − zℓ)(modp),
(11)

respectively. Furthermore, the set of all nonnegative solutions
of Diophantine equation (2) is

q

u
i(z) + a1(z), (M(z) − i(z))

p

u
+ b1(z), z􏼒 􏼓: 0≤ i(z)≤M(z)􏼚 􏼛,

(12)

for all 0≤z≤[n/ℓ] with u|(n − zℓ), where M(z) is defined by
equation (10) if (u/pq)(n − zℓ − pa1(z) − qb1(z)≥ 0; oth-
erwise, nonnegative solution set equation (12) does not exist.

Proof. Wemay use the formula shown in Binner (Corollary
17 in [13]) to find the number p p/u,q/u{ }(n − zℓ/u). Denote
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a � p/u, b � q/u, and m(z) � (n − zℓ) /u(0≤z≤⌊(n/ℓ)⌋).
+us, gcd(a, b) � 1, and we need m(z) to be a nonnegative
integer. In general, from [13], the number of nonnegative
solutions of ax + by � m(z) is

pa,b(m(z)) � 1 +
m(z) − aa1(z) − bb1(z)

ab
, (13)

if the second term on the right-hand side of equation (13) is
nonnegative, where a1(z) is the remainder when m(z)a− 1 is
divided by b, b1 is the remainder when m(z)b− 1 is divided by
a, and a− 1 and b− 1 are the modular inverse of a with respect
to b and b with respect to a, respectively, namely,

m(z)a
− 1 ≡ a1(z)(mod b),

m(z)b
− 1 ≡ b1(z)(mod a).

(14)

It is obvious that the last two equations are equivalent to

m(z) ≡ aa1(z)(mod b),

m(z) ≡ bb1(z)(mod a).
(15)

+us, a1(z)≥ 0 and b1(z)≥ 0 can be found by solving (cf.
Remark 16 of [13])

ax ≡ m(z)(mod b),

by ≡ m(z)(mod a),
(16)

for x ≡ a1(z)(mod b) and y ≡ b1(z)(mod a). From equa-
tion (16), we have equation (11) by noticing a � p/u and
b � q/u. DenoteM(z) � (m(z) − aa1(z) − bb1(z))/ab if it is
nonnegative. Substituting m(z) � (n − zℓ)/u, a � p/u, and
b � q/u into M(z), we obtain equation (10). +en, from
equation (13), we have

pp/u,q/u(m(z)) � 1 + M(z) � 1 +
u

pq
n − zℓ − pa1(z) − qb1(z)( 􏼁,

(17)

if (u/pq)(n − zℓ − pa1(z) − qb1(z)≥ 0, which implies
equation (9).

Furthermore, from [13], the set of all nonnegative so-
lutions of ax + by � m(z) is

bi + a1(z), (M(z) − i)a + b1(z)( 􏼁: 0≤ i≤M(z)􏼈 􏼉, (18)

when M(z) � (u/pq)(n − zℓ − pa1(z) − qb1(z))≥ 0, which
implies equation (12). If (u/pq)(n − zℓ − pa1(z) − qb1(z)<0,
then the set shown in equation (18) does not exist, which
implies that 1+ M(z) in equation (9) must be zero. Hence,
M(z) � − 1 in this case, which completes the proof of the
theorem.

We use the formula of the number of nonnegative so-
lutions of ax + by � m given in [13] with modification for
the case the nonnegative solution does not exist. Binner’s
formula is equivalent to the one given by Tripathi [14]. In
addition, the paper [15] gives the pretty much the same idea
as that used in [13].

We may use +eorems 1 and2 to find N(6, 9, 20, n). To
use formula (5), we rewrite equation (3) as

6x + 9y � n − 20z, (19)

and

2x + 3y �
1
3

(n − 20z). (20)

Since 3 is a factor of the left-hand side of equation (19),
we have

n − 20z ≡ 0(mod 3), (21)

which implies

n ≡ 20z ≡ − z(mod 3). (22)

+us, we need to consider three cases for
n ≡ 0, 1, and 2(mod 3), respectively, namely,

z ≡ 0(mod 3), (23)

z ≡ 1(mod 3), (24)

z ≡ 2(mod 3), (25)

respectively.
In the case of equation (23), by noticing n − 20z � 6a +

9b≥ 0 and z � 3k for k≥ 0, we have

0≤ 3k≤
n

20
􏼔 􏼕. (26)

+us, for n ≡ 0(mod 3), from+eorem 1, the number of
the solutions of equation (19) is

N(6, 9, 20, n) � 􏽘

[n/60]

k�0
p 2,3{ }

n

3
− 20k􏼒 􏼓, n ≡ 0 (mod 3).

(27)

In the case of equation (24), because n ≡ 1(mod 3),
z ≡ 2(mod 3). By setting z � 3k + 2, we have the number of
the solutions of

2x + 3y �
1
3

(n − 20z) �
1
3

(n − 20(3k + 2)), (28)

which is

N(6, 9, 20, n) � 􏽘

[(n− 40)/60]

k�0
p 2,3{ }

n − 40
3

− 20k􏼒 􏼓, n ≡ 1(mod 3).

(29)

Finally, in the case of equation (25), because
n ≡ 2(mod 3), z ≡ 1(mod 3). By setting z � 3k + 1, we ob-
tain the number of the solutions of

2a + 3b �
1
3

(n − 20z) �
1
3

(n − 20(3k + 1)), (30)

which is
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N(6, 9, 20, n) � 􏽘

[(n− 20)/60]

k�0
p 2,3{ }

n − 20
3

− 20k􏼒 􏼓, n ≡ 2(mod 3).

(31)

We now use formula (9) to count the solutions of
problem equation (3). Since u � gcd(p, q) � gcd(6, 9) � 3,
to have u|(n − 20z) for n ≡ 0, 1, and 2(mod 3) or n � 3r, 3r

+ 1, and 3r + 2(r ∈ N), we need z ≡ 0, 2, and 1 (mod 3) or
z � 3k, 3k + 2, and 3k + 1(k ∈ N∪ 0{ }), respectively. +us,

M(z) �
3
54

n − 20z − 6a1(z) − 9b1(z)( 􏼁 �
1
18

n − 20z − 6a1(z) − 9b1(z)( 􏼁. (32)

For n � 3r and z � 3k, we have a1(3k) and b1(3k)

satisfying

6a1(3k) ≡ (3r − 60k)(mod 3),

9b1(3k) ≡ (3r − 60k)(mod 2).
(33)

For n � 3r + 1 and z � 3k + 2, we have a1(3k + 2) and
b1(3k + 2) satisfying

6a1(3k + 2) ≡ (3r − 60k − 39) ≡ 0(mod 3),

9b1(3k + 2) ≡ (3r − 60k − 39)(mod 2).
(34)

For n � 3r + 2 and z � 3k + 1, we have a1(3k + 1) and
b1(3k + 1) satisfying

6a1(3k + 1) ≡ (3r − 60k − 18) ≡ 0(mod 3),

9b1(3k + 1) ≡ (3r − 60k − 18)(mod 2).
(35)

Hence, the number of solutions of equation (3) is

N(6, 9, 20, n) � 􏽘

0≤z≤[n/ℓ]

3|(n− 20z)

p 2,3{ }

n − 20z

3
􏼒 􏼓 � 􏽘

0≤z≤[n/ℓ]

3|(n− 20z)

(1 + M(z))

� 􏽘

0≤z≤[n/ℓ]

3|(n− 20z)

1 +
1
18

n − 20z − 6a1(z) − 9b1(z)( 􏼁􏼒 􏼓,

(36)

where a1(z) and b1(z) satisfy equations (33)–(35).
+e nonnegative solutions of problem equation (3) are

3i(z) + a1(z), 2(M(z) − i(z)) + b1(z), z( 􏼁: 0≤ i(z)≤M(z)􏼈 􏼉,

(37)

for all 0≤z≤[n/20] with 3|(n − 20z), where M(z) is given in
equation (32). More specifically, for n � 3r, 3r + 1, and
3r + 2, we have z � 3k, 3k + 2, and 3k + 1, respectively, and
the corresponding

M(3k) �
1
18

3r − 60k − 6a1(3k) − 9b1(3k)( 􏼁, (38)

for 0≤ k≤ [r/20],

M(3k + 2) �
1
18

3r − 60k − 39 − 6a1(3k + 2) − 9b1(3k + 2)( 􏼁,

(39)

for 0≤ k≤ [(r − 13)/20], and

M(3k + 1) �
1
18

3r − 60k − 39 − 6a1(3k + 1) − 9b1(3k + 1)( 􏼁,

(40)

for 0≤ k≤ [(r − 6)/20].
For instance, if n � 39, then M(3k) is given by equation

(38), where a1(3k) and b1(3k) satisfying

2a1(3k) ≡ (13 − 20k)(mod 3),

3b1(3k) ≡ (13 − 20k)(mod 2),
(41)

for k � 0. +us, a1(3k) � a1(0) � 2 and b1(3k) � b1(0) � 1,
and

M(3k) � M(0) �
1
18

(39 − 6 · 2 − 9 · 1) � 1. (42)

Consequently, the problem 6x + 9y + 20z � 39 has 1 +

M(0) � 2 solutions, which are

∪ 0≤i≤M(0)

0≤k≤[13/20]

(3i + 2, 2(M(3k) − i) + 1, 3k){ } � (2, 3, 0), (5, 1, 0){ }.

(43)

If n � 46 ≡ 1(mod 3), then M(3k + 2) is given by
equation (40), where a1(3k + 2) and b1(3k + 2) satisfying

2a1(3k + 2) ≡ (2 − 20k)(mod 3),

3b1(3k + 2) ≡ (2 − 20k)(mod 2),
(44)

for k � 0. +us, a1(3k + 2) � a1(2) � 1 and
b1(3k + 2) � b1(2) � 0, and

M(3k + 2) � M(2) �
1
18

(6 − 6 · 1 − 9 · 0) � 0. (45)

Consequently, the problem 6x + 9y + 20z � 46 has 1 +

M(2) � 1 solution, which is

∪ 0≤i≤M(2)

0≤k≤[2/20]

(3i + 1, 2(M(2) − i) + 0, 3k + 2){ } � (1, 0, 2){ }.

(46)
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If n � 50 ≡ 2(mod 3), then M(3k + 1) is given by
equation (40), where a1(3k + 1) and b1(3k + 1) satisfying

2a1(3k + 1) ≡ (10 − 20k)(mod 3),

3b1(3k + 1) ≡ (10 − 20k)(mod 2),
(47)

for k � 0. +us, a1(3k + 1) � a1(1) � 2 and b1(3k +1) � b1
(1) � 0, and

M(3k + 1) � M(1) �
1
18

(30 − 6 · 2 − 9 · 0) � 1. (48)

Consequently, the problem 6x + 9y + 20z � 50 has 1 + M

(1) � 2 solutions, which are

∪ 0≤i≤M(1)

0≤k≤[10/20]

(3i + 2, 2(M(1) − i) + 0, 3k + 1){ } � (2, 2, 1), (5, 0, 1){ }.

(49)

To find all solutions of equation (2), wemay use+eorem
2 to determine the number of solutions and use the following
proposition to find each solution of equation (2). □

Proposition 1. Let (x, y) � (x0, y0) be a solution of
px + qy � m. 8en, all solutions of the equations are (x0 +

qt, y0 − pt) for all t ∈ Z.

Example 1. Consider the equation

6x + 9y + 20z � 84, (50)

and rewrite it as

2x + 3y �
1
3

(84 − 20z). (51)

Since 84 ≡ 03, we have the number of the solutions of the
equation

N(6, 9, 20, 84) � 􏽘

[84/60]

k�0
p 2,3{ }

84
3

− 20k􏼒 􏼓

� p 2,3{ }(28) + p 2,3{ }(28 − 20).

(52)

Form the formula for p a,b{ }(n) presented in the Intro-
duction by noting a � 2, b � 3, and n � 28, we have 28 �

4 · 6 + 4 with q � 4 and r � 4 satisfying
2 · 3 − 2 − 3 � 1< r< 6 � 2 · 3. +us, p 2,3{ }(28) � q + 1 � 5.
While for a � 2, b � 3, and n � 8, we have 8 � 1 · 6 + 2 with
q � 1 and r � 2 satisfying 1< r< 6. +us, p 2,3{ }(8) � q + 1 �

2 and

N(6, 9, 20, 84) � p 2,3{ }(28) + p 2,3{ }(28 − 20) � 7. (53)

+e nonnegative solutions of 2x + 3y � 28 − 20z � 28
can be found from Proposition 1 and Euclidean algorithm as
follows:

x � 2, y � 8, z � 0;

x � 5, y � 6, z � 0;

x � 8, y � 4, z � 0;

x � 11, y � 2, z � 0;

x � 14, y � 0, z � 0.

(54)

+e nonnegative solutions of 2x + 3y � 28 − 20z � 8 are

x � 1, y � 2, z � 1,

x � 4, y � 0, z � 1.
(55)

For problems for which the Euclidean algorithm is in-
efficient, an alternate approach is presented below. Consider
the equation to be px + qy � m with the given triple
(p, q, m), for which m is divisible by d � gcd(p, q), we are
seeking integer solutions (x, y).

Step 1: want a nonnegative integer solution (x0, y0) for

px′ + qy′ � m. (56)

Step 2: use modular arithmetic on the equation in
Step 1:

qy′ ≡ m(modp). (57)

Step 3: solve the above congruence using the smallest
possible nonnegative value y′. Substituting the
value of y′ in the equation finds x′. If x′ and
y′ > 0, then x0 � x′ and y0 � y′. +en, Step 4
can be skipped.

Step 4: if x′ < 0, then use Bezout’s Lemma to obtain the
first nonnegative solution(x0, y0) from (x′, y′)
with a positive integer n such that x0 � x′ +
nq/d> 0 and y0 � y′ − np/d> 0, where
d � gcd(p, q). If no such n exists, then there are
no nonnegative solutions to the problem. For
example, 3x + 4y � 5 does not have any non-
negative solutions.

Illustration of the algorithm is as follows. Consider

3x + 5z � 14. (58)

Note that the common divisor, d, of 3 and 5 is 1.

Step 1: want nonnegative integer solution, (x0, y0), for
3x0 + 5y0 � 14.
Step 2: 3x′ + 5y′ ≡ 14(mod 3) implies 2y′ ≡ 2(mod 3)

and y′ ≡ 1(mod 3). Hence, y′ � 1 and x′ � 3.
Step 3: since x′ � 3> 0 and y′ � 1> 0, we have
(x0, y0) � (x′, y′) � (3, 1).
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Remark 1. Wemay also use the method presented in [13] to
solve 2x + 3y � 28 for obtaining the set of all nonnegative
solutions (x, y). We set 2x ≡ 28(mod 3) and
3y ≡ 28 ≡ 0(mod 2) to obtain x ≡ 2(mod 3) and
y ≡ 0(mod 2), respectively. +us, a1 � 2, b1 � 0, and
M � (28 − 2 · 2 − 3 · 0)/6 � 4. Consequently, the nonnega-
tive solutions of 2x + 3y � 28 are
(3i + 2, 2(4 − i) + 0): 0≤ i≤ 4{ }, which are exactly the same
as what we have obtained.

Remark 2. From the theory of partition (cf. [16]), the
generating function of the sequence (Nn � N(p, q, ℓ, n))n≥0
is

􏽘
n≥0

Nnt
n

�
1

1 − t
p

( 􏼁 1 − t
q

( 􏼁 1 − t
ℓ

􏼐 􏼑
. (59)

From Taylor’s expansion, we have

Nn �
1
n!

dn

dtn

1
1 − tp( ) 1 − tq( ) 1 − tℓ( )

|t�0. (60)

For smaller coefficients p, q, and ℓ, we may find Nn more
efficiently. For instance, if p � 1, q � 2, and ℓ � 3, then the
solution number Nn can be found by using the partial
fraction technique shown below. Let
ω � e2πi/3 � cos(2π/3) + i sin(2π/3). +en,

1
(1 − t) 1 − t

2
􏼐 􏼑 1 − t

3
􏼐 􏼑

�
1

(1 − t)
3
(1 + t)(1 − ωt) 1 − ω2

t􏼐 􏼑

�
1

6(1 − t)
3 +

1
4(1 − t)

2 +
17

72(1 − t)
+

1
8(1 + t)

+
1

9(1 − ωt)
+

1
9 1 − ω2

t􏼐 􏼑

� 􏽘
n≥0

(n + 3)
2

12
−

7
72

+
(− 1)

n

8
+
2
9
cos

2nπ
3

􏼠 􏼡t
n

� 􏽘
n≥0

Nnt
n
,

(61)

for |t|< 1. Since

−
7
72

+
(− 1)

n

8
+
2
9
cos

2nπ
3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤
32
72
<
1
2
, (62)

and Nn must be an integer, we obtain Nn � 〈(n + 3)2/12〉,
where 〈α〉(α≠ 1/2) is referred to as the closest integer to α.
For instance, the solution number for x + 2y + 3z � 14 is

N14 �〈
(14 + 3)

2

12
〉 � 24. (63)

3. Order Reduction Algorithm and Exhaustive
Method for Solving Equation (2)

To find all solutions of equation (2), we may use following
Bézout’s Lemma (cf. Millman et al. (+eorem 9 in [17])).

Lemma 1. 8e linear Diophantine equation px + qy � r has
a solution if and only if r is divisible by d � (p, q). Fur-
thermore, if (x0, y0) is any particular solution of this
equation, then all other solutions are given by

x′ � x0 +
q

d
k

y′ � y0 −
p

d
k,

(64)

where k is an arbitrary integer.

Let p and q be integers with the greatest common divisor
d. +en, from Bézout’s lemma, there exist integers x and y

such that px + qy � d. More generally, the integers of the
form px + qy are the multiples of d. Expressions x′ and y′
shown in equation (64) are clearly true.

We are going to use Bézout’s lemma to solve a problem
with two different features: (1) we are solving Diophantine
equation (2) of order 3, and (2) we are seeking all non-
negative solutions.

Our algorithm is based on an order reducing tech-
nique. More precisely, let p, q, ℓ, and n ∈ N with p≤ q≤ ℓ,
and let x, y, and z ∈ Z. A linear Diophantine equation
ax + by + cz � d of three variables is reduced to the fol-
lowing three Diophantine equations of two variables after
setting x, y, and z � 0, respectively. Graphically, the
positive solutions of ax + by + cz � d lie on the triangle
ΔABC intersecting by the plane ax + by + cz � d and the
first quadrant of the three-dimensional space R3. Let AB

(with z � 0), BC (with x � 0), and CA (with y � 0) be the
three boundaries of the triangle ΔABC. +en, along the
boundaries, the equation ax + by + cz � d is reduced to
three two-variable equations. +is paper discusses the
relationship among the solutions on the boundaries AB,
BC, and CA and the solutions on the triangle ΔABA. +is
graphical description of our algorithm will be presented
analytically and precisely below. More geometrical pre-
sentations of the ax + by + cz � d problem can be found
in Arnol’d [18] and Ustinov [19] and their references.
Suppose one of (p, q), (q, ℓ), and (ℓ, p) are divisors of n.
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Bézout’s Lemma 1 shows that at least one of the Diop-
hantine equations

px + qy � n,

qy + lz � n,

px + lz � n,

(65)

has solutions. For instance, if (p, q)|n, then one pair of
nonnegative solutions (x0, y0) of the first equation px +

qy � n can be found easily by using an extended Euclidean
algorithm easily. Particularly, if (p, q) � p (or q), then it is
easier to obtain a pair of solutions as (n/p, 0) (or (0, n/q)),
and all pairs of solutions of the equation can be represented
in the form

x0 + k
q

(p, q)
, y0 − k

p

(p, q)
􏼠 􏼡, (66)

where k is an arbitrary integer. +e set of all those solutions
(x, y, 0) is denoted by S, i.e.,

S � x0 + k
q

(p, q)
, y0 − k

p

(p, q)
􏼠 􏼡: k ∈ Z􏼨 􏼩. (67)

We are seeking nonnegative solutions of px + qy � n,
i.e., a particular solution pair (x0, y0), where x0 andy0 ≥ 0,
and all solution pairs in equation (24) for k such that

k ∈ K � k ∈ Z: −
x0(p, q)

q
≤ k1 ≤

y0(p, q)

p
􏼨 􏼩, (68)

that is, x0 + k(q/(p, q)) and y0 − k(p/(p, q))≥ 0.
In the above algorithm, we must assume one of the

conditions, (p, q)|n, (q, ℓ)|n, and (p, ℓ)|n, holds; otherwise,
our algorithm fails because if gcd(p, q) does not divide n,
then clearly px + qy � n has no solutions since gcd(p, q)

divides the left-hand side but not the right-hand side.
Consequently, if p, q, and l are pairwise coprime

numbers, then px + qy + lz � n can be solved by using our
algorithm. As what we have defined before, the set of all
solutions of the first equation in (65) is denoted by S1.
Similarly, we let S2 and S3 denote the sets of the solutions of
the second and the third equations of (65), respectively.

It is obvious that, for any integers a, b, and c, with a +

b + c≠ 0 and row vectors si ∈ Si, i � 1, 2, and 3, (as1 + bs2 +

cs3)/(a + b + c) is also a solution of px + qy + ℓz � n

because

as1 + bs2 + cs3

a + b + c
· (p, q, ℓ)T

�
1

a + b + c
(an + bn + cn) � n.

(69)

Because a solution obtained by using our order reducing
method has at least one zero component, we can see how
important it is to use these linear combinations complete the
set of all solutions of equation (2), say to calculate the so-
lutions with nonzero components. We will also demonstrate
how to build those linear combinations by using some
examples.

Proposition 2. Let sets Si, i � 1, 2, and 3, be defined before,
and let a, b, and c be any nonintegers, with a + b + c≠ 0. We
have notation

􏽢S1 � 0, y2,0 + k2
l

(q, l)
, z2,0 − k2

q

(q, l)
􏼠 􏼡: y2,0, z2,0 ≥ 0, k2 ∈ K1􏼨 􏼩,

􏽢S2 � x3,0 + k3
l

(p, l)
, 0, z3,0 − k3

p

(p, l)
􏼠 􏼡: x3,0, z3,0 ≥ 0, k3 ∈ K2􏼨 􏼩,

􏽢S3 � x1,0 + k1
q

(p, q)
, y1,0 − k1

p

(p, q)
, 0􏼠 􏼡: x1,0, y1,0 ≥ 0, k1 ∈ K3􏼨 􏼩,

(70)

where (y2,0, z2,0), (x3,0, z3,0), and (x1,0, y1,0) are solutions of
qy + ℓz � n, px + ℓz � n, and px + qy � n, respectively, and

K1 � k ∈ Z: −
y2,0(q, l)

l
≤ k≤

z2,0(q, l)

q
􏼨 􏼩,

K2 � k ∈ Z: −
x3,0(p, l)

l
≤ k≤

z3,0(p, l)

p
􏼨 􏼩,

K3 � k ∈ Z: −
x1,0(p, q)

q
≤ k≤

y1,0(p, q)

p
􏼨 􏼩.

(71)

+en, all nonnegative elements (x, y, z) in the set

as1 + bs2 + cs3

a + b + c
: a + b + c≠ 0, si ∈ 􏽢Si, i � 1, 2, 3􏼨 􏼩, (72)

are a solution of equation (2).
+e proof is obvious from the above discussion and is,

therefore, omitted.
To avoid using linear combinations, we may use the

following exhaustive method. We assume p≤ q≤ ℓ, and let

S zi( 􏼁 � (x, y, i): px + qy � n − zi, zi � iℓwith 0≤ zi ≤ n􏼈 􏼉.

(73)

+en, the solution set of equation (2) is ∪ [n/l]
i�0 S(zi).

Example 2. Consider the equation

6x + 9y + 20z � 84, (74)

and reduce it to three Diophantine equations of order 2:

9y + 20z � 84, (75)

6x + 20z � 84, (76)

6x + 9y � 84, (77)

for the cases of z � 0, x � 0, and y � 0 in equation (74).
Equation (77) can be written as 2x + 3y � 28. Hence, y �

0 yields a particular solution of equation (77) as x � 14 and
y � 0. +e solution set 􏽢S3 is
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􏽢S3 � 14 + k1
9

(6, 9)
, 0 − k1

6
(6, 9)

, 0􏼠 􏼡: −
14
3
≤ k1 ≤ 0􏼨 􏼩

� (14, 0, 0), (11, 2, 0), (8, 4, 0), (5, 6, 0), (2, 8, 0){ }.

(78)

Similarly, from equation (75), we have

y �
84 − 20z

9
, (79)

which shows equation (75) has no nonnegative integer
solutions (y, z). Hence, the solution set of equation (75) is

􏽢S1 � ϕ. (80)

Finally, from equation (76), we have

x �
42 − 10z

3
� 12 − 3z +

6 − z

3
. (81)

To have nonnegative solutions of equation (76), we must
have z � 0 or z � 3, which implies

􏽢S2 � (14, 0, 0), (4, 0, 3){ }. (82)

Hence, we have found 6 distinct solutions of equation
(74). +e 7th solution is from a linear combination of the
elements (8, 4, 0), (11, 2, 0), and (4, 0, 3) of the solution set
∪ 3i�1􏽢Si with the coefficients a � 1, b � − 1, and c � 1:

a

a + b + c
(8, 4, 0) +

b

a + b + c
(11, 2, 0) +

c

a + b + c
(4, 0, 3)

� (8, 4, 0) − (11, 2, 0) +(4, 0, 3) � (1, 2, 3).

(83)

Hence, the solutions of 6x + 9y + 20ℓ � 84 are

S � (14, 0, 0), (11, 2, 0), (8, 4, 0), (5, 6, 0), (2, 8, 0), (4, 0, 3), (1, 2, 3){ }.

(84)

If we use the exhaustive method to check our results,
then we obtain

S(0) � (14, 0, 0), (11, 2, 0), (8, 4, 0), (5, 6, 0), (2, 8, 0){ },

S(20) � (x, y, 1): 6x + 9y � 84 − 20 � 64􏼈 􏼉 � ϕ,

S(40) � (x, y, 2): 6x + 9y � 84 − 40 � 44􏼈 􏼉 � ϕ,

S(60) � (x, y, 3): 6x + 9y � 84 − 60 � 24􏼈 􏼉 � (4, 0, 3), (1, 2, 3){ }.

(85)

Hence, the solutions of 6x + 9y + 20ℓ � 84 are as the
same as equation (84).

However, sometimes, we have many solutions of px +

qy + rz � n that are not from the union ∪ 3i�1􏽢Si. +erefore,
we need calculate the number of the solutions and develop
an efficient way (see below) to find the solutions in the form
of (as1 + bs2 + cs3)/(a + b + c), where a, b, and c ∈ Z and
si ∈ 􏽢Si, i � 1, 2, and 3. For instance, we may consider
(p, q, l) � (1, 2, 3), and the corresponding solution sets of
x + 2y + 3z � 14 by using our algorithm are S1 � {(0, 7+ 3k3,

− 2k3): k3 ∈ Z}, S2 � (14 + 3{ k2, 0, − k2): k2 ∈ Z}, and S3 �

(2k1, 7􏼈 − k1, 0): k1 ∈ Z}, respectively. Hence,

􏽢S1 � (0, 7, 0), (0, 4, 2), (0, 1, 4){ }, (86)

􏽢S2 � (14, 0, 0), (11, 0, 1), (8, 0, 2), (5, 0, 3), (2, 0, 4){ }, (87)

􏽢S3 � (0, 7, 0), (2, 6, 0), (4, 5, 0), (6, 4, 0), (8, 3, 0), (10, 2, 0),(12, 1, 0), (14, 0, 0){ }. (88)

However, by using +eorem 1, we may find that the
number of the solutions of x + 2y + 3z � 14 is

􏽘

[14/3]

k�0
p1,2(14 − 3k) � p1,2(14) + p1,2(11) + p1,2(8) + p1,2(5) + p1,2(2)

� 8 + 6 + 5 + 3 + 2 � 24,

(89)
where p1,2(n), n � 14, 11, 8, 5, and 2, are found by using
+eorem 1.

Remark 3. For small p and q, the number of the solutions,
denoted by pp,q(n), of the Diophantine equation px + qy �

n can be also found by using the theory of partition, which is
similar to the process of deriving equations (5) and (6). More

precisely, from the theory of partition (cf. [16]), the gen-
erating function of the sequence (Pn � pp,q(n))n≥0 is

􏽘
n≥0

Pnt
n

�
1

1 − t
p

( 􏼁 1 − t
q

( 􏼁
. (90)

From Taylor’s expansion, we have

Pn �
1
n!

dn

dtn

1
1 − tp( ) 1 − tq( )

|t�0. (91)

Let Nn and Pn be defined by equations (59), (60), (90),
and (91), respectively. +en,

Nn � 􏽘

[n/ℓ]

k�0
Pn− ℓk. (92)
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Consequently, by using a straightforward exhaustive
method for solving Diophantine equation (2), we have

d
n

dt
n

1
1 − t

p
( 􏼁 1 − t

q
( 􏼁 1 − t

ℓ
􏼐 􏼑

� n! 􏽘

[n/ℓ]

k�0

1
(n − ℓk)!

d
n− ℓk

dt
n− ℓk

1
1 − t

p
( 􏼁 1 − t

q
( 􏼁

. (93)

For smaller coefficients p, q, and ℓ, we may find Pn more
efficiently. For instance, if p � 1 and q � 2, then the solution
number Pn can be found by using the partial fraction
technique shown below. Since

1
(1 − t) 1 − t

2
􏼐 􏼑

�
1
4

1
1 + t

+
1

1 − t
+

2
(1 − t)

2􏼠 􏼡, (|t|< 1),

(94)

the expansion of the power series can be written as

􏽘
n≥0

Pnt
n

� 􏽘
n≥0

(− 1)
n

+ 1 + 2(n + 1)

4
t
n
. (95)

Consequently,

Pn �
1
4

2n + 3 +(− 1)
n

( 􏼁, (96)

which gives p1,2(14) � P14 � 8, p1,2(11) � P11 � 6,
p1,2(8) � P8 � 5, p1,2(5) � P5 � 3, and p1,2(2) � P2 � 2.

Since

∪ 3i�1􏽢Si � (0, 7, 0), (2, 6, 0), (4, 5, 0), (6, 4, 0), (8, 3, 0), (10, 2, 0),(12, 1, 0), (14, 0, 0), (11, 0, 1), (8, 0, 2), (5, 0, 3), (2, 0, 4), (0, 4, 2), (0.1.4){ },

(97)

we need to find 10 more solutions by using the linear
combination (as1 + bs2 + cs3)/(a + b + c), where si ∈ Si,
i � 1, 2, 3, and a + b + c≠ 0.

+e algorithm to establish those linear combinations is
to find sets (a, b, c): a + b + c � 1{ }, say (1, 1, − 1),{ (1, 3,

− 2), . . .}, etc. Denote si � (xi, yi, zi)(i � 1, 2, 3). +en, we
test all obtained solutions to find those distinct linear
combinations (remember, a + b + c � 1):

as1 + bs2 + cs3 � ax1 + bx2 + cx3, ay1 + by2 + cy3, az1 + bz2 + cz3( 􏼁,

(98)

such that ax1 + bx2 + cx3, ay1 + by2 + cy3, and az1 + bz2 +

cz3 > 0 because any solution of the form as1 + bs2 + cs3 with
one zero component has been obtained already.

As the simplest linear combination, we choose (a, b, c) �

(1, − 1, 1) and calculate

s1 − s2 + s3 � x1 − x2 + x3, y1 − y2 + y3, z1 − z2 + z3( 􏼁,

(99)
such that x1 − x2 + x3, y1 − y2 + y3, and z1 − z2 + z3 > 0.

We now present the following conjecture for further
discussion of finding all of nonnegative solutions of Diop-
hantine equation (2).

3.1. Conjecture. For any solution (􏽢x, 􏽢y, 􏽢z) of px + qy + lz �

n with gcd(p, q, l) � 1, there exist solutions si, i � 1, 2, 3, of
either qy + lz � n, px + lz � n, or px + qy � n such that

(􏽢x, 􏽢y, 􏽢z) � s1 − s2 + s3, (100)

where si ∈ 􏽢Si, i � 1, 2, 3, in the last expression do not need to
be different. Hence, if all three si, i � 1, 2, 3, are the same,
equation (100) presents itself.

We will illustrate that the conjecture is reasonable by
using some examples. Meanwhile, we will give an algorithm
to apply equation (100) to construct all of the solutions of the
Diophantine equations in the examples.

We say the set 􏽢Sj is the smallest set of the collection
􏽢Si: i � 1, 2, 3􏽮 􏽯, if the cardinal number

|􏽢Sj| � min |􏽢S1|, |􏽢S2|, |􏽢S3|􏽮 􏽯. We say the set 􏽢Sk is the next
smallest set of the collection 􏽢Si: i � 1, 2, 3􏽮 􏽯, if the cardinal
number |􏽢Sk| � min |􏽢S1|, |􏽢S2|, |􏽢S3|􏽮 􏽯/ |􏽢Sj|􏽮 􏽯. We say (xi, yi, zi)

is the smallest element of a set
􏽢Sj � (xj, yj, zj): j � 1, 2, . . . ,􏽮 􏽯, if xi + yi + zi is the smallest
possible number in the set Sj. Assume p< q< ℓ in equation
(2). +en, in general, 􏽢S1 is the smallest set and 􏽢S2 is the next
smallest set. One can also check that this is the case, in
expressions (86), (87), and (88). Our algorithm can be de-
scribed based on Proposition 2 as follows:

Step 1. Determine the smallest element of the smallest
set
Step 2. Use the smallest element (s11, s12, s13) deter-
mined in the first step to subtract all of the elements in
the next smallest set, 􏽢S2, provided that the differences of
the third components are positive
Step 3. Add the resulting elements obtained in the
second step to all of the elements in 􏽢S3, provided the
resulting sums for all components are positive
Step 4. +e union of the sets 􏽢Si, i � 1, 2, 3, and those
obtained in the third step consist of the whole solution
set of equation (2)
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As an example, we now use this algorithm to find the
remaining part of the solution set of x + 2y + 3z � 14, be-
sides those 14 solutions shown in equation (97). Based on
our definition, (0, 1, 4) is the smallest element of the smallest
set 􏽢S3 in equation (86). We use (0, 1, 4) to subtract all of
those elements in the next smallest set, 􏽢S2, in equation (87),
such that the third components are positive, namely,

(0, 1, 4) − (5, 0, 3) � (− 5, 1, 1), (0, 1, 4) − (8, 0, 2) � (− 8, 1, 2),

(0, 1, 4) − (11, 0, 1) � (− 11, 1, 3), (0, 1, 4) − (14, 0, 0) � (− 14, 1, 4).

(101)

Following the algorithm, we add (− 5, 1, 1) to
(6, 4, 0), (8, 3, 0), (10, 2, 0), (12, 1, 0), and (14, 0, 0) in
equation (88) to obtain the following 5 solutions of
x + 2y + 3z � 14:

(1, 5, 1), (3, 4, 1), (5, 3, 1), (7, 2, 1), (9, 1, 1). (102)

By adding (− 8, 1, 2) to (10, 2, 0), (12, 1, 0), and (14, 0, 0)

in equation (88), we obtain the following 3 solutions of
x + 2y + 3z � 14:

(2, 3, 2), (4, 2, 2), (6, 1, 2). (103)

Adding (− 11, 1, 3) to (12, 1, 0) and (14, 0, 0) in equation
(88), we get the 2 more solutions of x + 2y + 3z � 14 as

(1, 2, 3), (3, 1, 3). (104)

Adding (− 14, 1, 4) to any element in equation (88), we
cannot get an element with positive components, so we
cannot get any more solutions. +us, we obtain all 24 so-
lutions of x + 2y + 3z � 14 by combining the above 10
solutions and the 14 solutions shown in equation (97).

We use the exhaustive method to check our results and
find

S(0) � (x, y, 0): x + 2y � 14􏼈 􏼉 � (0, 7, 0), (2, 6, 0), (4, 5, 0), (6, 4, 0),(8, 3, 0), (10, 2, 0), (12, 1, 0), (14, 0, 0){ },

S(3) � (x, y, 1): x + 2y � 14 − 3 � 11􏼈 􏼉

� (11, 0, 1), (9, 1, 1), (7, 2, 1), (5, 3, 1), (3, 4, 1), (1, 5, 1){ }

S(6) � (x, y, 2): x + 2y � 14 − 6 � 8􏼈 􏼉

� (8, 0, 2), (6, 1, 2), (4, 2, 2), (2, 3, 2), (0, 4, 2){ }

S(9) � (x, y, 3): x + 2y � 14 − 9 � 5􏼈 􏼉

� (5, 0, 3), (3, 1, 3), (1, 2, 3){ }

S(12) � (x, y, 4): x + 2y � 14 − 12 � 2􏼈 􏼉

� (2, 0, 4), (0, 1, 4){ },

(105)

where

|S(0)| � 8 � p1,2(14),

|S(3)| � 6 � p1,2(11),

|S(6)| � 5 � p1,2(8),

|S(9)| � 3 � p1,2(5),

|S(12)| � 2 � p1,2(2).

(106)

Our algorithm is efficient for solving many Diophantine
equations. However, the algorithm may not work for some
Diophantine equation (2) although we think the expression
in equation (100) can still be applied to find all of the so-
lutions of equation (2), with some modification of the above
algorithm. Here is an example. Consider the Diophantine
equation:

5x + 7y + 11z � 71. (107)

For reducing equation 5x + 7y � 71, from
5a1 ≡ 71 ≡ 1(mod 7) and 7b1 ≡ 71 ≡ 1 (mod 5), we obtain
a1 � 3 and b1 � 3. +us,

M �
1
35

(71 − 7 · 3 − 5 · 3) � 1, (108)

which implies 5x + 7y � 71 has 1 + M � 2 nonnegative
solutions 􏽢S3 � (7i + 3, 5(M − i) + 3, 0){ : i � 0, 1} � (3, 8, 0),{

(10, 3, 0)}. Similarly, for equation 7y + 11z � 71, the cor-
responding a1 � 7, b1 � 2, and

M �
1
77

(71 − 7 · 7 − 11 · 2) � 0, (109)

which implies 7y + 11z � 71 has 1 + M � 1 nonnegative
solution 􏽢S1 � (0, 11i + 7, 7(M − i) + 2): i � 0{ } � (0, 7, 2){ }.
For equation 5x + 11z � 71, the corresponding a1 � 1,
b1 � 1, and

M �
1
55

(71 − 5 · 1 − 11 · 1) � 1, (110)
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which implies 5x + 11z � 71 has 1 + M � 2 solutions
􏽢S2 � (11i + 1, 0, 5(M − i) + 1){ } � (1, 0, 6), (12, 0, 1){ }.
Denote
􏽢S � ∪ 3i�1􏽢Si � (0, 7, 2), (1, 0, 6), (12, 0, 1), (3, 8, 0), (10, 3, 0){ }.

(111)

+en, we pick up some three different elements from the
five elements of the set 􏽢S to find other solutions of equation
(107) by using equation (100). For instance,

(1, 0, 6) − (0, 7, 2) +(3, 8, 0) � (4, 1, 4),

(10, 3, 0) − (3, 8, 0) +(0, 7, 2) � (7, 2, 2),

(12, 0, 1) − (10, 3, 0) +(0, 7, 2) � (2, 4, 3),

(12, 0, 1) − (10, 3, 0) +(3, 8, 0) � (5, 5, 1).

(112)

By using +eorem 2, we may find equations 5x + 7y �

71 − 11z have 2, 2, 2, 1, 1, 0, and 1 nonnegative solutions for
z � 0, 1, 2, 3, 4, 5, and 6, respectively. Hence,
5x + 7y + 11z � 71 has 9 nonnegative solutions, and all of
them can be presented by using equation (100). It worth
mentioning that, for z � 5, 5x + 7y � 71 − 11 · 5 � 16 has
no nonnegative solution from +eorem 2 since M(5) �

(16 − 5a1(5) − 7 b1(5))/35 � (16 − 5 · 6 − 7 · 3)/35< 0.
Here, we have two comments. First, some three elements

may not give a nonnegative solution of equation (107) by
using equation (100), say (12, 0, 1) − (0, 7, 2) +

(3, 8, 0) � (13, 1, − 1). Secondly, it is clear that each element
in 􏽢S can also be presented by using equation (100). Hence, we
have the following consequence of the conjecture.

3.2. Consequence of the Conjecture. Denote |􏽢Si| � Ni and
􏽢N � N1 + N2 + N3. +en, the number of solutions of
equation (2) has bounds:

0≤N(p, q, ℓ, n)≤ 3
􏽢N

3
⎛⎝ ⎞⎠, (113)

which is implied by the conjecture if it is true.
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[3] J. R. Alfonśın, 8e Diophantine Frobenius Problem, Oxford
University Press, Oxford, England, 2005.

[4] A. Tripathi, “Formulae for the frobenius number in three
variables,” Journal of Number 8eory, vol. 170, pp. 368–389,
2017.

[5] S. T. Chapman and C. O’Neill, “Factoring in the chicken
McNugget monoid,” Mathematics Magazine, vol. 91, no. 5,
pp. 323–336, 2018.

[6] L. C. Hsu, M. Jiang, and Z. Zhu,Computational Combinatorics
(Chinese), Shanghai Science and Technology Press, Shanghai,
China, 1983.

[7] W.-S. Chou, H. Bowman, and P. J.-S. Shiue, “Amatrix method
for solving the postage stamps problem,” Missouri Journal of
Mathematical Sciences, vol. 3, no. 2, pp. 70–76, 1991.

[8] T. Komatsu, “On the number of solutions of the diophantine
equation of frobenius-general case,” Mathematical Commu-
nications, vol. 8, pp. 195–206, 2003.
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