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We investigate a class of locally conformal almost Kähler structures and prove that, under some conditions, this class is a subclass
of almost Kähler structures. We show that a locally conformal almost Kähler manifold admits a canonical foliation whose leaves
are hypersurfaces with the mean curvature vector field proportional to the Lee vector field. .e geodesibility of the leaves is also
characterized, and their minimality coincides with the incompressibility of the Lee vector field along the leaves.

1. Introduction

.e study of manifolds whose metric is locally conformal to
an almost Kähler metric is considered as one of the most
interesting studies in the field of differential geometry (see
[1] for details and references therein). .is is because of its
richness in the theory that is applicable in physics, algebraic
geometry, symplectic geometry, etc. To our knowledge,
locally conformal (almost) Kähler structures were first
studied by Libermann [2] in the 1950s. In 1966, Gray [3] also
contributed to the study by considering (almost) Hermitian
manifolds whose metric is conformal to a local (almost)
Kähler metric. However, globally conformal (almost) Kähler
manifolds share the same topological properties with locally
conformal (almost) Kähler manifolds [4]. It is therefore
provocative to consider those almost Hermitian manifolds
whose metric is locally conformal to an almost Kähler
metric. .e difference between locally conformal Kähler
manifolds and locally conformal almost Kähler manifolds is
the condition of integrability of an almost complex structure.
.is is equivalent to an almost complex structure being
parallel with respect to a globally defined connection or the
vanishing of a Nijenhuis tensor. .erefore, the geometric

properties which do not depend on the almost complex
structure will apply to both of these manifolds.

Libermann defined a locally conformal (almost) Kähler
metric as a metric g at which in the neighborhood of each
point of an almost Hermitian manifold, it is locally con-
formal to an (almost) Kähler metric.

In this paper, we investigate some properties of curva-
ture tensors and foliations of locally conformal almost
Kähler manifolds. For the foliations, we pay attention to the
ones that arise naturally when the Lee form is nowhere
vanishing..e paper is organized as follows. In Section 2, we
recall the definition of locally conformal almost Kähler
structures supported by an example. In Section 3, we deal
with curvature tensors. .e latter generalizes those found by
Olszak in [5]. Under some conditions, we prove that a class
of locally conformal almost Kähler structures is a subclass of
almost Kähler structures. Section 4 is devoted to the ca-
nonical foliations that arise for the nonvanishing Lee form.
We prove that these foliations are Riemannian if and only if
the Lee vector field is autoparallel. We also prove that the
locally conformal almost Kähler manifolds contain leaves
with mean curvature vector field proportional to the Lee
vector field, and their geodesibility coincides with the killing
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condition of the Lee vector field. .e latter is incompressible
along the leaves if and only if the leaves are minimal.

2. Locally Conformal Almost Kähler Metrics

LetM be a 2n-dimensional almost Hermitian manifold with
the metric g and the almost complex structure J satisfying

J2 � − I;

g(JX; JY) � g(X; Y);
(1)

for any vector fields X and Y tangent to M, where I stands
for the identity transformation of tangent bundle TM. .en,
for any vector fields X and Y, the tensor

Ω(X;Y) � g(X; JY) (2)

defines the fundamental 2-form of M which is nondegen-
erate and gives an almost symplectic structure onM. If Ω is
closed, i.e., dΩ � 0, then (M; J; g) is called an almost Kähler
manifold [6].

Now, let (M; J; g) be a 2n-dimensional almost Hermi-
tian manifold. Such a manifold is said to be a locally con-
formal almost Kähler manifold [4] if there is an open
covering Ut􏼈 􏼉t∈I ofM and a family ft􏼈 􏼉t∈I of C

∞-functions
ft: Ut⟶ R such that, for any t ∈ I, the metric form

gt � exp − ft( 􏼁g|Ut
(3)

is an almost Kähler metric.
If the structures (J; gt) defined in (3) are Kähler, then

(M; J; g) is called locally conformal Kähler. Moreover, a
locally conformal almost Kähler manifold M is almost
Kähler if and only if dft � 0.

.e Lee form is important because it characterizes locally
conformal almost Kähler manifolds. Locally conformal al-
most Kähler manifolds were characterized by Vaisman in
[4]. .is is stated as follows: an almost Hermitian manifold
(M; J; g) is a locally conformal almost Kähler manifold if
and only if there exists 1-form ω such that

dΩ � ω ∧ Ω; dω � 0: (4)

Example 1. We consider the 4-dimensional manifold
M4 � p ∈ R4|x1 ≠ 0; x2 > 0􏼈 􏼉, where p � (x1; x2; y1; y2) are
the standard coordinates in R4. .e vector fields,

Xi � x2
z

zxi
;

Yi �
1
x32

z

zyi
; i � 1; 2;

(5)

are linearly independent at each point of M. Let g be the
Riemannian metric on M defined by g(Xi; Xj) � g(Yi;
Yj) � δij, where δij is the Kronecker symbol, g(Xi; Yj) � 0.
.at is, the form of the metric becomes

g �
1
x22

dx21 + dx22􏼐 􏼑 + x62 dy21 + dy22􏼐 􏼑: (6)

Let J be the (1; 1)-tensor field defined by JX1 � Y1,
JX2 � − Y2, JY2 � X2, and JY1 � − X1. .us, (J; g) defines
an almost Hermitian structure on M4. .e nonzero com-
ponent of fundamental 2-form J is

Ω
z

zx1
;

z

zy1
􏼠 􏼡 � −

1
x22

andΩ
z

zx2
;

z

zy2
􏼠 􏼡 �

1
x22
; (7)

and we have

Ω �
1
x22

− dx1∧dy1 + dx2∧dy2􏼈 􏼉: (8)

Its differential gives

dΩ �
2
x32

dx1∧dy1∧dx2: (9)

By letting

ω � −
1
x2

dx2; (10)

we have

dΩ � 2ω∧Ω: (11)

It is easy to see that dω � 0, and the dual vector field B is
given by

B � −
1
x22
X2: (12)

Let us consider the open neighborhood U ofM given by
U � p ∈M4|x2 > 0􏼈 􏼉, and there exists a differentiable
function f on U such that ω � df, where f � − ln(x2). By
the aforementioned characterization given in (4), (M4; J; g)

is a locally conformal almost Kähler manifold.
Next, we wish to study the relationship of the Levi-Civita

connections induced by the locally conformal Kähler metrics
gt and g.

.roughout this paper, Γ(Ξ) will denote the
F M( )-module of differentiable sections of a vector bundle
Ξ.

Let ∇ and ∇t be the Levi-Civita connections associated
with the metrics g and gt, respectively. As is well known,
they are connected by

∇tXY � ∇XY −
1
2

ω(X)Y + ω(Y)X − g(X;Y)B􏼈 􏼉; (13)

for all X;Y ∈ Γ(TM).

3. Curvature Relations of Locally Conformal
Almost Kähler Metrics

Let (M; J; g) be a 2n-dimensional almost Hermitian man-
ifold. Here, we keep the formalism of local transformations
and other formulas defined in the previous section. For the
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Riemann curvature R of a metric g, we use the following
convention:

R(X;Y; Z;W) � g(R(X; Y)Z;W); (14)

where

R(X; Y)Z � ∇X∇YZ − ∇Y∇XZ − ∇[X;Y]Z; (15)

for any vector field X, Y, and Z on M.
Let Ei􏼈 􏼉1≤ i≤ 2n be the orthonormal basis with respect to

g. .e Ricci curvature tensor ρ and the scalar curvature τ are
given by

ρ(X; Y) � 􏽘
2n

i�1
R Ei; X; Y; Ei( 􏼁;

τ � 􏽘
2n

i�1
ρ Ei; Ei( 􏼁: (16)

Now, we consider the Ricci ∗ -curvature tensor ρ∗ and
the scalar ∗ -curvature τ∗ defined by

ρ∗(X;Y) � 􏽘
2n

i�1
R Ei; X; JY; JEi( 􏼁; τ∗ � 􏽘

2n

i�1
ρ∗ Ei; Ei( 􏼁: (17)

Similarly, the curvatures corresponding to the metric gt
will be denoted by Rt, ρt, τt, ρt∗, and τt∗, respectively.

Lemma 1. Let (M; J; g) be a locally conformal almost Kähler
manifold.2en, the curvature tensors Rt and Rwith respect to
the metrics gt and g, respectively, are related as

Rt(X;Y)Z � R(X; Y)Z +
1
2
∇Yω( 􏼁Z +

1
2
ω(Y)ω(Z)􏼚 􏼛X

−
1
2
∇Xω( 􏼁Z +

1
2
ω(X)ω(Z)􏼚 􏼛Y

+
1
2
g(Y; Z) ∇XB +

1
2
ω(X)B􏼚 􏼛

−
1
2
g(X;Z) ∇YB +

1
2
ω(Y)B􏼚 􏼛

−
‖B‖

2

4
g(Y;Z)X − g(X;Z)Y􏼈 􏼉;

(18)

where ‖B‖2 � g(B; B).

Proof. Using the convention in (15) for the curvature ten-
sors Rt and R and relation (13) and for any vector fieldsX, Y,
and Z tangent to M, the expressions

∇tX∇
t
YZ � ∇X∇YZ −

1
2
ω(X)∇YZ −

1
2
ω ∇YZ( 􏼁

+
1
2
g X;∇YZ( 􏼁B −

1
2
X(ω(Y))Z

−
1
2
ω(Y)∇XZ +

1
4
ω(X)ω(Y)Z

+
1
4
ω(Y)ω(Z)X −

1
4
ω(Y)g(X; Z)B

−
1
2
X(ω(Z))Y −

1
2
ω(Z)∇XY

+
1
4
ω(X)ω(Z)Y +

1
4
ω(Y)ω(Z)X

−
1
4
ω(Z)g(X; Y)B +

1
2
X(g(Y; Z))B

+
1
2
g(Y; Z)∇XB −

1
4
‖B‖

2g(Y; Z)X:

(19)

It is worth noting that

∇t[X;Y]Z � ∇[X;Y]Z −
1
2
ω([X;Y])Z −

1
2
ω(Z)[X;Y]

+
1
2
g([X; Y]; Z)B:

(20)

Putting pieces (19) and (20) together, one obtains re-
lation (18). .is completes the proof.

Next, from the above lemma, we define (0; 2)-tensor
field P by

P(X;Y) � ∇Xω( 􏼁Y +
1
2
ω(X)ω(Y) −

1
4
‖B‖

2g(X;Y); (21)

and this trace is given by

traceP � divB −
1
2

(1 − n)‖B‖
2: (22)

□

Lemma 2. 2e (0; 2)-tensor field P is symmetric.

Proof. For any vector fieldsX and Y tangent toM and since
ω is closed, we have
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P(X; Y) � ∇Yω( 􏼁X +
1
2
ω(X)ω(Y) −

1
4
‖B‖

2g(X;Y)

� Y(ω(X)) − ω ∇YX( 􏼁 +
1
2
ω(X)ω(Y) −

1
4
‖B‖

2g(X;Y)

� Y(ω(X)) − ω([Y;X]) − ω ∇XY( 􏼁 +
1
2
ω(X)ω(Y)

−
1
4
‖B‖

2g(X;Y)

� ∇Xω( 􏼁Y +
1
2
ω(X)ω(Y) −

1
4
‖B‖

2g(X;Y);

(23)

which completes the proof.
.e Lie derivative g with respect to the vector field B

gives, for any vector fields X and Y,

LBg( 􏼁(X; Y) � X(g(B; Y)) − g([B; X]; Y) − g(X; [B; Y])

� ∇Xω( 􏼁Y + ∇Yω( 􏼁X � 2 ∇Xω( 􏼁Y:
(24)

.e last equality of (24) follows from the fact that smooth
1-form ω is closed. □

Lemma 3. 2e dual vector field B of ω preserves the metric g
if and only if the Lee form ω is ∇-parallel.

.e Riemannian curvatures are related by, for any X, Y,
Z, and W tangent to M,

exp ft( 􏼁Rt(X; Y; Z;W) � R(X;Y; Z;W) +
1
2
g(X;W)P(Y; Z)􏼈

− g(Y;W)P(X;Z)􏼉 +
1
2
g(Y; Z)P(X;W)􏼈

− g(X;Z)P(Y;W)􏼉:

(25)

Let Ei􏼈 􏼉 be the orthonormal basis with respect to g..en,
we have

g Ei; Ej􏼐 􏼑 �
1 if i � j;

0 if i≠ j:
􏼨 􏼩 (26)

Let Eti � exp(ft)
(1/2)Ei, for any i � 1; 2; . . . ; 2n. .ere-

fore, we have the following.

Lemma 4. 2e frame Eti􏼈 􏼉1≤i≤2n is the orthonormal basis with
respect to gt.

.e following identities generalize the ones given in [9,
p.216].

Lemma 5. 2e Ricci curvature tensors ρt and ρ with respect
to gt and g, respectively, are related by

ρt(X; Y) � ρ(X;Y) +(n − 1)P(X;Y) +
1
2
g(X;Y)traceP:

(27)

Proof. Using Lemma 4 and for any vector fields X and Y
tangent to M, one has

ρt(X; Y) � 􏽘

2n

i�1
Rt Eti ; X; Y; E

t
i􏼐 􏼑 � 􏽘

2n

i�1
exp ft( 􏼁Rt Ei; X; Y; Ei( 􏼁

� 􏽘

2n

i�1
R Ei; X; Y; Ei( 􏼁 +

1
2

􏽘

2n

i�1
g Ei; Ei( 􏼁P(X; Y)

⎧⎨

⎩

− 􏽘

2n

i�1
g X; Ei( 􏼁P Ei; Y( 􏼁

⎫⎬

⎭

+
1
2

􏽘

2n

i�1
g(X;Y)P Ei; Ei( 􏼁 − 􏽘

2n

i�1
g Ei; Y( 􏼁P X; Ei( 􏼁

⎧⎨

⎩

⎫⎬

⎭

� ρ(X;Y) +(n − 1)P(X;Y) +
1
2
g(X;Y)traceP;

(28)

which completes the proof.
Also, corresponding Ricci ∗ -curvatures are related by

ρt∗(X;Y) � ρ∗(X; Y) +
1
2
P(X; Y) + P(JX; JY){ }: (29)

□

Corollary 1. 2e scalar curvatures τt and τ are related by

exp − ft( 􏼁τt � τ +(2n − 1) divB −
1
2

(1 − n)‖B‖
2

􏼚 􏼛: (30)

Proof. Using Lemma 4 and the scalar curvature τt, we have

τt � 􏽘
2n

i�1
ρt Eti ; E

t
i􏼐 􏼑 � exp ft( 􏼁 􏽘

2n

i�1
ρt Ei; Ei( 􏼁: (31)

.en, applying equation (26) to (31), we get

exp − ft( 􏼁τt � 􏽘
2n

i�1
ρ Ei; Ei( 􏼁 +(n − 1) 􏽘

2n

i�1
P Ei; Ei( 􏼁 + ntraceP

� τ +(2n − 1)traceP

� τ +(2n − 1) divB −
1
2

(1 − n)‖B‖
2

􏼚 􏼛:

(32)

.erefore,

exp − ft( 􏼁τt � τ +(2n − 1) divB −
1
2

(1 − n)‖B‖
2

􏼚 􏼛; (33)

which completes the proof.
Now, if we consider a relation between scalar ∗ -cur-

vature τt∗ and τ∗, we get the following. □

Corollary 2. 2e scalar ∗ -curvatures τt∗ and τ∗ are related
by

exp − ft( 􏼁τt∗ � τ∗ + divB +(n − 1)‖B‖
2: (34)
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Proof. .e scalar ∗ -curvature τt∗ is given by

τt
∗

� 􏽘
2n

i�1
ρt∗ Eti ; E

t
i􏼐 􏼑 � exp ft( 􏼁 􏽘

2n

i�1
ρt∗ Ei; Ei( 􏼁: (35)

Now, applying relation (29) to (35), we compute

exp − ft( 􏼁τt∗ � 􏽘
2n

i�1
ρt
∗
Ei; Ei( 􏼁

� 􏽘
2n

i�1
ρ∗(X;Y) +

1
2

􏽘

2n

i�1
P Ei; Ei( 􏼁 + P JEi; jEi( 􏼁􏼈 􏼉

� τ∗ + divB +(n − 1)‖B‖
2:

(36)

Hence,

exp − ft( 􏼁τt
∗

� τ∗ + divB +(n − 1)‖B‖
2; (37)

as required.
Gray in [7] considered some curvature identities for

Hermitian and almost Hermitian manifolds. Let L be the
class of almost Hermitian manifolds as defined in [7]. .en,
the manifold under consideration is an element of class L.
Now, consider as in [7] the curvature operator Rt of a locally
conformal almost Kähler manifold M:

(1)Rt(X;Y; Z;W) � Rt(X; Y; JZ; JW);

(2)Rt(X;Y; Z;W) − Rt(JX; JY; Z;W) � Rt(JX; Y; JZ;W);

+ Rt(JX; Y; Z; JW);

(3)Rt(X;Y; Z;W) � Rt(JX; JY; JZ; JW);

(38)

for any X, Y, Z, and W tangent to M. Item (1) is called a
Kähler identity ifM is a locally conformal Kähler manifold
(see [7] for more details and references therein).

We will focus, throughout the rest of this note, on item
(1). Using further notations as in [7], we denoted by Li the
subclass of manifolds whose curvature operator Rt satisfies
identity (i). Here, (i) may be either item (1), (2), or (3) above.
As in [7], it is easy to see that

L1 ⊆L2 ⊆L3 ⊆L: (39)

.erefore, we have the following result. □

Lemma 6. If a locally conformal almost Kähler manifold is in
class L1, then the equality holds

τ∗ − τ � 2(n − 1)traceP: (40)

Proof. .e proof follows from a straightforward calculation
using the fact that, for any vector fields X and Y tangent to
M, we have

ρt(X;Y) � 􏽘
2n

i�1
exp ft( 􏼁Rt Ei; X; Y; Ei( 􏼁

� 􏽘
2n

i�1
exp ft( 􏼁Rt Ei; X; JY; JEi( 􏼁 � ρ∗t(X;Y);

(41)

which leads to

ρ∗ − ρ( 􏼁(X; Y) � n −
3
2

􏼒 􏼓P(X; Y) +
1
2
g(X; Y)traceP

−
1
2
P(JX; JY):

(42)

.is completes the proof.
Relation (41) leads to

τt � 􏽘
2n

i�1
􏽘

2n

j�1
Rt Ej; Ei; Ei; Ej􏼐 􏼑

� 􏽘
2n

i�1
􏽘

2n

j�1
Rt Ej; Ei; JEi; JEj􏼐 􏼑 � τt∗:

(43)

□

Theorem 1. Let (M; J; g) be a 2n-dimensional compact
locally conformal almost Kähler manifold with n> 1 and
contained in L1. If

τ∗ � τ; (44)

then (M; J; g) is an almost Kähler manifold.

Proof. By Lemma 6, we have τ∗ − τ � 2(n − 1)traceP, with
traceP � divB − (1/2)(1 − n)‖B‖2. Taking into account this,
integrating relation (40), and using Green’s theorem, we
have 0 � 􏽒M τ∗ − τ{ } � (n − 1)2􏽒M‖B‖2: Hence, under our
assumption, we obtain B � 0..erefore, ω � 0 identically on
M. Hence, (M:J; g) is an almost Kähler manifold.

As an example for this theorem, we have compact flat
locally almost Kähler manifolds. Compact flat manifolds
have been detailed in [8] and references therein. □

4. Lee Form and Canonical Foliations

Let (M; J; g) be a locally conformal almost Kähler manifold,
and assume that the Lee form ω is never vanishing on M.
.en, ω � 0 defines on M an integrable distribution, and
hence a foliation F, on M (see [9] for more details and
references therein).

Let D: � kerω be the distribution onM and D⊥ be the
distribution spanned by the vector field B. .en, we have the
following decomposition:

TM � D ⊕ D⊥; (45)

where ⊕ denotes the orthogonal direct sum. By decompo-
sition (45), any X ∈ Γ(TM) is written as
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X � QX + Q⊥X; (46)

whereQ andQ⊥ are the projectionmorphisms of TM intoD
and D⊥, respectively. Here, it is easy to see that
Q⊥X � (1/‖B‖2)ω(X)B, and

X � QX +
1

‖B‖
2 ω(X)B: (47)

LetF be a foliation on a locally conformal almost Kähler
manifold (M; J; g) of codimension 1. .e metric g is said to
be bundle-like for the foliation F if the induced metric on
the transversal distribution D⊥ is parallel with respect to the
intrinsic connection on D⊥. .is is true if and only if the
Levi-Civita connection ∇ of (M; J; g) satisfies (see [10, 11]
for more details)

g ∇Q⊥YQX;Q
⊥Z􏼐 􏼑 + g ∇Q⊥ZQX;Q

⊥Y􏼐 􏼑 � 0; (48)

for any X, Y, Z ∈ Γ(TM). A foliation F is said to be
Riemannian on (M; J; g) if the Riemannianmetric g onM is
bundle-like for F.

Let F⊥ be the orthogonal complementary foliation
generated by B. Now, we provide necessary and sufficient
conditions for the metric on an locally conformal almost
Kähler manifold to be bundle-like for foliations F and F⊥.

Theorem 2. Let (M; J; g) be a locally conformal almost
Kähler manifold, and let F be a foliation on M of codi-
mension 1. 2en, the following assertions are equivalent:

(i) 2e foliation F is Riemannian.
(ii) 2e Lee vector field B is autoparallel with respect to ∇,

that is,

∇BB � B(ln(‖B‖))B: (49)

Proof. For any X, Y, Z ∈ Γ(TM), we have
Q⊥Y � (1/ B‖ ‖2)ω(Y)B and Q⊥Z � (1/‖B‖2)ω(Z)B, and the
left-hand side of (48) gives

g ∇Q⊥YQX;Q
⊥Z􏼐 􏼑 + g ∇Q⊥ZQX;Q

⊥Y􏼐 􏼑 �
2

‖B‖
2 ω(Y)ω(Z)ω ∇BQX( 􏼁;

(50)

for which the equivalence follows.
Let M′ be a leaf of the distribution D. Since M′ is a

submanifold of M and for any X, Y ∈ Γ(TM′), we have

∇XY � ∇X′Y + α(X;Y); (51)

∇XB � − ABX + ∇′⊥X B; (52)

where ∇′ and α are the Levi-Civita connection and the
second fundamental form of M′, respectively. Here, AB is
the shape operator with respect to B. On the contrary, we
have g(∇XB; B) � X(ω(B)) − g(∇XB; B); hence,

g ∇′⊥X B; B􏼒 􏼓 �
1
2
X(ω(B)); (53)

for any X ∈ Γ(TM′). .erefore, Weingarten formula (52)
becomes

∇XB � − ABX +
1
2
X(ω(B))B: (54)

□

Proposition 1. Let (M; J; g) be a locally conformal almost
Kähler manifold. 2en, the mean curvature vector fieldH′ of
the leaves of the integrable distribution D defined in (45) is
given by

H′ �
1

2n − 1
div|

M′
B􏼒 􏼓B: (55)

Moreover, these leaves are totally geodesic hypersurfaces
ofM if and only if the dual vector field B of ω preserves their
metrics.

Proof. Let M′ be a leaf of the integrable distribution D.
Using (51) and (54), the second fundamental form of M′
gives

α(X;Y) � g ABX; Y( 􏼁B � g ∇XB; Y( 􏼁B; (56)

for any X, Y ∈ Γ(TM′). Fixing a local orthonormal frame
e1; . . . ; e2n− 1􏼈 􏼉 in TM′, one has

H �
1

2n − 1
􏽘

2n− 1

i�1
α ei; ei( 􏼁 �

1
2n − 1

div|
M′
B􏼒 􏼓B: (57)

.e last assertion follows, and this completes the proof.

.erefore, we have the following result. □

Corollary 4. Let (M; J; g) be a locally conformal almost
Kähler manifold. 2en, the leavesM′ of the distribution D in
(45) are minimal if and only if the dual vector field B is
incompressible along M′.
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