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A graph G is called cycle books B[(4, m), 2] if G consists ofm cycles C4 with a common path P2. Figueroa-Centeno, Ichishima, and
Muntaner-Batle conjecture that the graph B[(4, m), 2] is super edge-magic total if and only if m is even or m ≡ 5mod(8). In this
article, we prove this conjecture for m≥ 36 and m � 0 mod (2).

1. Introduction

For undefined terms and notations in this study, we follow
Chartrand, Lesniak, and Peng [1]. Let G be a graph with
V(G) and E(G) be a set of vertices and edges, respectively. A
graph G is called a (p, q) graph if G has p and q number of
vertices and edges, respectively. Kotzig and Rosa [2] defined
that an edge-magic total labeling of G is a bijective function f:
V(G)∪E(G)⟶ {1, 2, ..., p+ q}, such that f(w) + f(wz) +
f(z)� k for any edge wz ∈ E(G). Moreover, a super edge-
magic total labeling is an edge-magic total labeling f, such
that f(V(G)) � {1, 2, ..., p}.

&e notion of edge-magic total labeling of a graph is
generalized to edge-antimagic total labeling of graphs. Let
α≥ 0 and β≥ 0 be integers. Let W � w(xy): w(xy) � f􏼈

(x) + f(xy) + f(y), xyE(G)}. If W forms an arithmetic
sequence starting from α with common difference β, then G

is called (α, β) − edge antimagic total labeling. Moreover, if
f(V(G)) � {1, 2, ..., p}, then G is called super(α, β) −

edge antimagic total labeling. Notice that when β� 0, the
(α, β) − edge antimagic total labeling of G is the usual edge-
magic total labeling of G with f(w) + f(wz) + f(z)� α for any
edge wz ∈ E(G).

One of the most popular problems in the theory of graph
labeling is super edge-magic total labeling of tree. Enomoto
et al. [3] proposed the following conjecture.

Tree conjecture [3]: every tree is super(α, 0)−

edge antimagic total labeling.
&e tree conjecture is still an open problem; however, some

authors proved that tree conjecture is true for some classes of
tree. For example, Bhatti, Javaid and Hussain [4] and Raheem
et al. [5] proved that tree conjecture is true for subdivision of
caterpillar. Javaid, Bhatti, and Aslam [6] proved that tree
conjecture is true for subdivision of stars. Other authors who
studied tree conjecture can be found in Gallian [7].

Another popular problem in the theory of graph labeling
is super edge-magic total labeling of a cycle book. A cycle
book graph is constructed from some cycles either with the
same or different order. Let m≥ 1 be any positive integer and
let Ca be the cycles of order a. A graph G is called a-cycle
books B[(Ca, m), 2] if G consists of m cycles Ca with a
common path P2. For m � 1, we define B[(Ca, m), 2] to be a
cycle Ca. From now on, the graphs, a-cycle books
B[(Ca, m), 2] is denoted by B[(a, m), 2].

Marr and Wallis ([8], Research problem 2.7, p.39)
proposed the following problem.
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Problem 1. Are all graphs B[(a, m), 2] edge-magic total
(super edge-magic total)?

Graph B[(a, m), 2] is constructed from some cycles Ca of
the same order. Swita et al. [9] contructed a graph from some
cycles with different orders. A graph (a, b) − cycle book
B[(a, m), (b, n), t] is constructed from some cycles Ca and
Cb with a common path Pt, a path of order t with m, n, a, b,
and t as the positive integers.

Problem 2. Are all graphs B[(a, m), (b, n), 2] edge-magic
total (super edge-magic total)?

Both Problems 1 and 2 are interesting problems for at least
the following two reasons. First reason is the solutions of
Problems 1 and 2 that can be used to construct the secret
sharing scheme in information technology. Reddy and Basha
[10] and Imron et al. [11] used edge-magic total labeling of
catepilar graphs to construct the secret sharing scheme. Bas-
koro, Simanjuntak, and Adithia [12] used edge-magic total
labeling of star graphs to construct the secret sharing scheme.

&e second reason is both Problems 1 and 2 provide a
challenging problem for the researchers, since they are open
problems. Swita et al. [9] proved Problem 2 for a � 7 or a �

4x − 1 for any integer x. MacDougall andWallis [13] proved
Problem 2 for m � n � 1 that a graph B[(a, 1), (b, 1), 2] is a
super edge-magic total labeling. Let l � min(a, b) − 3. Notice
that l is a chord of cycle C(a+b− 2). &us, l is a chord of graph
B[(a, 1), (b, 1), 2]. Using Kotzig array, Singgih [14, 15]
proposed a new method to construct an edge-magic total
labeling (super edge-magic) of graph cycle C(a+b− 2)(2r+1)h

with [(2r + 1)h]z chords, each of length l � (a, b) − 3, from
an edge-magic total labeling (super edge-magic) of graph
B[(a, 1), (b, 1), 2], where hand z are the positive integers.

Berkman, Parnas and Roditty [16], Enomoto et al. [3],
Kotzig and Rosa [2], and Godbold and Slater [17] are among
others authors that discuss Problem 1 for m � 1. For m≥ 2,
Problem 1 is an open problem; however, some authors
provided a partial solution. Figueroa-Centeno, Ichishima,
and Muntaner-Batle [18] proved that B[(4, m), 2] is an edge-
magic total. Furthermore, they proved that B[(4,m), 2] is not
super edge-magic total form ≡ 1, 3, 7mod(8)) andm � 4, but
B[(4,m), 2] is super edge-magic total for m � 2, 5, 6, 8, 10, 11.
Moreover, they made the following conjecture.

Cycle book conjecture [18]: the graph B[(4, m), 2] is
super edge-magic total if and only if m is even or
m ≡ 5mod(8).

Gallian [7] reported that Yuansheng et al. [19] proved this
conjecture for m is even in Ars Combinatoria, 93 (2009)
431–438. A study [20] contains the abstract of Yuansheng et al.
[19] and claims that Yuansheng et al. proved the cycle book
conjecture is true form is even.&e study [19] is the same as that
of Gallian [7]. We trace this reference, and we find that this
reference is neither in the table of contents of Ars Combinatoria,
93 (2009), nor in the table of contents Ars Combinatoria from
1995 up to 1999.Hence, we assume that the article of Yuansheng
et al. is unpublished. &erefore, it is reasonable to publish this
article. &us, this study proves the cycle book conjecture for
m≥ 36 andm � 0mod (2).&e solution of cycle book conjecture
is available from the author for 12≤m≤ 34 and m � 0 mod (2).

2. Preliminary Notes

In this section, we provide some previous results on super
edge-magic total labeling of a graph. Figuero-Centeno,
Ichisma, and Mutaner-Batle [18] proved some necessary
conditions for super edge-magic total labeling of a graph.
We need them to prove the main results of this study. First,
we define some notations in the following definition.

Definition 1. Let G be a graph B[(4, m), 2], X � um+2􏼈 􏼉,

Y � vm+2􏼈 􏼉, Z � u1, u2, . . . , um/2+1, um/2+3, . . . , um+1􏼈 􏼉, and
W � v1, v2, . . . , vm/2+1, vm/2+3, . . . , vm+1􏼈 􏼉. We define the
vertex set V(G) � X∪Y∪Z∪W and the edge set E(G) �

(x, y): x ∈ X, y ∈ Y􏼈 􏼉 ∪ (x, y): x ∈ Z, y ∈W􏼈 􏼉∪ (x, y):􏼈

x ∈ X, y ∈ Z}∪ (x, y): x ∈ Y, y ∈W􏼈 􏼉.
&e element of X∪Y and the edge (um/2+2, vm/2+2) are

called the common vertices and common edge of the m

copies of Ca, respectively.
&e graph B[(4,m), 2] in Definition 1 is shown in Fig-

ure 1 and the graph B[(a, m), (b, n), 2] is shown in Figure 2.

Theorem 1 (see [18]). Let G be a graph, such that |(VG)| � p

and |E(G)| � q. ,en, G is super edge-magic total if and only
if there exists a bijective function f: V(G)⟶ 1, 2, . . . , p􏼈 􏼉,
such that the set S � f(w) + f(z): f􏼈 or any edge wz ∈ E

(G)} consists of q consecutive integers. In such a case, f

extends to a super edge-magic total labeling of G with magic
constant k � p + q + s, where s � min(S) and S � k − (p +􏼈

1), k − (p + 2), . . . , k − (p + q)}.

Theorem 2 (see [18]). Let G be a graph, such that |(VG)| � p

and |E(G)| � q and f be a super edge-magic total labeling of
G. Let S � f(w) + f(z): wz ∈ E(G)􏼈 􏼉 and s � min(S).
,en, 􏽐v∈V(G)f(v)deg(v) � qs + (q − 1)q/2. In particular,
2􏽐v∈V(G)f(v)deg (v) ≡ 0mod(q).

Theorem 3 (see [18]). Let G be a graph B[(4, m), 2], such
that S � f(w) + f(z): wz ∈ E(G)􏼈 􏼉 and s � min(S). If G is
super edge-magic total labeling, then s � m/2 + 3.

&e following theorem is derived from the proof of
&eorem 3 in [3]. For self-contained of this article, we re-
write the proof again.

Theorem 4 (see [18]). Let G be a graph B[(4, m), 2] in
Definition 1 and let (um/2+2, vm/2+2) be the common edges of
all cycles C4 in G. If G is super edge-magic total labeling, then
f(um/2+2) + f(vm/2+2) � 6ms + m2 + 2s − 17m − 12/2m − 2.

Proof. Let G be a graph B[(4, m), 2]in Definition 1. Let
|V(G)| � p, |E(G)| � q, and t � m/2 + 2. We first notice that
p � 2m + 2 and q � 3m + 1. Moreover, deg(ut) � deg(vt) �

m + 1, deg (u1) � deg(v1) � · · · � deg(ut− 1) � deg(vt− 1) �

deg(ut+1) � deg(vt+1) � . . . , deg(um+1) � deg(vm+1) � 2.
Let A�X∪Y and B�Z∪ W. By &eorem 2, we have

(m + 1)􏽐w∈Af(w) + 2􏽐w∈Bf(w) � qs + (q − 1)q/2 or
(m − 1)􏽐w∈Af(w) + 2􏽐w∈Bf(w) � qs + (q − 1)q/2. &e last
equality reduces to 􏽐w∈Af(w) + 2􏽐

2m+2
i�1 i � qs + (q − 1)q/2,
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since f(w), f(z) ∈ 1, 2, . . . , (2m + 2){ }, and f(w)≠f(z).
&us, (m − 1)􏽐w∈Af(w) + (2m + 2)(2m + 3) � qs+ (q − 1)

q/2. We substitute q � 3m + 1 to the last equation, and we
have the following equation.

f ut( 􏼁 + f vt( 􏼁 �
6ms + m

2
+ 2s − 17m − 12
2m − 2

. (1)

By the equation (1) and s � m/2 + 3 in &eorem 3, we
conclude thatf(ut) + f(vt) � 2m +3.Hence, the theorem. □

3. Proof of Cycle Book Conjecture for m Is Even

In this section, we prove that the cycle book conjecture is
true if m is even and m≥ 36.

Theorem 5. Let G be the graph B[(4, m), 2] in Definition 1
with|V(G)| � p, |E(G)| � q, m is an even integer, m≥ 36.,
and let f be an edge-magic total labeling of G. Let
S � f(w) + f(s): f􏼈 or any edge wz ∈ E(G)] and
s � min(S). ,en, G is a super edge-magic total if and only if

(i) f(um/2+2) + f(vm/2+2)) � 6ms + m2+ 2s − 17m− 12
/2m − 2

(ii) s � m/2 + 3
(iii) S is a set of q consecutive integers
(iv) k � p + q + s

Proof. Let G be the graph B[(4, m), 2] with
|V(G)| � p, |E(G)| � q, and let G be a super edge-magic
total. Note that p � 2m + 2 and q � 3m + 1. Let f be an
edge-magic total labeling of G. If f is a super edge-magic total
labeling of G, then the conditions (i) and (ii) follow from
&eorems 4 and 3, respectively, and the conditions (iii) and
(iv) follow from &eorem 1.

Let f satisfies the conditions (i), (ii), (iii), and (iv). By (i)
and (ii), we conclude that

f um/2+2( 􏼁 + f vm/2+2( 􏼁 � 2m + 3. (2)

&e pair (m/2 + 2, 3m/2 + 1) is one of the solutions of
equation (2) with f(um/2+2) � m/2 + 2 and f(vm/2+2)

� 3m/2 + 1. By this solution, we define the bijection f1(x),
such that f1(um/2+2) � f(um/2+2) � m/2 + 2 and f1(vm/2+2)

� f(vm/2+2) � 3m/2 + 1 as follows.

f1 ui( 􏼁 �
m

2
+ 2, i �

m

2
+ 2, (3)

f1 vi( 􏼁 �
3m

2
+ 1, i �

m

2
+ 2, (4)

f1 ui( 􏼁 � i, i � 1, 2, . . . , m + 1, (5)

f1 vi( 􏼁 �
3m

2
+ 3, i � 1, (6)

f1 vi( 􏼁 � m + 2, i � 2, (7)

f1 vi( 􏼁 �
3m

2
+ 2, i � 3, (8)

f1 vi( 􏼁 � 2m + 1, i � m + 1. (9)

Case 1: m ≡ 0mod(4)

We define

f1 vi( 􏼁 �
3m

2
+ 3 −

i + 1
2

􏼒 􏼓,

i � m − 1, m − 3, . . . ,
m

2
+ 5,

m

2
+ 3,

(10)

f1 vi( 􏼁 �
5m + 8

4
, i � m, (11)

f1 vi( 􏼁 �
3m

2
−

i − 6
2

􏼒 􏼓, i �
m

2
,
m

2
− 2, . . . , 8, 6. (12)

f1 vi( 􏼁 � 2m + 3 −
i

2
, i � m − 2, m − 4, . . . ,

m

2
+ 6,

m

2
+ 4,

(13)

... ...

... ...

u(m/2)+2

u(m/2)+1 v(m/2)+1

v(m/2)+2

u(m/2)+3 v(m/2)+3

um+1

u2

u1 v1

v2

vm+1

Figure 1: Graph B[(4,m), 2].
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Figure 2: Graph B[(a,m), (b,n), 2].
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f1 vi( 􏼁 �
7m + 12

4
, i �

m

2
+ 1. (14)

Case 1.1: m ≡ 0mod(12)

We define

f1 vi( 􏼁 � 2m +
3 − i

2
􏼒 􏼓, i � 5, 11, 17, . . . ,

m

2
− 7,

m

2
− 1,

(15)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 7, 13, 19, . . . ,
m

2
− 11,

m

2
− 5,

(16)

f1 vi( 􏼁 � 2m −
i − 9
2

􏼒 􏼓, i � 9, 15, 21, . . . ,
m

2
− 9,

m

2
− 3,

(17)

f1 vi( 􏼁 � 2m + 2, i � 4.

(18)

Next, we will show that S is a set of q consecutive
integers with q � 3m + 1. Recall that X � um/2+2􏼈 􏼉 and
Y � vm/2+2􏼈 􏼉.
Let Z1

1 � u1, u2, . . . , um/2+2 + 1􏼈 􏼉 and S11 � f1(x) + f1􏼈

(y): x ∈ X, y ∈ Z1}. Let x ∈ X. By equations (3) and
(5), we conclude that f1(x) + f1(ui) � m/2 + 2 + i,

i � 1, 2, . . . , m/2 + 1. Hence, S11 � m/2 + 3, m/2 + 4,{

. . . , m + 2, m + 3}.
Let Z1

2 � u2􏼈 􏼉, W1
1 � v2􏼈 􏼉 and S12 � f1(x) + f1􏼈

(y): x ∈ Z2, y ∈W1}. Let x ∈ Z2 and y ∈W1. By
equations (5) and (7), we conclude that f1(x) +

f1(y) � 2 + m + 2 � m + 4. Hence, S12 � m + 4{ }.
Let� Z1

3 � um/2+3, um/2+4, . . . , um, um+1􏼈 􏼉, Z1
4 � X, and

S13 � f1(x) + f1(y): x ∈ Z1
3, y ∈ Z1

4􏼈 􏼉. Let x ∈ Z1
4 and

ui ∈ Z1
3. By equations (3) and (5), we conclude that

f1(x) + f1(ui) � m/2 + 2 + i, i � m/2 + 3, m/2 + 4,

. . . , m+ 1. Hence, S13 � m + 5, m + 6, . . . , 3m/2, 3m/2+{

2, 3m/2 + 3}.
Let Z1

5 � u1, u3􏼈 􏼉, W1
2 � v1, v3􏼈 􏼉, and S14 � f1(ui) + f1􏼈

(vi): ui ∈ Z5, vi ∈W2}. By equations (5) and (6), we
conclude that f1(u1) + f1(v1) � 1 + 3m/2+ 3 � 3m/2
+4. By equations (5) and (8), we conclude that
f1(u3) + f1(v3) � 3 + 3m/2 + 2 � 3m/2 + 5. Hence,
S14 � 3m/2 + 4, 3m/2 + 5{ }.
Let Z1

6 � u6, u8, . . . , um/2− 2, um/2􏼈 􏼉, W1
3 � v6,􏼈 v8, . . . ,

vm/2− 2, vm/2}, and S15 � f1(ui) + f1(vi): ui ∈ Z1
6, vi ∈􏼈

W1
3, i � 6, 8, . . . , m/2 − 2, m/2}. By equations (5) and

(12), we conclude that f1(ui) + f1(vi) � i + 3m/2 − (i −

6/2), i � 6, 8, . . . , m/2. Hence, S15 � 3m/2 + 6,{ 3m/2 +

7, 3m/2 + 8, . . . , 7m/4 + 2, 7m/4 + 3}.
Let Z1

7 � um/2+3, um/2+5, . . . ., um− 3, um− 1􏼈 􏼉, W1
4 � vm/2+3,􏼈

vm/2+5, . . . , um− 3, um− 1}, and S16 � f1(ui) + f1(vi):􏼈

ui ∈ Z1
7, vi ∈W1

4, i � m/2 + 3, m/2 + 5, . . . , m − 3,

m − 1}. By equations (5) and (10), we conclude that

f1(ui) + f1(vi) � i + 3m/2 + 3 − (i + 1/2), i � m/2+ 3,

m/2 + 5, . . . , m − 3, m − 1. Hence, S16 � 7m/4+{ 4, 7m/
4 + 5, . . . , 2m + 1, 2m + 2}.
Let Z1

8 � X, W1
5 � Y and S17 � f1(x) + f1􏼈

(y): x ∈ Z8, y ∈W5}. By equations (3) and (4), we
conclude that f1(um/2+2) + f1(vm/2+2) � m/2 + 2+

3m/2 + 1 � 2m+ 3. Hence, S17 � 2m + 3{ }.
Let Z1

9 � ui : i ≡ 5(mod 6)􏼈 􏼉 � u5, u11, . . . , um/2− 7,􏼈

um/2− 1}, W1
6 � vi: i ≡ 5(mod 6)􏼈 􏼉 � v5, v11, . . . , vm/2− 7,􏼈

vm/2− 1}, and S18 � f1(ui) + f1(vi): ui ∈ Z1
9, vi ∈W1

6􏼈 􏼉.
By equations (5) and (15), we conclude that f1(ui) +

f1(vi) � i + 2m + (3 − i/2), i � 5, 11, 17, . . . , m/ 2 − 7,

m/2 − 1. Hence, S18 � 2m + 4, 2m + 7, . . . , 9m/4 − 2,{

9m/4 + 1}.
Let Z1

10 � ui: i ≡ 1(mod 6)􏼈 􏼉 � u7, u13, . . . , um/2− 11,􏼈

um/2− 5}, W1
7 � vi: i ≡ 1(mod 6)􏼈 􏼉 � v7, v13, . . . , vm/2− 11,􏼈

vm/2− 5}, and S19 � f1(ui) + f1(vi): ui ∈ Z1
10, vi ∈W7􏼈 􏼉.

By equations (5) and (16), we conclude that f1(ui) +

f1(vi) � i + 2m − (I − 3/2), i � 7, 13, 19, . . . , m/2 − 11,

m/2 − 5. Hence, S19 � 2m + 5, 2m + 8, 2m + 11, . . . ,{

9m/4 − 1}.
Let Z1

11 � u4􏼈 􏼉, W1
8 � v4􏼈 􏼉, and S110 � f1(x) + f1(y):􏼈

x ∈ Z1
11, y ∈W8}. By equations (5) and (18), we con-

clude that f1(u4) + f1(v4) � 2m + 6. Hence,
S110 � 2m + 6{ }.
Let Z1

12 � ui: i ≡ 3􏼈 � (mod 6){ } � u9, u15, . . . , um/2− 11,􏼈

um/2− 9, um/2− 3}, W1
9 � vi: i ≡ 3(mod 6)􏼈 􏼉 � v9, v15,􏼈

. . . , vm/2− 15, vm/2− 9, um/2− 3}, and S111 � f1(ui) + f􏼈

(vi): ui ∈ Z1
12, vi ∈W1

9}. By equations (5) and (17), we
conclude that f1(ui) + f1(vi) � i + 2m − (I − 9/2), i �

9, 15, 21, . . . , m/2 − 9, m/2 − 3. Hence, S111 � 2m+{

9, 2m + 12, 2m + 15, . . . , 9m/4 − 3, 9m/4, 9m/4 + 3}.
Let Z1

13 � um􏼈 􏼉, W1
10 � vm􏼈 􏼉, and S112 � f1(x) + f1(y):􏼈

x ∈ Z1
13, y ∈W1

10}. By equations (5) and (11), we
conclude that f1(um) + f1(vm) � m + 5m/4+

2 � 9m/2 + 2. Hence, S112 � 9m/4 + 2{ }.
Let Z1

14 � um/2+1􏼈 􏼉, W1
11 � vm/2+1􏼈 􏼉, and S113 � f1(x)+􏼈

f1(y): x ∈ Z1
14, y ∈W1

11}. By equations (5) and (14),
we conclude that f1(um/2+1) + f1(vm/2+1) � m/2 + 1 +

7m/4 + 3 � 9m/4 + 4. Hence, S113 � 9m/4 + 4{ }.
Let Z1

15 � um/2+4, um/2+6, . . . , um− 4, um− 2􏼈 􏼉, W1
12 � vm/􏼈

2 + 4, vm/2+6, . . . , vm− 4, vm− 2}, and S114 � f1􏼈 (ui) +

f1(vi): ui ∈ Z1
15, vi ∈W1

12}. By equations (5) and (13),
we conclude that f1(ui) + f1(vi) � i + 2m + 3 − i/2, i �

m/2 + 4, m/2+ 6, . . . , m − 4, m − 2. Hence, S114 � 9m/{

4 + 5, 9m/4 + 6, 9m/4 + 7, . . . , 5m/2, 5m/2 + 1, 5m/
2 + 2}.
Let W1

13 � Y � vm/2+2􏼈 􏼉, W1
14 � v2􏼈 􏼉, and S115 � f1􏼈

(x) + f1(y): x ∈W1
13, y ∈W1

14}. By equations (4) and
(7), we conclude that f1(vm/2+2) + f1(v2) � 3m/2+

1 + m + 2 � 5m/2 + 3. Hence, S115 � 5m/2 + 3{ }.
Let W1

15 � Y � vm/2+2􏼈 􏼉, W1
16 � vm− 1, vm− 3, . . . , vm/2+5,􏼈

vm/2+3}, and S116 � f1(x) + f1(y): x ∈W1
15, y ∈W1

16􏼈 􏼉.
By equations (4) and (10), we conclude that
f1(vm/2+2) + f1(vi) � 3m/2 + 1 + 3m/2 + 3 − (i + 1/2),
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i � m − 1, m − 3, m − 5, . . . , m/2 + 5, m/2 + 3. Hence,
S116 � 5m/2 + 4, 5m/2 + 5, . . . , 11m/4 + 1, 11m/4 + 2{ }.
Let W1

17 � Y � vm/2+2􏼈 􏼉, W1
18 � vm􏼈 􏼉, and S117 � f1(x) +􏼈

f1(y): x ∈W1
17, y ∈W1

18}. By equations (4) and (11),
we conclude that f1(vm/2+2) + f1(vm) � 3m/2+

1 + 5m/4 + 2 � 11m/ 4 + 3. Hence, S117 � 11m/4 + 3{ }.
Let W1

19 � Y � vm/2+2􏼈 􏼉, W1
20 � vm/2, vm/2− 2, . . . ,􏼈

v8, v6} , and S116 � f1(x) + f1(y): x ∈W19, y ∈W1
20􏼈 􏼉.

By equations (4) and (12), we conclude that
f1(vm/2+2) + f1(vi) � 3m/2 + 1 + 3m/2− (i − 6/2), i �

m/2, m/2 − 2, m/2 − 4, . . . , 8, 6. Hence, S118 � 11m/{

4 + 4, 11m/4 + 5, . . . , 3m, 3m + 1}.

Let Z1
16 � um+1􏼈 􏼉, W1

21 � vm+1􏼈 􏼉, and S119 � f1(x) +􏼈

f1(y): x ∈ Z1
16, y ∈W1

21}. By equations (5) and (9), we
conclude that f1(um+1) + f1(vm+1) � m + 1 + 2m +

1 � 3m + 2. Hence, S119 � 3m + 2,{ }.

Let W1
22 � Y � vm/2+2􏼈 􏼉, W1

23 � v3, v1􏼈 􏼉, and S120 � f1􏼈

(x) + f1(y): x ∈W1
22, y ∈W1

23}. By equations (4) and
(8), we conclude that f1(vm/2+2) + f1(v3) � 3m/2
+1 + 3m/2 + 2 � 3m + 3. By equations (4) and (6), we
conclude that f1(vm/2+2) + f1(v1) � 3m/ 2 + 1 + 3m/2
+3 � 3m + 4. Hence, S120 � 3m+{ 3, 3m + 4}.

Let W1
24 � Y � vm/2+2􏼈 􏼉, W1

25 � vm− 2, vm− 4, . . . ,􏼈

vm/2+6, vm/2+4}, and S121 � f1(x) + f1(y): x ∈W1
24,􏼈

y ∈W1
25}. By equations (4) and (13), we conclude that

f1(vm/2+2) + f1(vi) � 3m/2 + 1 + 2m + 3 − i/2, i � m−

2, m − 4, . . .., m/2 + 6, m/2 + 4. Hence, S121 � 3m +{

5, 3m + 6, . . . , 13m/4 + 1, 13m/4 + 2}.

Let W1
26 � Y � vm/2+2􏼈 􏼉, W1

27 � vm/2− 1, vm/2− 7, . . . ,􏼈

v11, v5}, and S122 � f1(x) + f1(y): x ∈W1
26, y ∈W1

27􏼈 􏼉.
By equations (4) and (15), we conclude that f1
(vm/2+2) + f1(vi) � 3m/2 + 1 + 2m + (3 − i)/2, i � m/2
− 1, m/2 − 7, . . . , 11, 5. Hence, S122 � 13m/4 + 3,{ 13m/
4 + 6, . . . , 7m/2 − 3, 7m/2}.

Let W1
28 � Y � vm/2+2􏼈 􏼉, W1

29 � vm/2+1􏼈 􏼉, and
S123 � f1(x) + f1(y): x ∈W1

28, y ∈W1
29􏼈 􏼉. By equa-

tions (4) and (14), we conclude that f1(vm/2+2) +

f1(vm/2+1) � 3m/2 + 1 + 7m/4 + 3 � 13m/4 + 4. Hence,
S123 � 13m/4 + 4{ }.

Let W1
30 � Y � vm/2+2􏼈 􏼉, W1

31 � vm/2− 5, vm/2− 11, . . . ,􏼈

v13, v7} , and S124 � f1(x) + f1(y): x ∈W1
30, y ∈W1

31􏼈 􏼉.
By equations (4) and (16), we conclude that f1
(vm/2+2) + f1(vi) � 3m/2 + 1 + 2m − (i − 3)/2, i � m/2
− 5, m/2 − 11, . . . , 13, 7. Hence, S124 � 13m/4+{ 5, 13m

/4 + 8, . . . , 7m/2 − 4, 7m/2 − 1}.
Let W1

32 � Y � vm/2+2􏼈 􏼉, W1
33 � vm/2− 3, vm/2− 9, . . . ,􏼈 v15,

v9} , and S125 � f1(x) + f1(y): x ∈W1
32, y ∈W􏼈 1

33}. By
equations (4) and (17), we conclude that f1(vm/2+2) +

f1(vi) � 3m/2 + 1 + 2m − (i − 9)/2, i � m /2 − 3, m/2
− 9, . . . , 15, 9. Hence, S125 � 13m/4+{ 7, 13m/4
+10, . . . , 7m/2 − 2, 7m/2 + 1}.
Let W1

34 � Y � vm/2+2􏼈 􏼉, W1
35 � vm+1􏼈 􏼉, and S126 � f1􏼈

(x) + f1(y): x ∈W1
34, y ∈W1

35}. By equations (4) and
(9), we conclude that f1(vm/2+2) + f1(vm+1) � 3m/2+

1 + 2m + 1 � 7m/2 + 2. Hence, S126 � 7m/2 + 2{ }.

Let W1
36 � Y � vm/2+2􏼈 􏼉, W1

37 � v4􏼈 􏼉, and S127 � f1(x) +􏼈

f1(y): x ∈W1
36, y ∈W1

37}. By equations (4) and (18),
we conclude that f1(vm/2+2) + f1(v4) � 3m/2+

1 + 2m + 2 � 7m/2 + 3. Hence, S127 � 7m/2 + 3{ }.
Next, we will show that S18 ∪ S19 ∪ S110 ∪ S111 ∪ S112 consists
of 3m/12 consecutive integers. Simple counting shows
that |S18| � m/12, and |S19| � |S111| � m/12 − 1, |S110| �

|S112| � 1. We arrange the term of S18 ∪ S19 ∪ S110
∪ S111 ∪ S112 in Table 1.
We observe from Table 1 that S18 ∪ S19 ∪ S110 ∪ S111 ∪ S112 �

2m + 4, 2m + 5, 2m + 6, . . . , 9m/4 + 1, 9m/4 + 2, 9m/4{

+3} consists of 3m/12 consecutive integers.
In addition, we will show that S122 ∪ (S125 ∪ S23)

1 ∪ S124
consists of 3m/12 − 1 consecutive integers. Simple
counting shows that |S122| � m/12, |S124| � |S125| �

m/13 − 1, and |S23| � 1. By these information, we ar-
range the terms of S122 ∪ (S125 ∪ S23)

1 ∪ S124 in Table 2.
We observe from Table 2 that S122 ∪ (S125 ∪ S23)∪ S124 �

13m/4 + 3, 13m/4 + 4, 13m/4 + 5, . . . , 7m/2 − 1, 7m/{ 2,

7m/2 + 1} consists of 3m/12 − 1 consecutive integers.
Let S� S11 ∪ S12 ∪ · · · ∪ S126 ∪ S127. We will show that S

consists of q consecutive integers with q � 3m + 1.
Let
S11 � (m/2) + 3, (m/2) + 4, . . . , m + 2, m + 3{ } � T1

1,

S12 � m + 4{ } � T1
2,

S13 � m + 5, m + 6, . . . , (3m/2) + 2, (3m/2) + 3{ } � T1
3,

S14 � (3m/2) + 4, (3m/2) + 5{ } � T1
4,

S15 � (3m/2) + 6, (3m/2) + 7, . . . , (7m/4) + 2,{ (7m/
4) + 3} � T1

5,

S16 � (7m/4) + 4, (7m/4) + 5, . . . , 2m + 1, 2m+{ 2} � T1
6,

S17 � 2m + 3{ } � T1
7,

S18 ∪ S19 ∪ S110 ∪ S111 ∪ S112 � 2m + 4, 2m + 5, 2m + 6, . . . ,

(9m/4) + 1, (9m/4) + 2, (9m/4) + 3 � T1
8

S113 � (9m/4) + 4{ } � T1
9,

S114 � (9m/4) + 5, (9m/4) + 6, (9m/4) + 7, , . . . , (5m/{

2), (5m/2) + 1, (5m/2) + 2} � T1
10,

S115 � (5m/2) + 3{ } � T1
11,

S116 � (5m/2) + 4, (5m/2) + 5, . . . , (11m/4) + 1,{ (11m/
4)+ 2} � T1

12,

S117 � (11m/4) + 3{ } � T1
13,

S118 � (11m/4) + 4, (11m/4) + 5, . . . , 3m, 3m+{ 1} � T1
14,

S119 � 3m + 2{ } � T1
15,

S120 � 3m + 3, 3m + 4{ } � T1
16,

S121 � 3m + 5, 3m + 6, . . . , (13m/4) + 1, (13m/4)+{

2} � T1
17,

S122 ∪ (S125 ∪ S123)∪ S124 � (13m/4) + 3, (13m/4) + 4,

(13m/4) + 5, . . . , (7m/2) − 1, (7m/2), (7m/2) + 1 �

T1
18,

S126 � (7m/2) + 2{ } � T1
19,

S127 � (7m/2) + 3{ } � T1
20.

Notice that min (T1
i ) � max (T1

i− 1) + 1, i � 2, 3, . . . , 20.
Moreover, T1

i consists of consecutive integers. Simple
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counting shows that S consists of q consecutive integers
with q � 3m + 1. &us, by&eorem 1, we conclude that
G is super edge-magic total. Moreover, by (iv), we have
f1(uv) � k − (f1(u) + f1(v)) for all uv ∈ E(G).
Hence, the theorem in this case.
Case 1.2: m ≡ 4mod(12)

We define

f1 vi( 􏼁 � 2m +
i − 9
2

􏼒 􏼓, i � 5, 11, 17, . . . ,
m

2
− 9,

m

2
− 3,

(19)

f1 vi( 􏼁 � 2m − i −
3
2

􏼒 􏼓, i � 7, 13, 19, . . . ,
m

2
− 7,

m

2
− 1,

(20)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 9, 15, 21, . . . ,
m

2
− 11,

m

2
− 5.

(21)

It can be proved in the same lines as previous proof of
Case 1.1 that S is a set of q consecutive integers with
q � 3m + 1. &us, by &eorem 1, we conclude that G is
super edge-magic total. Hence, the theorem in this case.
Case 1.3: m ≡ 8mod(12)

We define

f1 vi( 􏼁 � 2m + 2, i � 4, (22)

f1 vi( 􏼁 � 2m − 1, i � 5, (23)

f1 vi( 􏼁 � 2m − 4, i � 9, (24)

f1 vi( 􏼁 � 2m, i � 7, (25)

f1 vi( 􏼁 � 2m − 3, i � 11, (26)

f1 vi( 􏼁 � 2m −
i − 9
2

􏼒 􏼓, i � 13, 19, . . . ,
m

2
− 9,

m

2
− 3,

(27)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 15, 21, . . . ,
m

2
− 7,

m

2
− 1,

(28)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 17, 23, . . . ,
m

2
− 11,

m

2
− 5.

(29)

It can be proved in the same lines as the previous proof
of Case 1.1 that S is a set of q consecutive integers with
q � 3m + 1. &us, by &eorem 1, we conclude that G is
super edge-magic total. Hence, the theorem in this case.

Case 2: m ≡ 2mod(4)

f1 vi( 􏼁 �
3m

2
+ 3 −

i + 1
2

􏼒 􏼓, i � m − 1, m − 3, . . . ,
m

2
+ 6,

m

2
+ 4,

(30)

f1 vi( 􏼁 �
5m + 6

4
, i � m, (31)

f1 vi( 􏼁 �
3m

2
−

i − 6
2

􏼒 􏼓, i �
m

2
+ 1,

m

2
− 1, . . . , 8, 6,

(32)

f1 vi( 􏼁 � 2m + 3 −
i

2
, i � m − 2, m − 4, . . . ,

m

2
+ 5,

m

2
+ 3,

(33)

f1 vi( 􏼁 �
7m + 14

4
, i �

m

2
. (34)

Case 2.1: m ≡ 2mod(12)

Table 1: S18 ∪ S
1
9 ∪ S

1
10 ∪ S111 ∪ S

1
12 consists of 3m/12 consecutive integers.

S18 S19 ∪ S112 S111 ∪ S110

2m + 4 2m + 5 2m + 6 � S110
2m + 7 2m + 8 2m + 9
2m + 10 2m + 11 2m + 12
. . . . . . . . .

9m/4 − 4 9m/4 − 4 9m/4 − 3
9m/4 − 2 9m/4 − 1 9m/4
9m/4 + 1 9m/4 + 2 � S12 9m/4 + 3

Table 2: S122 ∪ (S125 ∪ S23)∪ S
1
24 consists of 3m/12 − 1 consecutive integers.

S122 S125 ∪ S123 S124

13m/4 + 3 13m/4 + 4 � S123 13m/4 + 5
13m/4 + 6 13m/4 + 7 13m/4 + 8
13m/4 + 9 13m/4 + 10 13m/4 + 11
. . . . . . . . .

7m/2 − 6 7m/2 − 5 7m/2 − 4
7m/2 − 3 7m/2 − 2 7m/2 − 1
7m/2 7m/2 + 1
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We define

f1 vi( 􏼁 � 2m +
3 − i

2
􏼒 􏼓, i � 5, 11, 17, . . . ,

m

2
− 8,

m

2
− 2,

(35)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 7, 13, 19, . . . ,
m

2
− 12,

m

2
− 6,

(36)

f1 vi( 􏼁 � 2m −
i − 9
2

􏼒 􏼓, i � 9, 15, 21, . . . ,
m

2
− 10,

m

2
− 4,

(37)

f1 vi( 􏼁 � 2m + 2, i � 4. (38)

It can be proved in the same lines as the previous proof
of Case 1.1 that S is a set of q consecutive integers with
q � 3m + 1. &us, by &eorem 1, we conclude that G is
super edge-magic total. Hence, the theorem in this
case.
Case 2.2: m ≡ 6mod(12)

We define

f1 vi( 􏼁 � 2m −
i − 9
2

􏼒 􏼓, i � 5, 11, 17, . . . ,
m

2
− 10,

m

2
− 4,

(39)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 7, 13, 19, . . . ,
m

2
− 8,

m

2
− 2,

(40)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 9, 15, 21, . . . ,
m

2
− 12,

m

2
− 6,

(41)

f1 vi( 􏼁 � 2m, i � 4. (42)

It can be proved in the same lines as the previous proof
of Case 1.1 that S is a set of q consecutive integers with
q � 3m + 1. &us, by &eorem 1, we conclude that G is
super edge-magic total. Hence, the theorem in this
case.
Case 2.3 : m ≡ 10mod(12)

We define

f1 vi( 􏼁 � 2m + 2, i � 4, (43)

f1 vi( 􏼁 � 2m − 1, i � 5, (44)

f1 vi( 􏼁 � 2m − 4, i � 9, (45)

f1 vi( 􏼁 � 2m, i � 7, (46)

f1 vi( 􏼁 � 2m − 3, i � 11, (47)

f1 vi( 􏼁 � 2m −
i − 9
2

􏼒 􏼓, i � 13, 19, . . . ,
m

2
− 10,

m

2
− 4,

(48)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 15, 21, . . . ,
m

2
− 8,

m

2
− 2,

(49)

f1 vi( 􏼁 � 2m −
i − 3
2

􏼒 􏼓, i � 17, 23, . . . ,
m

2
− 12,

m

2
− 6.

(50)

It can be proved in the same lines as previous proof of
Case 1.1 that S is a set of q consecutive integers with
q � 3m + 1. &us, by &eorem 1, we conclude that G is
super edge-magic total. Hence, the theorem. □

4. Conclusion

We are able to prove the cycle book conjecture for m is even,
but we cannot prove it for m ≡ 5mod(8). Hence, the cycle
book conjecture is an open problem.
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