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e aim of this paper is to prove a common random xed-point and some random xed-point theorems for random weakly
contractive operators in separable Banach spaces. A random Mann iterative process is introduced to approximate the xed point.
Finally, the main result is supported by an example and used to prove the existence and the uniqueness of a solution of a nonlinear

stochastic integral equation system.

1. Introduction

e xed-point theory has been revealed as a very pow-
erful and important tool in the study of di erent math-
ematical models expressed in the forms of di erential
equations [1], integral equations [2, 3], fractional di er-
ential equations [4, 5], matrix equations [6], etc. Also, its
applications are very useful and interesting in economics,
in game theory, in computer science, and in other
domains.

Probabilistic functional analysis is one of the essential
mathematical disciplines that are applied to solving prob-
lems, characterized with uncertainties, known as probabi-
listic models. e random xed-point theorems are
stochastic generalizations of classical xed-point theorems
which are known as deterministic results and are required
for the theory of random equations, random matrices,
random partial di erential equations, and various classes of
random operators.

e theory of random xed point was initiated by the
Prague School of Probability in the 1950s. e random  xed-
point theory nds its roots in the work of Spacek [7] and
Hans [8, 9]. ey established a stochastic generalization of
Banach contraction principle (BCP), and they applied their
results to study the existence of a solution of random linear
Fredholm integral equations. In 1976, Bharucha-Reid

published his review article [10] which has attracted the
attention of several researchers and which has led to the
development of random xed-point theory. In 1979, Itoh
[11] extended Spacek’s and Hang's theorems to multivalued
contraction random mappings. e result obtained by Itoh
in [11] was applied to solve a random di erential equation in
Banach space. In the recent past, random di erential
equations and random integral equations have been solved
by random xed-point theorems (see, for example, [12-16]).
For some important contributions in the random xed-
point theory, we invite the reader to consult [17-25] and the
references therein.

It is necessary to mention that the BCP is the rst
fundamental deterministic xed-point theorem in a metric
space.

(see [26]). If X;d is a complete metric space
X is a self-mapping such that

d Tx;Ty kd xy;

and T: X

for all x;y X and k
point.

0;1, then T has a unique xed

Among the generalizations of this principle, we nd the
following theorem established in 2001 by Rhoades.
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(see [27]). If X;d is a complete metric space

and T: X X is a self-mapping such that
dTxTy dxy ¢dxy;
for all x;y X, and ¢: O; 0; is a continuous

and nondecreasing function such that ¢ t
t 0, then T has a unique xed point.

0 if and only if

Several interesting weak contractions were considered in
various frameworks (see, for example, [28-31] and refer-
ences therein). Among all these weak contractions, we are
interested in the one studied by Eslamian and Abkar in [32].
We state the result in the following.

(see [32]). If X;d is a complete metric space

and T: X X is a yy;U,; ¢ -weakly contractive self-
mapping, i.e.,
P, d T xX;Ty P, dxy odxy ;forall xy X;

then T has a unique xed point.Here, the three functions
U0y 0 R R , called control functions, satisfy the
following conditions:

(a) w, and Y, are continuous

(b) @ is lower semicontinuous

(c) Yy is increasing

(d) Fori f1,2g,; t Oifandonlyift O
(e)Forallt R,et Oifandonlyift 0
(fyForallt Oy, t Yy, t ot O

In this study, we prove a common random xed-point
theorem and some random xed-point theorems for random
Wq; W,y; @ -weakly contractive operators in a separable
Banach space, where the three control functions y4; §,; and @
satisfy all the conditions a T except the condition (d)
which is replaced by the weak condition:

g, t 0 ifandonlyift O:

As an application, we show the existence and the
uniqueness of a random solution for a system of nonlinear
integral equations. To prove our main results, we need to
recall the following concepts and results. For more details,
the reader may consult [33, 34].

2. Preliminaries

Let X;kk be aseparable Banach space, By be the g-algebra
of all Borel subsets of X, and ;B;u be a complete
probability measure space with the measure p and B be the
o-algebra of subsets of . Let C be a nonempty subset of X.

De nition 1 (see [33, 35]).

(i) A mapping x: X is said to be a random
variable with values in X if the inverse image under

the mapping x of every Borel set B of X belongs to 3,
thatis,x ' B BforallB By

(if) A mapping x: C is called a random variable
with valuesin Cifx 1 B C Bforall B By

De nition 2 (see [33, 34]).

(i) A mapping x: X is said to be a
finitely-valued random variable if it is constant on
each of a nite number of disjoint sets A; p and
equal to 0 on A

(i) A mapping x: X is said to be a simple
random variable if it is nitely valued.

(iif) A mapping x: X is said to be a strong (or

Bochner) random variable if there exists a sequence

X, n Of simple random variables which converges

to x almost surely, that is, there exists a set A, B
with y A, 0 such that

lim [ @ x| 0 foreveryw Ay

Next, we introduce the notion of a weak random
variable.

De nition 3 (see [33]). A mapping X: X is said to be
aweak (or Pettis) random variable if the functions x  x are
real-valued random variables for each x X , where X
denotes the rst normed dual space of X.

Remark 1 (see [33]). In this work, we restrict our attention
to the case where X is a separable Banach space. In this
setting, the concept of weak and strong random variables is
equivalent.

e following de nition of the mode of convergence for
Banach space-valued random variables, which we use in the
sequel, is borrowed from [33].

De nition4. Let X, ,and x be X-valued random variables.
e sequence X, , converges to x in  strongly almost
surely if there exists a set A, P with p A, 0 such that

lim [ @ x| 0 foranyw Ay

We recall the following results from the study by Joshi
and Bose ([34], eorem 6.1.2).

Let x and y be two strong random variables and
o and B be two constants.  en, the following statements hold:

(i) ax By is a strong random variable

(ii) If ¥ is a real-valued random variable and x is a
strong random variable, then ¥x is a strong random
variable

(iii) If X, , is a sequence of strong random variables
converging strongly to x almost surely, then x is a
strong random variable
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De nition 5 (see [35]).

(i) A mapping T: C C is said to be random
operator if for each x C, the mapping
T 5% C is measurable

(if) A random operator T: C
the set of all w
has measure one

C is continuous if
for which T w;: is continuous

roughout this paper, we denote 2V X as the set of
all X valued random variables and we adopt the following
de nition of the random xed point given by Joshi and Bose
in [34].

De nition6. Letx XV X .xissaid to be arandom xed
point of T if

llJl("T(OJ;Xl ) T(wX, ® )“) llJz("Xl w

almost surely, for all x;;x, %V X.

Let X;kk be aseparable Banach space, C be a
nonempty closed subset of X, and ;B;u be a complete

llJl("T((*)in W) S(wx, )") wz(“Xl ®

almost surely, for all x;;x, %V C. en, there exists a
unique common random xed point of S and T.

Proof. Let x, %V C. Let X, S w;X; w and
X, 0 T w;X; w . Since S and T are two continuous
random operators in a separable space, it follows that x; and
X, are in ZV C . Now, consider the sequence de ned, for

pfo: T oy x . x wg L

3. Main Results

In this section, we prove a common random xed-point
theorem and some random xed-point theorems for
Y1; ¥, @ weakly contractive mappings in a separable
Banach space.

De nition 7. Let X;kik be a separable Banach space and

:B;u be a complete probability measure space. e
mapping T: X X is called a Wq;W,; @ -weakly
contractive random operator if T satis es the following
inequality:

X 0f) o(lx 0 x ol)

probability measure space. Let T;S: C C be two

continuous random operators satisfying

x of) o o x of)

By induction, X, , is a sequence in £V C . Consider
the set A X Y such that

X fw T X
Y fw T X

T w;x iscontinuouson Cg;

S w;x iscontinuouson Cg:

Forally;z %V C, we denote by E,., the set of el-

each n N, by Xy, 0 S WXy O and ementsw  such that
Xono @ T WX 17 @ .
Y kKTwoyyw Swzwk Y kyw zok okyw zwk:
Let M N A E, . ,- As stated, p A 1 and
n nn
M Egx, Llforeachn N. enpM Lletw M.
Foralln N, we have
W0 X ol) bk o xaol) oo o)

is implies that
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%1 @ X, wk k¢, @ x,; @ foralln N: Since Y, is increasing, we get

(boso wol) llns xiol)

Indeed, let us assume that there exists n, N such that

”Xno 10 Xy 0k kX, 0 X, " en,

qu(”xnO 1 W Xy @ ") l]J2<|Xn0 W Xp 1@ H) (p('xn0 W Xp 1 @ ”)

o o lim x,, 0 %, @] &
which is a contradiction. Hence, for all n N , we have n

%) 1 0 X, wk kx, @ X, | Since

It follows that the sequence kx,; ®w X, wk, is
decreasing and consequently there exists | 0 such that

Iri]msuqul(llxn L0 X o)
limsup(Wy(fxn @ Xo 1 @) o @ 01 0]))

Irimsuquz(nxn ® Xq 0 Inimim‘cp(nxn © X1 )

and by using the continuity of Y, and y, and the lower Now, X w in M and let us prove that X, w ,is a

semicontinuity of ¢, we obtain that ¢, I W, I oI, Cauchy sequence in C. For this, it is su cient to show that

which is a contradiction unless | 0. the subsequence x,, w , is a Cauchy sequence. If we
Hence, assume the contrary, then

im )1 0@ x, 0| 0 forallw M:

J 0; k N; mg n k suchthat”x2mk W Xop, w" J:

Furthermore, corresponding to n,, we can choose m, in Consequently,
such a way that it is the smallest integer with m, n,
satisfying ||x2mk 2 W X O || j:
||X2mk W Xy, W || Ji By using the triangular inequality, we obtain
“Xka ® X2nk ® ” ”XZmk W X2mK 1 W ” “Xka 1 W Xan ® H

“Xka 0 Xom, 1 O " ”Xka 10 Xom 2 @ "
HXka 2 W Xpp @ H

szmk W Xom 1 @K KXo 1 @ Xom 2 @ "
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Also,

HXka 0 Xon @ H "szk 10 Xom @ ” ”XZmk 1 W Xpp @ “v

P s @ X, 0 [am 10 Xam, @ im0 e 0]

By the same way, we have

“Xka W Xpp 1 WK KXy 3 0 X @K KXpp 0 Xp, @ ||

||X2mk W X, “ ||X2nk 10 Xy ®@ H “Xka W Xy 1 W “

Hence,
I(Ilm HXka W Xp, @ “ €
Letting k , We obtain
kI|m “Xka 10 X O “
en,

kIim ||xka W Xpp 1 O “ J:

We have, for all kK N,

wl(kXka 1)(‘*) Xon, ® k) l“l(”s(‘*); Xom, (*)) T(oo; Xon, 1 @ )”) wz(“Xka W Xpp 1 @ “) (P(“Xka W Xpp 1 @ N)

By passing to the upper limit, we get
W, € Y, e @ e, which is a contradiction since e 0.
is shows that { x,, @ ,} is a Cauchy sequence in C, for
each w M. Using (20), itis easy to check that x, w ,isa
Cauchy sequence in C, for each w M.
Since C is a closed subset of the Banach space X, then C is
complete, which implies that, for all @ M, the sequence
X, W , converges by norm in C. Let x: C be the
mapping such that x lim x, w, foreach w M.
Since the sequence X, , conVerges strongly almost surely to
X, then, according to ([33], eorem 1.6), x is a C-valued
random variable.

Letw M. Foralln N,wehaveX,,; S ;X ®
and Xy 5 T W)Xy, 1 @ .

Since X ® lim x, o and by using the continuity
ofSand T,wegetS w:x ® T w)x w X w,foreach
w M.

Hence,

p fw S WX W T W, X ® Xwg L

It means that x is acommon random xed point of S and
T

To prove the uniqueness of this common xed point, let
y be another common random xed point of S and T.
Consider the two sets
S WX W

F, fw TwX ®

F

X g
y o}
M 1 Let N F F, M. For

y 0o Soyn Twyow

en, g Fy Fy
each w N, we have

U kx 0y ok @ KT w;X @

y o k ¢ kx w

Swy w k

W, kX w y o k:

is implies that kx ® y wk 0. erefore, x vy al-
most surely. is proves the uniqueness of the common
random xed point of Sand T.
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If T Sin eorem 5, we obtain the following random  functions §; U,;@:  0; 0
xed-point theorem for  ;;U,; @ -weakly contractive t 0 as follows:
random mapping. t
Let X;kik beaseparable Banach space, C be a U, t Ly, t 2 and @ t 6
nonempty closed subset of X, and  ;B;u be a complete 3
probability measure space. Let T: C C be a con- 1
tinuous  Y;;W,; @ -weakly contractive random mapping.
en, there exists a unique random xed point of T. Consider the random operator T: C
Example 1. Let X R? with the norm 1 de ned, for all by ) T wxo
Xy RZ as follows: X; W w/3;%x; 0 w3, where
' ' X XX RV C.
kx;y ke X Jyi Let w . We have
0;1 andC 0;1  0;1.Letp beadc-algebra of
Lebesgue measurable subsets of R?. Consider the three
BT (@%@ ©) T(wry; @y, o))

[T@ix 0 @) Ty 0y, 0)f;

w y1 W 0y, @ ®
3 ' 3

W Xy 0

1

WY, O
3 3

1

X; 0 WX, 0
3 ' 3
X0 © Yy 0
3 3
(xlw Y1 0 X @
3 L

oy 0| X

Y, W
3

Yo @,

1

1

3

llJz(”(Xl WX, 0) (1 w3y, o), )

(P(”(Xl WX, W) (Y, 03y, 0 )"1)

en,

llJz("([Xl W oy 0i[x 0 “1)
ll-'z(lxl W oy 0| X w )
2|X1w Y1 L0|3|X20\) Y, W |
(P("([Xl W Y 0[X e )“ )
o[y 0y 0| [0y, @)
o vy [xe Yy, 0]

6

de ned for all

if0 t 2

ift 2

C de ned

T wX ;%

) and
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llJz("(Xl WiX 0) (Y 03y, @ )”1)

Consequently, for all x RV

C and for each w ,

Xi: X3y YuYe

Py (KT o;x w

All conditions of Corollary 1 are satis ed and T has a
random xed point which is

((o_u))_
2'2)

In Corollary 1, if ¢y, t @, t t for all t 0, we
obtain the following corollary which is an improvement of
([36], eorem 5.2) in a separable Banach space.

X W

IT(ix; 0 T(wix, o)) [x @

almost surely, for all x;;x, XV C.
unique random xed point of T.

en, there exists a

In Corollary 1, if ¢; ,, we obtain the following
random xed-point theorem for ;@ -weakly contractive
random mapping.

O(T(@x 0) T@x, o)) w(x

almost surely, for all x;;x, X%V C.
unique random xed point of T.

en, there exists a

In Corollary 1,if g, t tand ¢, ¢ t Kkt forall
t 0and for some k 0;1 , we obtain the following ran-
dom xed-point theorem for Banach’s contraction.

Let X;kik beaseparable Banach space, C be a
nonempty closed subset of X, and  ;B;u be a complete
probability measure space. Let T: C C be a con-
tinuous random operator satisfying the following condition:

Twy o k)( Pkx w

S

(P("(Xl WiX, 0) (Y Wiy, @ )"1)

2|X1 W Yo o y,ef
3 1

oyl o vy, ol
5 ,

o yie| ko y, el
2 1

o yie| [ vy, el

3

yok) ok< o yok):

Let X;kk beaseparable Banach space, C be a
nonempty closed subset of X, and  ;B;pu be a complete
probability measure space. Let T: C C be a con-
tinuous random operator satisfying

X o || ‘P("Xl 0w X0 ||)?

Let X;kik beaseparable Banach space, C be a
nonempty closed subset of X, and ;B;u be a complete
probability measure space. Let T: C C be a con-
tinuous random operator satisfying the following condition:

W X] o) oo X wl)

[T(x, @) T(wx, 0)] K} o X of;

almost surely, for all x;;x, %V C and k
there exists a unique random xed point of T.

0;1. en,

4. Random Mann lteration Scheme

In the following, we investigate the convergence of random
Mann iteration scheme applied to a 5;y,; @ -weakly
contractive random operator.
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De nition 8. (random Mann iteration scheme [35]). Let
T: C C be a random operator, where C is a non-
empty convex subset of a separable Banach space X. A
random Mann iteration scheme is the sequence of C-valued

random variables x, , de ned, forallw by
{xn 10 (1 )Xy 0 ¢ T(wx, w), foralln N
Xo: C isanarbitrary measurable mapping

where0 ¢, ¢,; landO0 lim ¢, c¢ 1,foralln N.
In particular, ifc, 1,foralln N, thesequence X, ,is
said to be a random Picard iteration scheme.

Let X;kk be aseparable Banach space, C be a
nonempty closed convex subset of X, and By be a
complete probability measure space.

U (KT (wixg @) T(@i% )k Y[x; @

As stated, p M 1, where M Exx,, A F.

Let w M. We claim that, for all"l® N,
[Tx, ) Toxo | [x 0 xol
Indeed, let us assume that there exists n, N such that
”xn0 ® X W ” “T(w;xno ) Twxow “

Since Y, is increasing, we get

b 0 x0]) w([T(0x, 0) Tuxo|)

llJz<||xno W X ||) o(kx,, ® X wk):

Let T: C C be a continuous Y4; Y,; @ -weakly
contractive random operator. Assume that {; is convex.
en, the following two statements hold:

(i) ere exists a unique random

X: Cof T

(i) e random Mann iteration scheme converges
strongly almost surely to the unique random xed
point x of T

xed point

Proof

(i) From Corollary 1, T has a unique random xed point

X: C. Consider the set
F fo T o)X w Xwg enpyF L
(ii) Consider the set A fw DX T w;x
is continuous on Cg.
Let E, .., be the set of elements w such that

0| oo X of)

is is a contradiction, since for each t 0,
gt W, t ¢t OHence foralln N,
IT(x, 0) Taoxw | |0 xolf

en, foralln N,
)1 0 xof [T@x, ) Twxo |
[ @ x|

It follows that the sequence kx, w
creasing and consequently there exists |

X ok, is de-
0 such that

lim ) @ x|

Since X, ,isarandom Mann iteration scheme, we have, for
alln N,

)1 0 x o (1 co)xy 0 e T(wix, ®) x o
(T c)xy @ e T(wx, @) (I ¢)x o ¢X |
T )k 0 x| cfT(wx, o) x ol
en,
)1 @ X (1 c)xe @ xofc|T(wx, ) Towxaw |

Since Y, is nondecreasing and convex,
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Ui(fe s 0 xof) (T cu(fxe @ xof) cy(|T(wx, ©) Toxw |):
Wi o xol) @ cullae xof) a(xo xol)
Chp(kx, x wk):
en, (d) h t;w is the stochastic free term de ned fort R
By passing to the upper limit, we obtain (e) k t;s;w isthe stochastic kernel de ned for tand sin
| 1 cy, I cy, I col: R
(f) ¥ and g are two real-valued functions
en,
I | l:
Vi V2 ¢ Remark 2 (see [37]). e topological space R is the union of
is is a contradiction, since for each t 0, a countable family of compact subsets {K.} having the
g, t Y, t ¢t 0 enl O properties that K, K, ; and that for any other compact set
en, forall w M, in R, there is a K; which contains it.
l 0: Let C R;L, ;B;u be the space of all continuous
Sm ”Xn w o Xx " : functions from R into the space L, ;f;p with the to-
. pology of uniform convergence on compact sets of R. Note
Consider the set that C R;L, ;B;u isalocally convex space (see [38]) and
L o - lim ||x 6w X 0 “ ol so it can be endowed with a topology induced by a countable
{ "n n } family of seminorms {kk,}, y de ned by kxk, sup; « kx
t: k. 4,,foreachn Nandx C R;L, By .
SinceM Land y M 1,thenp L 1. is shows Heve T 2 B
that the sequence X, , of the C-valued random variable ’
converges strongly almost surely to the unique random  xed jkx t;: kj? J X tojdy o
; v NL B '
point x.
. . . Note that furthermore, since L, ;B;u is complete,
5. Appllgatlons to Nonlinear Stochastic Integral R:L, By iscomplete with respect to this topology.
Equations System We assume that, for each pair  ts,
In this section, we give an application of  eorem 5 to show Igyt; soo b By and denote the norm in L Bru

the existence and the uniqueness of a solution of a nonlinear
stochastic integral equations system (NSIE) presented as
follows:

Xtw hto Ikt;s;wfs;y ;0 dA s
R
N:S:LLE

ytw hto Jkt;s;wg $;X ;0w dA s
R

where we have the following:
(a) R is the locally compact real space with the usual
norm of reals and A is the Lebesgue measure on R

(b) w , Wwhere is the supporting set of the prob-
ability measure space  ;B;p

(c)Forallt R, x t;: and y t;: are two unknown
elements in 2V R

kk t u;:

Kosiup kjrkx Uik, gy

kik tts;ik Kk tis;ik, gy M oess supjk s
[

Also, we suppose the following:

(i) For almost all s R, the function t k t;s;: is
continuous from R into L By

(i) e function s Kk t;s;:kkx s;ik, g, is
M-integrable, for each x in C R;L, ;B and

almostallt R

ere exists a real-valued function G de ned A-a.e.
on R, such that G s kx s;: k., g, is A-integrable

and for each pair ts;u RS

(iii)

Gukx ujik, gy A

" ae:
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Consider a random operator T de ned on
C RL, ;Bip such that, for all
x CRL, ;Bp andt R,

TwX tw Jkt;s;wxs;wd)\s; asin

R

However, for each t R, the function
s kts:ikkx t;ik, g, is A-integrable;  then,
Twxt: L, ;Bu as From (iii) and by using Leb-
esgue’s dominated convergence theorem, t T wx t;:
is a continuous in mean square, S0
Twx CR;L, ;Bp as.

Let B and D be two Banach spaces. e pair B;D issaid
to be admissible with respect to the linear operator T if
Tw B Das

(see [39]).

(1) e linear operator T w is continuous from
C R;L, ;B;p into itself as.

(2 If BD C R;L, ;B;p are two Banach spaces
stronger than the space C R;L, ;[B;u such that
B; D isadmissible with respectto T w ,then T w is
continuous from B to D a.s.

De nition 9. By a random solution of NSIE, we will mean a
pair of functions x;y in C R;L, :B;u 2 which sat-
is es the two equations of NSIE p-a.e.

Let w . We consider the two functions
F,G:C R;L, ;B:u C R;L, ;B;p de ned, for
each t R and , by Fx tw Ftx ttw and
GXx ttw gtx tw :

Uoxtw hto

Let p be a positive real number. Consider the ball is
centered on 0 and the neutral element in D is

Mp {x D:kxky p}

e following conditions hold:

(1) B and D are Banach spaces stronger than
C R;L, ;B;p so that B;D is admissible by
respect to the integral operator imposed by (66).

(2) e functions F and G maps from M p into B and
there exists three control functions g, Y,, and ¢ such
that for any X;;X, M p,

wl("Fxl GX2||B) qJZ(”Xl XZHD) ‘P(||X1 X2”D):

(3)h D.

Pcw 0;1 as. and

khkp ¢ wkGOkg p 1 c w
as:;

khkp ¢ wkFOkg p 1 cw

where the norm of T w is denoted by ¢ .

en, if the above conditions hold, system NSIE admits a
unique solution in M p ?
Proof. Consider the mappings U; V: D such
that forall x ™M p,

M p

J kts;ofs;xs;w dis as:
R

VowXxtw hto Ikt;s;wgs;xs;w d\ s as:
R

Letx M p. Since

kU w xkp khkp
khkp ¢ w KGOKg
khkp ¢ w KGOkg
khkp ¢ o kGOkg
pl cw

c wkFxkg as:

¢ o kFx GOkg as:
c wkxky as:

cCwp as

cwp p as;

JUwx, Vox, ¢o|Fx

en,

then U w x M p as. By the same argument, we prove
that Vo x M p as:
Let X;;X, M p . We have

Xy [P Gxyfs as:
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GV oxy Voxfy) wi([Fx Gxlg)
Wil xalb) o xalo) as
which shows that U w and V w are Yg;U,; @ -weakly

contractive mappings almost surelyon M p . en, the two
operators U; V: M p M p are Ug; U, @ -weakly
contractive random operators.  erefore, by  eorem 5,

there is a unique common random xed point of random
operators U and V, which is the unique stochastic solution of
NSIE. is completes the proof.

6. Conclusion

In this paper, we have the following:

eorem 5 is a random generalization of the main
result of [32] in a separable Banach space

Corollary 1 generalizes and improves ([36],
2.5) in the setting of Banach spaces

Corollary 4 is a random version of Banach contraction
principle in a separable Banach space

eorem 6 extends ([36], eorem 53) to
P1; Uy; ¢ -weakly contractive random operators
eorem 7 shows the utility of our main result in

solving a system of nonlinear stochastic integral
equations

eorem

is work will open the door for other deterministic
results that can be randomized, for example, [29].
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