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,e aim of this paper is to prove a common random fixed-point and some random fixed-point theorems for random weakly
contractive operators in separable Banach spaces. A randomMann iterative process is introduced to approximate the fixed point.
Finally, the main result is supported by an example and used to prove the existence and the uniqueness of a solution of a nonlinear
stochastic integral equation system.

1. Introduction

,e fixed-point theory has been revealed as a very pow-
erful and important tool in the study of different math-
ematical models expressed in the forms of differential
equations [1], integral equations [2, 3], fractional differ-
ential equations [4, 5], matrix equations [6], etc. Also, its
applications are very useful and interesting in economics,
in game theory, in computer science, and in other
domains.

Probabilistic functional analysis is one of the essential
mathematical disciplines that are applied to solving prob-
lems, characterized with uncertainties, known as probabi-
listic models. ,e random fixed-point theorems are
stochastic generalizations of classical fixed-point theorems
which are known as deterministic results and are required
for the theory of random equations, random matrices,
random partial differential equations, and various classes of
random operators.

,e theory of random fixed point was initiated by the
Prague School of Probability in the 1950s.,e random fixed-
point theory finds its roots in the work of Špaček [7] and
Hanš [8, 9]. ,ey established a stochastic generalization of
Banach contraction principle (BCP), and they applied their
results to study the existence of a solution of random linear
Fredholm integral equations. In 1976, Bharucha-Reid

published his review article [10] which has attracted the
attention of several researchers and which has led to the
development of random fixed-point theory. In 1979, Itoh
[11] extended Špaček’s and Hanš’s theorems to multivalued
contraction random mappings. ,e result obtained by Itoh
in [11] was applied to solve a random differential equation in
Banach space. In the recent past, random differential
equations and random integral equations have been solved
by random fixed-point theorems (see, for example, [12–16]).
For some important contributions in the random fixed-
point theory, we invite the reader to consult [17–25] and the
references therein.

It is necessary to mention that the BCP is the first
fundamental deterministic fixed-point theorem in a metric
space.

������� � (see [26]). If �X; d� is a complete metric space
and T: X � X is a self-mapping such that

d�Tx; Ty�� k d�x; y�; ���

for all x; y � X and k � �0; 1�, then T has a unique fixed
point.

Among the generalizations of this principle, we find the
following theorem established in 2001 by Rhoades.
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������� � (see [27]). If �X; d� is a complete metric space
and T: X � X is a self-mapping such that

d�Tx; Ty�� d�x; y� � ϕ�d�x; y��; ���

for all x; y � X, and ϕ: �0;��� �0;�� is a continuous
and nondecreasing function such that ϕ�t� � 0 if and only if
t � 0, then T has a unique fixed point.

Several interesting weak contractions were considered in
various frameworks (see, for example, [28–31] and refer-
ences therein). Among all these weak contractions, we are
interested in the one studied by Eslamian and Abkar in [32].
We state the result in the following.

������� 	 (see [32]). If �X; d� is a complete metric space
and T: X � X is a �ψ1;ψ2;φ�-weakly contractive self-
mapping, i.e.,

ψ1�d�T�x�; T�y����ψ2�d�x; y�� � φ�d�x; y��; for all x; y � X;

���

then T has a unique fixed point.Here, the three functions
ψ1;ψ2;φ: R� � R�, called control functions, satisfy the
following conditions:

(a) ψ1 and ψ2 are continuous
(b) φ is lower semicontinuous
(c) ψ1 is increasing
(d) For i � 1; 2f g, ψi�t� � 0 if and only if t � 0
(e) For all t � R�, φ�t� � 0 if and only if t � 0
(f ) For all t� 0, ψ1�t� � ψ2�t� � φ�t�� 0

In this study, we prove a common random fixed-point
theorem and some random fixed-point theorems for random
�ψ1;ψ2;φ�-weakly contractive operators in a separable
Banach space, where the three control functions ψ1;ψ2; and φ
satisfy all the conditions �a� � �f� except the condition (d)
which is replaced by the weak condition:

ψ2�t� � 0 if and only if t � 0: �	�

As an application, we show the existence and the
uniqueness of a random solution for a system of nonlinear
integral equations. To prove our main results, we need to
recall the following concepts and results. For more details,
the reader may consult [33, 34].

2. Preliminaries

Let �X; k:k� be a separable Banach space, βX be the σ-algebra
of all Borel subsets of X, and �
; β; μ� be a complete
probability measure space with the measure μ and β be the
σ-algebra of subsets of 
. Let C be a nonempty subset of X.

Definition 1 (see [33, 35]).

(i) A mapping x: 
 � X is said to be a random
variable with values in X if the inverse image under

the mapping x of every Borel set B ofX belongs to β,
that is, x� 1�B� � β for all B � βX

(ii) A mapping x: 
 � C is called a random variable
with values in C if x� 1�B�C� � β for all B � βX

Definition 2 (see [33, 34]).

(i) A mapping x: 
 � X is said to be a
finitely-valued random variable if it is constant on
each of a finite number of disjoint sets Ai � β and
equal to 0 on 
 � �� n

i�1Ai�.
(ii) A mapping x: 
 � X is said to be a simple

random variable if it is finitely valued.
(iii) A mapping x: 
 � X is said to be a strong (or

Bochner) random variable if there exists a sequence
�xn�n of simple random variables which converges
to x almost surely, that is, there exists a set A0 � β
with μ�A0� � 0 such that

lim
n��

xn�ω� � x�ω�
����

���� � 0 for everyω � 
 � A0:

��

Next, we introduce the notion of a weak random
variable.

Definition 3 (see [33]). A mapping x: 
 � X is said to be
a weak (or Pettis) random variable if the functions x��x� are
real-valued random variables for each x� � X�, where X�

denotes the first normed dual space of X.

Remark 1 (see [33]). In this work, we restrict our attention
to the case where X is a separable Banach space. In this
setting, the concept of weak and strong random variables is
equivalent.

,e following definition of the mode of convergence for
Banach space-valued random variables, which we use in the
sequel, is borrowed from [33].

Definition 4. Let �xn�n and x beX-valued random variables.
,e sequence �xn�n converges to x in 
 strongly almost
surely if there exists a set A0 � β with μ�A0� � 0 such that

lim
n��

xn�ω� � x�ω�
����

���� � 0 for anyω � 
 � A0: ���

We recall the following results from the study by Joshi
and Bose ([34], ,eorem 6.1.2).

������� 
� Let x and y be two strong random variables and
α and β be two constants. 9en, the following statements hold:

(i) αx � βy is a strong random variable
(ii) If f is a real-valued random variable and x is a

strong random variable, then fx is a strong random
variable

(iii) If �xn�n is a sequence of strong random variables
converging strongly to x almost surely, then x is a
strong random variable
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Definition 5 (see [35]).

(i) A mapping T: 
 � C � C is said to be random
operator if for each x � C, the mapping
T�:; x�: 
 � C is measurable

(ii) A random operator T: 
 � C � C is continuous if
the set of all ω � 
 for which T�ω; :� is continuous
has measure one

,roughout this paper, we denote RV�X� as the set of
all X� valued random variables and we adopt the following
definition of the random fixed point given by Joshi and Bose
in [34].

Definition 6. Let x � RV�X�. x is said to be a random fixed
point of T if

μ ω: T�ω; x�ω�� � x�ω�f g � 1: ���

3. Main Results

In this section, we prove a common random fixed-point
theorem and some random fixed-point theorems for
�ψ1;ψ2;φ�� weakly contractive mappings in a separable
Banach space.

Definition 7. Let �X; k:k� be a separable Banach space and
�
; β; μ� be a complete probability measure space. ,e
mapping T: 
 �X � X is called a �ψ1;ψ2;φ�-weakly
contractive random operator if T satisfies the following
inequality:

ψ1 T ω; x1�ω�(  � T ω; x2�ω�( 
����

����  �ψ2 x1�ω� � x2�ω�
����

����  � φ x1�ω� � x2�ω�
����

���� ; ���

almost surely, for all x1; x2 � RV�X�.

������� �� Let �X; k:k� be a separable Banach space, C be a
nonempty closed subset of X, and �
; β; μ� be a complete

probability measure space. Let T; S: 
 � C � C be two
continuous random operators satisfying

ψ1 T ω; x1�ω�(  � S ω; x2�ω�( 
����

����  �ψ2 x1�ω� � x2�ω�
����

����  � φ x1�ω� � x2�ω�
����

���� ; ���

almost surely, for all x1; x2 � RV�C�. 9en, there exists a
unique common random fixed point of S and T.

Proof. Let x0 � RV�C�. Let x1�ω� � S�ω; x0�ω�� and
x2�ω� � T�ω; x1�ω��. Since S and T are two continuous
random operators in a separable space, it follows that x1 and
x2 are in RV�C�. Now, consider the sequence defined, for
each n � N, by x2n�1�ω� � S�ω; x2n�ω�� and
x2n�2�ω� � T�ω; x2n�1; �ω��.

By induction, �xn�n is a sequence in RV�C�. Consider
the set A � X�Y such that

X � ω � 
: x � T�ω; x� is continuous onCf g;

Y � ω � 
: x � S�ω; x� is continuous onCf g:
����

For all y; z � RV�C�, we denote by Ey;z the set of el-
ements ω � 
 such that

ψ1�kT�ω; y�ω�� � S�ω; z�ω��k��ψ2�ky�ω� � z�ω�k� � φ�ky�ω� � z�ω�k�: ����

Let M � �
n�N�
�A�Exn;xn�1�. As stated, μ�A� � 1 and

μ�Exn;xn�1� � 1, for each n � N�. ,en, μ�M� � 1. Let ω � M.
For all n � N�, we have

ψ1 xn�1�ω� � xn�ω�
����

����  �ψ2 xn�ω� � xn� 1�ω�
����

����  � φ xn�ω� � xn� 1�ω�
����

���� : ����

,is implies that
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xn�1�ω� � xn�ω�k� kxn�ω� � xn� 1�ω�
����

����; for all n � N
�:
����

Indeed, let us assume that there exists n0 � N� such that

xn0�1�ω� � xn0�ω�k� kxn0�ω� � xn0� 1�ω�
�����

�����: ��	�

Since ψ1 is increasing, we get

ψ1 xn0�1�ω� � xn0�ω�
�����

�����  �ψ1 xn0�ω� � xn0� 1�ω�
�����

����� :

���

,en,

ψ1 xn0�1�ω� � xn0�ω�
�����

�����  �ψ2 xn0�ω� � xn0� 1�ω�
�����

�����  � φ xn0�ω� � xn0� 1�ω�
�����

����� ; ����

which is a contradiction. Hence, for all n � N�, we have

xn�1�ω� � xn�ω�k� kxn�ω� � xn� 1�ω�
����

����: ����

It follows that the sequence �kxn�1�ω� � xn�ω�k�n is
decreasing and consequently there exists l� 0 such that

lim
n��

xn�1�ω� � xn�ω�
����

���� � l: ����

Since

lim sup
n���

ψ1 xn�1�ω� � xn�ω�
����

���� 

� lim sup
n���

ψ2 xn�ω� � xn� 1�ω�
����

����  � φ xn�ω� � xn� 1�ω�
����

����  

� lim sup
n���

ψ2 xn�ω� � xn� 1�ω�
����

����  � lim inf
n���

φ xn�ω� � xn� 1�ω�
����

���� 

����

and by using the continuity of ψ1 and ψ2 and the lower
semicontinuity of φ, we obtain that ψ1�l��ψ2�l� � φ�l�,
which is a contradiction unless l � 0.

Hence,

lim
n��

xn�1�ω� � xn�ω�
����

���� � 0; for allω � M: ����

Now, fix ω in M and let us prove that �xn�ω��n is a
Cauchy sequence in C. For this, it is sufficient to show that
the subsequence �x2n�ω��n is a Cauchy sequence. If we
assume the contrary, then

�  � 0; �k � N; �mk � nk � k such that x2mk
�ω� � x2nk�ω�

�����

����� �  : ����

Furthermore, corresponding to nk, we can choose mk in
such a way that it is the smallest integer with mk � nk
satisfying

x2mk
�ω� � x2nk�ω�

�����

����� �  : ����

Consequently,

x2mk� 2�ω� � x2nk�ω�
�����

����� �  : ����

By using the triangular inequality, we obtain

� � x2mk
�ω� � x2nk�ω�

�����

����� � x2mk
�ω� � x2mk� 1�ω�

�����

����� � x2mk� 1�ω� � x2nk�ω�
�����

�����

� x2mk
�ω� � x2mk� 1�ω�

�����

����� � x2mk� 1�ω� � x2mk� 2�ω�
�����

�����

� x2mk� 2�ω� � x2nk�ω�
�����

�����

� x2mk
�ω� � x2mk� 1�ω�k � kx2mk� 1�ω� � x2mk� 2�ω�

�����

����� � �:

��	�
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Hence,

lim
k��

x2mk
�ω� � x2nk�ω�

�����

����� � ε: ���

Also,

x2mk
�ω� � x2nk�ω�

�����

����� � x2mk�1�ω� � x2mk
�ω�

�����

����� � x2mk�1�ω� � x2nk�ω�
�����

�����; ����

x2mk�1�ω� � x2nk�ω�
�����

����� � x2mk�1�ω� � x2mk
�ω�

�����

����� � x2mk
�ω� � x2nk�ω�

�����

�����: ����

Letting k � ��, we obtain

lim
k��

x2mk�1�ω� � x2nk�ω�
�����

����� � �: ����

By the same way, we have

x2mk
�ω� � x2nk� 1�ω�k� kx2nk� 1�ω� � x2nk�ω�k � kx2mk

�ω� � x2nk�ω�
�����

�����; ����

x2mk
�ω� � x2nk�ω�

�����

����� � x2nk� 1�ω� � x2nk�ω�
�����

����� � x2mk
�ω� � x2nk� 1�ω�

�����

�����: ����

,en,

lim
k��

x2mk
�ω� � x2nk� 1�ω�

�����

����� �  : ����

We have, for all k � N,

ψ1 kx2mk�1  ω� � x2nk�ω�k  � ψ1 S ω; x2mk
�ω�  � T ω; x2nk� 1�ω� 

�����

�����  �ψ2 x2mk
�ω� � x2nk� 1�ω�

�����

�����  � φ x2mk
�ω� � x2nk � 1�ω�

�����

����� :

����

By passing to the upper limit, we get
ψ1�ϵ��ψ2�ϵ� � φ�ϵ�, which is a contradiction since ϵ� 0.
,is shows that �x2n�ω��n  is a Cauchy sequence in C, for
each ω � M. Using (20), it is easy to check that �xn�ω��n is a
Cauchy sequence in C, for each ω � M.

SinceC is a closed subset of the Banach spaceX, thenC is
complete, which implies that, for all ω � M, the sequence
�xn�ω��n converges by norm in C. Let x: 
 � C be the
mapping such that x�ω� � lim

n���
xn�ω�, for each ω � M.

Since the sequence �xn�n converges strongly almost surely to
x, then, according to ([33], ,eorem 1.6), x is a C-valued
random variable.

Let ω � M. For all n � N, we have x2n�1 � S�ω; x2n�ω��
and x2n�2 � T�ω; x2n�1�ω��.

Since x�ω� � lim
n���

xn�ω� and by using the continuity
of S and T, we get S�ω; x�ω�� � T�w; x�ω�� � x�ω�, for each
ω � M.

Hence,

μ� ω � 
: S�ω; x�ω�� � T�w; x�ω�� � x�ω�f g� � 1: ����

It means that x is a common random fixed point of S and
T.

To prove the uniqueness of this common fixed point, let
y be another common random fixed point of S and T.
Consider the two sets

Fx � ω � 
: S�ω; x�ω�� � T�w; x�ω�� � x�ω�f g;

Fy � ω � 
: S�ω; y�ω�� � T�w; y�ω�� � y�ω� :
��	�

,en, μ�Fx �Fy �M� � 1. Let N � Fx �Fy �M. For
each ω � N, we have

ψ1�kx�ω� � y�ω�k� � ψ1�kT�ω; x�ω�� � S�ω; y�ω��k�

�ψ2�kx�ω� � �y�ω��k � φ�kx�ω� � y�ω��k�:
���

,is implies that kx�ω� � y�ω�k � 0. ,erefore, x � y al-
most surely. ,is proves the uniqueness of the common
random fixed point of S and T.
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If T � S in ,eorem 5, we obtain the following random
fixed-point theorem for �ψ1;ψ2;φ�-weakly contractive
random mapping. �

�������� �� Let �X; k:k� be a separable Banach space, C be a
nonempty closed subset of X, and �
; β; μ� be a complete
probability measure space. Let T: 
 � C � C be a con-
tinuous �ψ1;ψ2;φ�-weakly contractive random mapping.
9en, there exists a unique random fixed point of T.

Example 1. Let X � R2 with the norm 1 defined, for all
�x; y� � R2, as follows:

k�x; y�k1 � jxj �jyj: ����


 � �0; 1� and C � �0; 1� � �0; 1�. Let β be a σ-algebra of
Lebesgue measurable subsets of R2. Consider the three

functions ψ1;ψ2;φ: � �0;���� �0 ��� defined for all
t� 0 as follows:

ψ1�t� � t; ψ2�t� �
2t
3
and φ�t� �

t
6

if 0� t� 2

1 if t� 2

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

����

Consider the random operator T: 
 � C � C defined
by T�ω; x�ω�� � T�ω; x1�ω�; x2�ω��
� �x1�ω� � ω/3; x1�ω� � ω/3�, where ω � 
 and
x � �x1; x2� � RV�C�.

Let ω � 
. We have

ψ1 T ω; x1�ω�; x2�ω�(  � T ω; y1�ω�; y2�ω�( 
����

����1 

� T ω; x1�ω�; x2�ω�(  � T ω; y1�ω�; y2�ω�( 
����

����1;

�
x1�ω� � ω

3
;
x2�ω� � ω

3
  �

y1�ω� � ω
3

;
y2�ω� � ω

3
 

��������

��������1
;

�
x1�ω� � ω

3
�
y1�ω� � ω

3
;
x2�ω� � ω

3
�
y2�ω� � ω

3
 

��������

��������1
;

�
x1�ω� � y1�ω�

3
;
x2�ω� � y2�ω�

3
 

��������

��������1
;

�
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




3
:

����

ψ2 x1�ω�; x2�ω�(  � y1�ω�;y2�ω�( 
����

����1  � ψ2 x1�ω� � y1�ω� ; x2�ω� � y2�ω� ( 
����

����1 ;

� ψ2 x1�ω� � y1�ω�


 � x2�ω� � y2�ω�


 ;

� 2
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




3
:

φ x1�ω�;x2�ω�(  � y1�ω�;y2�ω�( 
����

����1  � φ x1�ω� � y1�ω� ; x2�ω� � y2�ω� ( 
����

����1 ;

� φ x1�ω� � y1�ω�


 � x2�ω� � y2�ω�


 ;

�
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




6
:

����

,en,
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ψ2 x1�ω�; x2�ω�(  � y1�ω�;y2�ω�( 
����

����1  � φ x1�ω�; x2�ω�(  � y1�ω�;y2�ω�( 
����

����1 

� 2
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




3
;

�
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




6
;

�
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




2
;

�
x1�ω� � y1�ω�


 � x2�ω� � y2�ω�




3
:

�	��

Consequently, for all x � �x1;x2�; y � �y1;y2� � RV
�C� and for each ω � 
,

ψ1 kT�ω; x�ω�� � T�ω; y�ω��k1(  �ψ2kx�ω� � y�ω�k1(  � φ kx�ω� � y�ω�k1( : �	��

All conditions of Corollary 1 are satisfied and T has a
random fixed point which is

x: ω �
ω
2

;
ω
2

 : �	��

In Corollary 1, if ψ1�t� � ψ2�t� � t, for all t� 0, we
obtain the following corollary which is an improvement of
([36], ,eorem 5.2) in a separable Banach space.

�������� �� Let �X; k:k� be a separable Banach space, C be a
nonempty closed subset of X, and �
; β; μ� be a complete
probability measure space. Let T: 
 � C � C be a con-
tinuous random operator satisfying

T ω; x1�ω� � T ω; x2�ω�( ( 
����

���� � x1�ω� � x2�ω�
����

���� � φ x1�ω� � x2�ω�
����

���� ; �	��

almost surely, for all x1; x2 � RV�C�. 9en, there exists a
unique random fixed point of T.

In Corollary 1, if ψ1 � ψ2, we obtain the following
random fixed-point theorem for �ψ;φ�-weakly contractive
random mapping.

�������� 	� Let �X; k:k� be a separable Banach space, C be a
nonempty closed subset of X, and �
; β; μ� be a complete
probability measure space. Let T: 
 � C � C be a con-
tinuous random operator satisfying the following condition:

ψ T ω; x1�ω�(  � T ω; x2�ω�( 
����

����  �ψ x1�ω� � x2
����

�����ω�  � φ x1�ω� � x2�ω�
����

���� ; �		�

almost surely, for all x1; x2 � RV�C�. 9en, there exists a
unique random fixed point of T.

In Corollary 1, if ψ1�t� � t and �ψ2 � φ��t� � kt, for all
t� 0 and for some k � �0; 1�, we obtain the following ran-
dom fixed-point theorem for Banach’s contraction.

�������� 
� Let �X; k:k� be a separable Banach space, C be a
nonempty closed subset of X, and �
; β; μ� be a complete
probability measure space. Let T: 
 � C � C be a con-
tinuous random operator satisfying the following condition:

T ω; x1�ω�(  � T ω; x2�ω�( 
����

���� � k x1�ω� � x2�ω�
����

����; �	�

almost surely, for all x1; x2 � RV�C� and k � �0; 1�. 9en,
there exists a unique random fixed point of T.

4. Random Mann Iteration Scheme

In the following, we investigate the convergence of random
Mann iteration scheme applied to a �ψ1;ψ2;φ�-weakly
contractive random operator.
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Definition 8. (random Mann iteration scheme [35]). Let
T: 
 � C � C be a random operator, where C is a non-
empty convex subset of a separable Banach space X. A
random Mann iteration scheme is the sequence of C-valued
random variables �xn�n defined, for all ω � 
, by

xn�1�ω� � 1 � cn( xn�ω� � cnT ω; xn�ω�( ; for all n � N

x0: 
 � C is an arbitrarymeasurablemapping
 ;

�	��

where 0� cn � cn�1 � 1 and 0� lim
n��

cn � c� 1, for all n � N.
In particular, if cn � 1, for all n � N, the sequence �xn�n is

said to be a random Picard iteration scheme.

������� �� Let �X; k:k� be a separable Banach space, C be a
nonempty closed convex subset of X, and �
; β; μ� be a
complete probability measure space.

Let T: 
 � C � C be a continuous �ψ1;ψ2;φ�-weakly
contractive random operator. Assume that ψ1 is convex.
,en, the following two statements hold:

(i) ,ere exists a unique random fixed point
x: 
 � C of T

(ii) ,e random Mann iteration scheme converges
strongly almost surely to the unique random fixed
point x of T

Proof

(i) FromCorollary 1,T has a unique random fixed point
x: 
 � C. Consider the set
F � ω � 
: T�ω; x�ω�� � x�ω�f g. ,en, μ�F� � 1.

(ii) Consider the set A � ω � 
: x � T�ω; x�f
is continuous on Cg.

Let Ex1 ;x2 be the set of elements ω � 
 such that

ψ1 kT ω; x1�ω�( (  � T ω; x2�ω�( k�ψ2 x1�ω� � x2�ω�
����

���� � φ x1�ω� � x2�ω�
����

���� : �	��

As stated, μ�M� � 1, where M � �
n�N
�Exn;xn�1 �A�F�.

Let ω � M. We claim that, for all n � N,

T ω; xn�ω�(  � T�ω; x�ω��
����

���� � xn�ω� � x�ω�
����

����: �	��

Indeed, let us assume that there exists n0 � N such that

xn0�ω� � x�ω�
�����

����� � T ω; xn0�ω�  � T�ω; x�ω��
�����

�����: �	��

Since ψ1 is increasing, we get

ψ1 xn0�ω� � x�ω�
�����

�����  �ψ1 T ω; xn0�ω�  � T�ω; x�ω��
�����

����� 

�ψ2 xn0�ω� � x�ω�
�����

�����  � φ kxn0�ω� � x�ω�k :

���

,is is a contradiction, since for each t� 0,
ψ1�t� � ψ2�t� � ϕ�t�� 0.Hence, for all n � N,

T ω; xn�ω�(  � T�ω; x�ω��
����

���� � xn�ω� � x�ω�
����

����: ���

,en, for all n � N,

xn�1�ω� � x�ω�
����

���� � T ω; xn�ω�(  � T�ω; x�ω��
����

����

� xn�ω� � x�ω�
����

����:
���

It follows that the sequence �kxn�ω� � x�ω�k�n is de-
creasing and consequently there exists l� 0 such that

lim
n��

xn�ω� � x�ω�
����

���� � l: ���

Since �xn�n is a randomMann iteration scheme, we have, for
all n � N,

xn�1�ω� � x�ω�
����

���� � 1 � cn( xn�ω� � cnT ω; xn�ω�(  � x�ω�
����

����

� 1 � cn( xn�ω� � cnT ω; xn�ω�(  � 1 � cn( x�ω� � cnx�ω�
����

����

� 1 � cn(  xn�ω� � x�ω�
����

���� � cn T ω; xn�ω�(  � x�ω�
����

����:

�	�

,en,

xn�1�ω� � x�ω� � 1 � cn( 
����

����xn�ω� � x�ω� �cn
����

����T ω; xn�ω�(  � T�ω; x�ω��
����

����: ��

Since ψ1 is nondecreasing and convex,
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ψ1 xn�1�ω� � x�ω�
����

����  � 1 � cn( ψ1 xn�ω� � x�ω�
����

����  � cnψ1 T ω; xn�ω�(  � T�ω; x�ω��
����

���� : ���

ψ1 xn�1�ω� � x�ω�
����

����  � 1 � cn( ψ1 xn�ω� � x�ω�
����

����  � cnψ2 xn�ω� � x�ω�
����

���� 

� cnφ kxn�ω� � x�ω�k( :
���

,en,
By passing to the upper limit, we obtain

ψ1�l�� �1 � c�ψ1�l� � cψ2�l� � cφ�l�: ���

,en,

ψ1�l��ψ2�l� � φ�l�: ���

,is is a contradiction, since for each t� 0,
ψ1�t� � ψ2�t� � ϕ�t�� 0. ,en, l � 0.

,en, for all ω � M,

lim
n��

xn�ω� � x�ω�
����

���� � 0: ����

Consider the set

L � ω � 
: lim
n��

xn�ω� � x�ω�
����

���� � 0 : ����

Since M�L and μ�M� � 1, then μ�L� � 1. ,is shows
that the sequence �xn�n of the C-valued random variable
converges strongly almost surely to the unique random fixed
point x. �

5. Applications toNonlinear Stochastic Integral
Equations System

In this section, we give an application of ,eorem 5 to show
the existence and the uniqueness of a solution of a nonlinear
stochastic integral equations system (NSIE) presented as
follows:

x�t;ω� � h�t;ω� � 
R
k�t; s;ω�f�s; y�s;ω��dλ�s�;

�N:S:I:E�

y�t;ω� � h�t;ω� � 
R
k�t; s;ω�g�s; x�s;ω��dλ�s�;

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

����

where we have the following:

(a) R is the locally compact real space with the usual
norm of reals and λ is the Lebesgue measure on R

(b) ω � 
, where 
 is the supporting set of the prob-
ability measure space �
; β; μ�

(c) For all t � R, x�t; :� and y�t; :� are two unknown
elements in RV�R�

(d) h�t;ω� is the stochastic free term defined for t � R

(e) k�t; s;ω� is the stochastic kernel defined for t and s in
R

(f ) f and g are two real-valued functions

Remark 2 (see [37]). ,e topological spaceR is the union of
a countable family of compact subsets Kn  having the
properties thatKn � Kn�1 and that for any other compact set
in R, there is a Ki which contains it.

Let C�R; L2�
; β; μ�� be the space of all continuous
functions from R into the space L2�
; β; μ� with the to-
pology of uniform convergence on compact sets of R. Note
thatC�R; L2�
; β; μ�� is a locally convex space (see [38]) and
so it can be endowed with a topology induced by a countable
family of seminorms k:kn n�N defined by kxkn � supt�Kn

kx
�t; :�kL2�
;β;μ�, for each n � N and x � C�R; L2�
; β; μ��.

Here,

jkx�t; :�kj2L2�
;β;μ� � 


jx�t;ω�j2dμ�ω�� �: ����

Note that furthermore, since L2�
; β; μ� is complete,
C�R; L2�
; β; μ�� is complete with respect to this topology.

We assume that, for each pair �t; s�,
k�t; s; :� � L��
; β; μ� and denote the norm in L��
; β; μ�
by

kjk�t; s; :�k � kk�t; s; :�kL��
;β;μ� � μ � ess sup
ω�

jk�t; s;ω�:

��	�

Also, we suppose the following:

(i) For almost all s � R, the function t� k�t; s; :� is
continuous from R into L��
; β; μ�

(ii) ,e function s� kk�t; s; :�k:kx�s; :�kL2�
;β;μ� is
λ-integrable, for each x in C�R; L2�
; β; μ�� and
almost all t � R

(iii) ,ere exists a real-valued function G defined λ-a.e.
on R, such that G�s�kx�s; :�kL2�
;β;μ� is λ-integrable
and for each pair �t; s; u� � R3,

kk�t; u; :� � k�s; u; :�kj:kx�u; :�kL2�
;β;μ��G�u�kx�u; :�kL2�
;β;μ� λ � a:e: ���
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Consider a random operator T defined on

 � C�R; L2�
; β; μ�� such that, for all
x � C�R; L2�
; β; μ�� and t � R,

T�ω�x�t;ω� � 
R
k�t; s;ω�x�s;ω�dλ�s�; a:s in
: ����

However, for each t � R, the function
s� k�t; s; :�k:kx�t; :�kL2�
;β;μ� is λ-integrable; then,
T�ω�x�t; :� � L2�
; β; μ� a.s. From (iii) and by using Leb-
esgue’s dominated convergence theorem, t�T�ω�x�t; :�
is a continuous in mean square, so
T�ω�x � C�R; L2�
; β; μ�� a.s.

Let B andD be two Banach spaces.,e pair �B;D� is said
to be admissible with respect to the linear operator T if
T�ω��B� � D a.s.

����� � (see [39]).

(1) 9e linear operator T�ω� is continuous from
C�R; L2�
; β; μ�� into itself a.s.

(2) If B;D � C�R; L2�
; β; μ�� are two Banach spaces
stronger than the space C�R; L2�
; β; μ�� such that
�B;D� is admissible with respect toT�ω�, thenT�ω� is
continuous from B to D a.s.

Definition 9. By a random solution of NSIE, we will mean a
pair of functions �x; y� in �C�R; L2�
; β; μ���

2 which sat-
isfies the two equations of NSIE μ-a.e.

Let ω � 
. We consider the two functions
F; G: C�R; L2�
; β; μ��� C�R; L2�
; β; μ�� defined, for
each t � R and ω � 
, by Fx�t;ω� � f�t; x�t;ω�� and
Gx�t;ω� � g�t; x�t;ω��:

Let ρ be a positive real number. Consider the ball is
centered on 0 and the neutral element in D is

M�ρ� � x � D: kxkD � ρ : ����

������� �� 9e following conditions hold:

(1) B and D are Banach spaces stronger than
C�R; L2�
; β; μ�� so that �B;D� is admissible by
respect to the integral operator imposed by (66).

(2) 9e functions F and G maps from M�ρ� into B and
there exists three control functions ψ1, ψ2, and φ such
that for any x1; x2 � M�ρ�,

ψ1 Fx1 � Gx2
����

����B  �ψ2 x1 � x2
����

����D  � φ x1 � x2
����

����D :

����

(3) h � D.
(4) c�ω� � �0; 1� a.s. and

khkD � c�ω�kG0kB � ρ�1 � c�ω��

a:s:;

khkD � c�ω�kF0kB � ρ�1 � c�ω��

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

����

where the norm of T�ω� is denoted by c�ω�.

,en, if the above conditions hold, systemNSIE admits a
unique solution in �M�ρ��2.

Proof. Consider the mappings U;V: 
 �M�ρ�� D such
that for all x � M�ρ�,

U�ω�x�t;ω� � h�t;ω� � 
R
k�t; s;ω�f�s; x�s;ω��dλ�s� a:s: ����

V�ω�x�t;ω� � h�t;ω� � 
R
k�t; s;ω�g�s; x�s;ω��dλ�s� a:s: ����

Let x � M�ρ�. Since

kU�ω�xkD � khkD � c�ω�kFxkB a:s:

� khkD � c�ω�kG0kB � c��ω��kFx � G0kB a:s:

� khkD � c�ω�kG0kB � c�ω�kxkD a:s:

� khkD � c�ω�kG0kB � c�ω�ρ a:s:

� ρ�1 � c�ω�� � c�ω�ρ� ρ a:s:;

����

then U�ω�x � M�ρ� a.s. By the same argument, we prove
that V�ω�x � M�ρ� a:s:

Let x1; x2 � M�ρ�. We have

U�ω�x1 � V�ω�x2
����

����D� c�ω� Fx1 � Gx2
����

����B� Fx1 � Gx2
����

����B a:s: ����

,en,
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ψ1 U�ω�x1 � V�ω�x2
����

����D  �ψ1 Fx1 � Gx2
����

����B 

�ψ1 x1 � x2
����

����D  � φ x1 � x2
����

����D  a:s:;
��	�

which shows that U�ω� and V�ω� are �ψ1;ψ2;φ�-weakly
contractive mappings almost surely onM�ρ�. ,en, the two
operators U;V: 
 �M�ρ�� M�ρ� are �ψ1;ψ2;φ�-weakly
contractive random operators. ,erefore, by ,eorem 5,
there is a unique common random fixed point of random
operatorsU andV, which is the unique stochastic solution of
NSIE. ,is completes the proof. �

6. Conclusion

In this paper, we have the following:

,eorem 5 is a random generalization of the main
result of [32] in a separable Banach space
Corollary 1 generalizes and improves ([36], ,eorem
2.5) in the setting of Banach spaces
Corollary 4 is a random version of Banach contraction
principle in a separable Banach space
,eorem 6 extends ([36], ,eorem 5.3) to
�ψ1;ψ2; ϕ�-weakly contractive random operators
,eorem 7 shows the utility of our main result in
solving a system of nonlinear stochastic integral
equations

,is work will open the door for other deterministic
results that can be randomized, for example, [29].
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