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Let L be a topologically simple L∗-algebra of arbitrary dimension. In this paper, we introduce the notion of semi-inner
biderivation in order to prove that every continuous commuting linear mapping onL is a scalar multiple of the identity mapping.

1. Introduction

Let (L, [., .]) be a Lie algebra over a field F of a characteristic
different from two. A linear map D: L⟶L is called
derivation on (L, [., .]) if it satisfies the following identity:

D([x, y]) � [D(x), y] +[x, D(y)], (1)

for all x, y ∈L.
A bilinear map δ: L × L⟶L is called biderivation

on (L, [., .]) if it satisfies the following identities:

δ([x, y], z) � [x, δ(y, z)] +[δ(x, z), y],

δ(x, [y, z]) � [δ(x, y), z] +[y, δ(x, z)].
(2)

For all x, y, z ∈L, which means that it is a derivation
with respect to both components. In addition, if
δ(x, y) � −δ(y, x), δ will be called skew-symmetric bider-
ivation. Let λ ∈ F and f be the bilinear map
f: L × L⟶L sending (x, y) to λ[x, y]; it is straight-
forward to prove that f is a biderivation of (L, [., .]); and
the biderivations of this type are called inner biderivations of
(L, [., .]). A linear map ϕ: L⟶L is called a commuting
linear map on (L, [., .]) if it satisfies the following identity:
[ϕ(x), x] � 0, for all x ∈L. It is easy to show that

[ϕ(x), y] � [x, ϕ(y)], ∀x, y ∈L, (3)

which implies that the bilinear map δ defined by

δ(x, y) � [ϕ(x), y] � [x, ϕ(y)], (4)

is a skew-symmetric biderivation on (L, [., .]).
Commuting maps and biderivations arose first in the

associative ring theory [1, 2]. Since then, many authors have
made considerable efforts to make their study very successful
(see, for example, [3–10]). )e way used in [8] requires the
finiteness of the dimension of the simple Lie algebra.
However, the purpose of this paper is to extend the results
given in [8] concerning the commuting linear maps to to-
pologically simple L∗-algebras, which are of arbitrary di-
mension. To overcome the problem of the nonfiniteness of
the dimension, we use some techniques related to these
algebras. )e L∗-algebras are introduced by Schue in [11].
We recall that anL∗-algebra over C (the complex field) is a
Lie algebraL, which is also a complex Hilbert space with the
inner product (., .) endowed with a (conjugate-linear) al-
gebra involution ∗ such that ([x, y], z) � (y, [x∗, z]), for all
x, y, z in L.

Let L be an L∗-algebra; for subsets M and N of L, we
recall that [M, N] denotes the closed subspace spanned by
[m, n]: m ∈M, n ∈ N{ }. L is said to be semisimple as an
L∗-algebra if and only if L � [L,L]. From [11], a finite-
dimensional Lie algebraL is semisimple as anL∗-algebra if
and only if it is semisimple in the usual sense. )e
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L∗-algebraL will be called topologically simple if and only
if there are no nontrivial closed ideals. In [11], the author
shows that the L∗-algebras are reductive, the semisimple
ones are the Hilbert space direct sum of its closed topo-
logically simple ideals, and the author also gives the clas-
sification of the topologically simple L∗-algebras in the
separable case. )e classification of the topologically simple
L∗-algebras in the arbitrary dimensional case can be found
in [12]. In [13], Schue shows that every semisimple
L∗-algebra has a Cartan decomposition relative to a Cartan
subalgebra. We recall that a Cartan subalgebra of a semi-
simple L∗-algebra is defined as a maximal self-adjoint
abelian subalgebra.

)e paper is organized as follows. In the second section,
we give some definitions and basic results related to
L∗-algebras. In Section 3, we introduce the notion of semi-
inner biderivation in order to show that every semi-inner
biderivation on an arbitrary dimensional topologically
simple L∗-algebra is inner; using this result, we determine
all continuous commuting linear maps on an arbitrary di-
mensional topologically simple L∗-algebras.

2. Preliminaries

In this section, we summarize some basic results related to
L∗-algebras, collected from [14, 15]. First of all, we point out
that the notation concerning Lie algebras follows principally
from [8, 14]. Let C be the complex numbers field, L a
semisimple L∗-algebra, H a fixed Cartan subalgebra of L,
and − denotes the conjugation operator on C, a root of L
relative to H is a linear form commuting with the involution:

α: (H, ∗ )⟶ C,
−

( ). (5)

)at is, α(h∗) � α(h) for any h ∈ H, such that there
exists vα ∈L, vα ≠ 0 satisfying [h, vα] � α(h)vα for any
h ∈ H. )e subspace

Vα � vα ∈L: h, vα  � α(h)vα for all h ∈ H , (6)

is called the root space associated to α; it follows from this
that if α is a root, then −α is also one and (Vα)∗ � V−α. )e
root space associated to the zero root is equal to the Cartan
subalgebra H, using the Jacobi identity; one proves that if
α + β is a root, then [Lα,Lβ]⊆Lα+β, and if α + β is not a
root, then [Lα,Lβ] � 0. Let Φ denote the set of nonzero
roots of L relative to H, then we have the following Cartan
decompositionL � H⊕ (α∈Φ ⊕Vα), where ⊕ is the usual
Hilbert space direct sum.

Let α be a root of L relative to H, then α is a linear
functional on H; this implies that there exists a unique vector
hα ∈ H such that α(h) � (h, hα) where (., .) denotes the
inner product of L. Consequently, hα is self-adjoint, which
means that h∗α � hα and hα � [vα, v∗α] for any vα ∈Vα with
‖vα‖ � 1. )en, we have the following result.

Lemma 1 (see [15]). )e set hα: α ∈ Φ  is total in H, i.e., for
any h ∈ H, (h, hα) � 0 for all hα, implies h � 0.

LetH be a Hilbert space, the orthogonal dimension ofH
is denoted by dimH, i.e., the cardinality of an orthonormal

basis forH. We will denote the cardinality of an arbitrary set
E by |E|.

Now, we will define the root system relative to a Cartan
subalgebra of the semisimple L∗-algebra L.

Definition 1. LetL be a semisimpleL∗-algebra, H a Cartan
subalgebra ofL, andΦ the set of nonzero roots ofL relative
to H. A subsetΦ0 ofΦ will be called a root system ofΦ if the
following conditions are satisfied:

(i) If α ∈ Φ0, then −α ∈ Φ0
(ii) If α, β ∈ Φ0, such that α + β ∈ Φ, then α + β ∈ Φ0
We need some further notations; R and Q will refer to

the real and the rational fields, respectively. For a subsetS of
Φ, the set of all C-linear combinations of elements of S will
be denoted by SpCS � SpS and the set of all Q-linear
combinations of elements of S by SpQS. If we write
(Sp)Ŝ � SpS∩Φ, then (Sp)Ŝ is obviously a root system.
)e following results will be useful in our main proofs.

Lemma 2. LetL be a topologically simpleL∗-algebra andΦ
the set of its nonzero roots relative to some Cartan subalgebra
H. For any subset S of Φ, there exists a topologically simple
L∗-subalgebra LS of L, with Cartan subalgebra HS, such
that

(i) S⊆ΦS, where ΦS is the set of roots of LS (relative to
HS) and ΦS � (Sp)Ŝ � SpQS∩Φ

(ii) LS is finite-dimensional if S is finite
(iii) LS is infinite-dimensional and dimLS � |S| if S is

infinite

Proof. See Proposition 3 in [14]. □

Definition 2. Let L be a topologically simple L∗-algebra
and Φ the set of nonzero roots relative to a Cartan sub-
algebra H. Let α, β ∈ Φ; we say that α is connected to β if
there are some c1, c2, . . . , ck ∈ Φ such that α + c1, c1+

c2, . . . , ck + β ∈ Φ∪ 0{ }.
Obviously, the connected relation is an equivalence

relation on Φ.

Lemma 3. Any two roots of a topologically simple L∗-al-
gebra are connected.

Proof. Let S � β1, βl  ⊂ Φ, then by Lemma 2 there exists a
finite-dimensional simpleL∗-algebraLS ofL, with Cartan
subalgebra HS, such that β1 and βl are roots of LS. Using
Lemma 1.3 in [8], we obtain that β1 and βl are connected in
LS. Since ΦS ⊂ Φ, then β1 and βl are connected in L. □

3. Semi-Inner Biderivations on L∗-Algebras
and Commuting Linear Maps on
Topologically Simple L∗-Algebras

In this section, we introduce the notion of semi-inner
biderivation in order to show that every continuous com-
muting linear map on a topologically simple L∗-algebra L
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is a scalar multiple of the identity mapping. )e aim of the
first main theorem of this section is to prove that every semi-
inner biderivation of a topologically simple L∗-algebra is
inner. To get this result, we have to show two lemmas.

Definition 3. LetL be anL∗-algebra andf: L × L⟶L

a biderivation ofL; f is said to be a semi-inner biderivation
ofL if there exists two continuous linear maps ϕ: L⟶L

and ψ: L⟶L such that

f(x, y) � [ϕ(x), y] � [x,ψ(y)], ∀x, y ∈L, (7)

where f will be denoted by fϕ,ψ .

Remark 1. By using Lemma 2.1 in [8], any biderivation of a
finite-dimensional simple complex Lie algebra is semi-inner
(a linear map between two finite-dimensional vector spaces
is continuous).

From now on, L will represent an infinite-dimensional
topologically simpleL∗-algebra of arbitrary dimension and
L � H⊕ (α∈Φ ⊕Vα) where its Cartan decomposition is
relative to a Cartan subalgebra H (Φ is the set of nonzero
roots relative to H).

Lemma 4. Let fϕ,ψ: L × L⟶L be a semi-inner bider-
ivation of L, then for any h ∈ H, we have ϕ(h),ψ(h) ∈ H.

Proof. For any α ∈ Φ+, we select xα ∈Vα, such that
‖xα‖ � 1, x∗α � x−α ∈V−α, and h ∈ H. )en, we have

xα, x−α  � hα,

hα, xα  � α hα( xα,

hα, x−α  � −α hα( x−α.

(8)

Let α ∈ Φ, we denote by Φα the set Φ\ α, −α{ }. Let

ϕ hα(  � a1h1 + a2xα + a3x−α + 

β∈Φα

kβxβ,
(9)

ϕ xα(  � b1h2 + b2xα + b3x−α + 

β∈Φα

tβxβ,
(10)

ϕ x−α(  � c1h3 + c2xα + c3x−α + 

β∈Φα

tβxβ,
(11)

ψ hα(  � s1h4 + s2xα + s3x−α + 

β∈Φα

mβxβ,
(12)

ψ xα(  � p1h5 + p2xα + p3x−α + 

β∈Φα

nβxβ,
(13)

ψ x−α(  � q1h6 + q2xα + q3x−α + 

β∈Φα

rβxβ.
(14)

For some ai, bi, ci, si, pi, qi, kβ, tβ, lβ, mβ, nβ, rβ ∈ C, the
sums are orthogonal, i � 1, 2, 3, β ∈ Φα, and hj ∈ H,
j � 1, 2, . . . , 6.

By equations (10) and (14), we have

f hα, xα(  � ϕ hα( , xα  � a1α h1( xα − a3hα

+ 

β∈Φα

kβ xβ, xα ,

f hα, xα(  � hα,ψ xα(   � α hα( p2xα − α hα( p3x−α

+ 

β∈Φα

mββ hα( xβ.

(15)

If we compare the two equations above and
[xβ, xα] ∈ Lα+β ≠H since β ∈ Φα, we obtain a3 � 0. In the
same way, by considering f(hα, x−α) with equations (10) and
(14), a2 � 0. Similarly, considering the images f(xα, hα) and
f(x−α, hα), we obtain s2 � s3 � 0, by equations (11)–(13).

If we put a1h1 � h
α ∈ η and s1h4 � h

⌣α
∈ η, then equa-

tions (9) and (12) can be written as follows:

ϕ hα(  � h
α

+ 

β∈Φα

kβxβ,
(16)

ψ hα(  � h
⌣α

+ 

β∈Φα

mβxβ.
(17)

Now, for any root c ∈ Φα, the setΦ\ α, −α, c, −c  is
denoted by Φα,c. By equations (16) and (17), we can write

ϕ hα(  � h
α

+ kcxc + k−cx−c + 

β∈Φα,c

kβxβ,

ψ hc  � h
⌣c

+ μαxα + μ−αx−α + 

β∈Φα,c

μβxβ.
(18)

)e two equations above imply that

f hα, hc  � ϕ hα( , hc  � −c hc kcxc + c hc k−cx−c

− 

β∈Φα,c

kββ hc xβ,

f hα, hc  � hα,ψ hc   � α hα( μαxα − α hα( μ−αx−α

+ 

β∈Φα,c

μββ hα( xβ.

(19)
By comparing, one has kc � k−c � μα � μ−α � 0. Due to

the arbitrariness of c, we obtain φ(hα) � h
α ∈ H and

ψ(hα) � h
⌣α
∈ H. By Lemma 1, the set hα, α ∈ Φ  is total in

H and ϕ and ψ are continuous, and we have ϕ(H) ⊂ H and
ψ(H) ⊂ H. □

Lemma 5. Let fϕ,ψ: L × L⟶L be a semi-
inner biderivation of L, then there is a complex number λ
such that
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ϕ(x) � ψ(x) � λx, ∀x ∈Lα, α ∈ Φ. (20)

Proof. Let h ∈ H and α, c ∈ Φ such that α≠ c, then we have

f xα, h(  � ϕ xα( , h  � − h,ϕ xα(  , (21)

f xα, h(  � xα,ψ(h)  � − ψ(h), xα  � −α(ψ(h))xα. (22)

Let
ϕ xα(  � h

α
+ 

β∈Φ
tβxβ,

(23)

where tβ ∈ C and h
α ∈ H. Using equations (21) and (23), we

obtain
f xα, h(  � − 

β∈Φ
tββ(h)xβ.

(24)

Combining equations (22) and (24), we obtain tαα(h) �

α(ψ(h)) and tββ(h) � 0 for every β ∈ Φ\ β .
For any β ∈ Φ\ α{ }, if we replace h by hβ in equation (24),

we get tβ � 0; this implies that

ϕ xα(  � tαxα + h
α
,

α(h)tα � α(ψ(h)).
(25)

)e image of f(h, xα) is computed. Similarly, we get

ψ xα(  � kαxα + h
⌣α

,

α(h)kα � α(ϕ(h)),
(26)

where kβ ∈ C and h
⌣α
∈ H.

For any α, β ∈ Φ, using equations (25) and (26), we have

f xα, xβ  � ϕ xα( , xβ  � tα xα, xβ  + β h
α

 xβ, (27)

f xα, xβ  � xα,ψ xβ   � kβ xα, xβ  − α h
⌣β

 xα. (28)

By combining equations (27) with (28), we first see that
β(h

α
) � α(h

⌣β
) � 0 if α≠ β. However, −α(h

α
) � α(h

⌣
− α) � 0

by taking β � −α. )is means that β(h
α
) � 0 for all β ∈ Φ,

i.e., h
α ∈ ∩ β∈Φ ker β, which gives h

α
� 0. Similarly, by taking

α � −β, we have h
⌣β

� 0. )erefore, by equations (25) and
(26), one can obtain

ϕ xα(  � tαxα,

ψ xα(  � kαxα.
(29)

Using equation (29) and f(xα, x−α) � [ϕ(xα), x−α] �

[xα,ψ(x−α)], it follows that

tα � k−α, ∀α ∈ Φ. (30)

)en, comparing equations (27) with (28), we obtain

tα � kβ, for α + β ∈ Φ. (31)

Let S � α{ }⊆Φ, then by Lemma 2 there exists a finite-
dimensional simple L∗-algebra LS of L, with Cartan

subalgebra HS, such that α is a root ofLS. Now, let us prove
that fϕ,ψ(LS × LS)⊆LS indeed; let x, y ∈LS, then
x � hx + β∈ΦS

xβ and y � hy + c∈ΦS
yc.

fϕ,ψ(x, y) � [ϕ(x), y] � 
c∈ΦS

ϕ hx( , yc  + 
β∈ΦS

tβxβ, hy 

+ 
β∈ΦS


c∈ΦS

tβxβ, yc .

(32)

)en, fϕ,ψ╱LS × LS is a biderivation of LS; by )eo-
rem 2.4 in [8], there exists μ ∈ C such that fϕ,ψ(x, y) �

μ[x, y] for any x, y ∈LS. )en, μ[xβ, y] �

tβ[xβ, y] � −kβ[y, xβ] for any β ∈ ΦS and y ∈LS; this
implies that

tα � t−α � kα � k−α � μ, for arbitrary α ∈ Φ. (33)

Equations (30)–(33) imply that if α, β ∈ Φ such that
α + β ∈ Φ∪ 0{ } , then tα � kβ � tβ � kα. Additionally, for
arbitrary connected roots α, β ∈ Φ, tα � kβ � tβ � kα, from
Lemma 3, we conclude that

tα � tα′ � kβ � kβ′ , ∀α, α′, β, β′ ∈ Φ. (34)

If we pose tα � λ in equation (34), we get our result. □

Remark 2. In the above proof, there is another method to
show that tc � 0 if c≠ α: Indeed, using equation (23), we
have

f xα, hc , xc  � − hc,ϕ xα(  , xc  � − ϕ xα( , h
∗
c , xc  

� h
α

+ 
β∈Φ

tβxβ, c h
∗
c xc

⎛⎝ ⎞⎠

� tcc h
∗
c  xc, xc .

(35)

We also have (f(xα, hc), xc) � (−α(ψ(hc))xα, xc) � 0.
)en, tc � 0 if c≠ α.

Remark 3. In the case where L is separable, )eorem 2 in
[16] will facilitate some difficulties encountered in the above
proof (the above proof will look like the proof of Lemma 2.2
in [8]).

)anks to the above Lemmas, we can state our first main
theorem.

Theorem 1. Let L be a topologically simple L∗-algebra.
)en, f is a semi-inner biderivation of L if and only if it is
inner, i.e., there is a complex number λ such that
f(x, y) � λ[x, y].

Proof. Let L be a topologically simple L∗-algebra, any
inner biderivation f of L such that f(x, y) � λ[x, y] is a
semi-inner biderivation fϕ,ψ with

ϕ � ψ � λidL. (36)

Now, let us prove the “only if direction.”
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)e first case: if L is finite-dimensional, the result
follows from )eorem 2.4 in [8]. )e second case: if L is
infinite-dimensional, then, for fϕ,ψ a semi-inner bider-
ivation of L, by using Lemma 5, there is λ ∈ C such that
ϕ(x) � ψ(x) � λx,∀x ∈ Lα, α ∈ Φ. For any h ∈ H and
α ∈ Φ, we have f(h, xα) � [ϕ(h), xα] � [h,ψ(xα)]. )is
implies that α(ϕ(h))xα � λα(h)xα which means that

α(λh − ϕ(h)) � 0, ∀α ∈ Φ, (37)

this implies ϕ(h) � λh for all h ∈ H. For any x, y ∈ L, with
x � h + α∈Φlαxα, where lα ∈ C, with lα � 0 except for a
countable number. )erefore,

f(x, y) � [ϕ(x), y] � 
α∈Φ

lαϕ xα(  + ϕ(h), y⎡⎣ ⎤⎦

� 
α∈Φ

lαλxα + λh, y⎡⎣ ⎤⎦ � [λx, y].

(38)

In recent years, many authors have studied commuting
linear maps of certain algebra structures; for some of these
achievements, refer to [3, 4, 6, 8, 9, 17, 18]. It should be noted
that this subject is not new since it was studied in 1957,
exactly in Posner’s works [19]. As we said in the intro-
duction, if ϕ is a commuting linear map on L, then
[ϕ(x), y] � [x, ϕ(y)] for any x, y ∈L, and f(x, y) �

[ϕ(x), y] � [x, ϕ(y)] is a biderivation ofL. Using)eorem
1, the present theorem aims to determine all continuous
commuting linear maps on topologically simple
L∗-algebras. □

Theorem 2. Let L be a topologically simple L∗-algebra.
)en, every continuous linear map ϕ on L is a commuting
linear map if and only if it is a scalar multiplication map on
L.

Proof. Let ϕ be a continuous commuting linear map on a
topologically simple L∗-algebra L. )en, f defined by
f(x, y) � [ϕ(x), y] � [x, ϕ(y)] is a semi-inner biderivation
of L. By )eorem 1, we have f(x, y) � [ϕ(x), y] � λ[x, y]

for some λ ∈ C. Since L is topologically simple L∗-algebra
and y is arbitrary, therefore, we have ϕ(x) � λx.

)e following Lemma is one of the interesting results
given in (see p.7 in [3]). □

Lemma 6. Let L be a simple Lie algebra over an algebra-
ically closed field F of characteristic different from 2 such that
card(F)> dim(L) (card(F ) is the cardinality of F and
dim(L) is the dimension of L ). For any skew-symmetric
biderivation f of L, there exists λ ∈ F such that

f(x, y) � λ[x, y], for allx, y ∈L. (39)

Remark 4. Let L be a simple complex Lie algebra of
countable dimension and ϕ a commuting linear map on L.
)en, ϕ is of the form ϕ(x) � λx for all x ∈L where λ ∈ C.
Indeed, let ϕ be a commuting linear map on L, then
f(x, y) � [ϕ(x), y] � [x, ϕ(y)] for all x, y ∈L which is a

skew-symmetric biderivation ofL. By Lemma 6, there exists
λ ∈ C, such that f is of the form f(x, y) � λ[x, y] for all
x, y ∈L. )en, ϕ is of the form ϕ(x) � λx for allx ∈L.

We mention here that this proof does not seem to work
in our case when the underlying Hilbert space of the
L∗-algebra is infinite-dimensional. However, Corollary 2.4
in [3] may simplify some of the proofs in our paper.

4. Conclusions

)is paper aimed to show that every continuous commuting
linear map on a topologically simple L∗-algebra L is a
scalar multiplication map on L.
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