Research Article

Biderivations and Commuting Linear Maps on Topologically Simple L^*-Algebras

Abdelaziz Ben Yahya

Department of Mathematics, Faculty of Science, University Moulay Ismail, B.P. 11201, Zitoune, Meknès, Morocco

Correspondence should be addressed to Abdelaziz Ben Yahya; yahya.abdelazizben@edu.umi.ac.ma

Received 22 March 2021; Revised 31 May 2021; Accepted 6 July 2021; Published 17 July 2021

1. Introduction

Let $(L, [., .])$ be a Lie algebra over a field F of a characteristic different from two. A linear map $D: L \longrightarrow L$ is called derivation on $(L, [., .])$ if it satisfies the following identity:

$$D([x, y]) = [D(x), y] + [x, D(y)],$$

for all $x, y \in L$.

A bilinear map $\delta: L \times L \longrightarrow L$ is called biderivation on $(L, [., .])$ if it satisfies the following identities:

$$\delta([x, y], z) = [x, \delta(y, z)] + [\delta(x, z), y],$$
$$\delta(x, [y, z]) = [\delta(x, y), z] + [y, \delta(x, z)].$$

For all $x, y, z \in L$, which means that it is a derivation with respect to both components. In addition, if $\delta(x, y) = -\delta(y, x)$, δ will be called skew-symmetric biderivation. Let $\lambda \in F$ and f be the bilinear map $f: L \times L \longrightarrow L$ sending (x, y) to $\lambda[x, y]$; it is straightforward to prove that f is a biderivation of $(L, [., .])$; and the biderivations of this type are called inner biderivations of $(L, [., .])$. A linear map $\phi: L \longrightarrow L$ is called a commuting linear map on $(L, [., .])$ if it satisfies the following identity: $[\phi(x), x] = 0$, for all $x \in L$. It is easy to show that

$$[\phi(x), y] = [x, \phi(y)], \quad \forall x, y \in L,$$

which implies that the bilinear map δ defined by

$$\delta(x, y) = [\phi(x), y] = [x, \phi(y)],$$

is a skew-symmetric biderivation on $(L, [., .])$.

Commuting maps and biderivations arose first in the associative ring theory [1, 2]. Since then, many authors have made considerable efforts to make their study very successful (see, for example, [3–10]). The way used in [8] requires the finiteness of the dimension of the simple Lie algebra. However, the purpose of this paper is to extend the results given in [8] concerning the commuting linear maps to topologically simple L^*-algebras, which are of arbitrary dimension. To overcome the problem of the nonfiniteness of the dimension, we use some techniques related to these algebras. The L^*-algebras are introduced by Schue in [11].

We recall that an L^*-algebra over C (the complex field) is a Lie algebra L, which is also a complex Hilbert space with the inner product $(., .)$ endowed with a (conjugate-linear) algebra involution * such that $([x, y], z) = (y, [x^*, z])$, for all $x, y, z \in L$.

Let L be an L^*-algebra; for subsets M and N of L, we recall that $[M, N]$ denotes the closed subspace spanned by $\{m, n\}; m \in M, n \in N$. L is said to be semisimple as an L^*-algebra if and only if $L = [L, L]$. From [11], a finite-dimensional Lie algebra L is semisimple as an L^*-algebra if and only if it is semisimple in the usual sense. The
Let \mathcal{L}^*-algebra \mathcal{L} be called topologically simple if and only if there are no nontrivial closed ideals. In [11], the author shows that the \mathcal{L}^*-algebras are reductive, the semisimple ones are the Hilbert space direct sum of its closed topologically simple ideals, and the author also gives the classification of the topologically simple \mathcal{L}^*-algebras in the separable case. The classification of the topologically simple \mathcal{L}^*-algebras in the arbitrary dimensional case can be found in [12]. In [13], Schue shows that every semisimple \mathcal{L}^*-algebra has a Cartan decomposition relative to a Cartan subalgebra. We recall that a Cartan subalgebra of a semisimple \mathcal{L}^*-algebra is defined as a maximal self-adjoint abelian subalgebra.

The paper is organized as follows. In the second section, we give some definitions and basic results related to \mathcal{L}^*-algebras. In Section 3, we introduce the notion of semi-inner biderivation in order to show that every semi-inner biderivation on an arbitrary dimensional topologically simple \mathcal{L}^*-algebra is inner; using this result, we determine all continuous commuting linear maps on an arbitrary dimensional topologically simple \mathcal{L}^*-algebras.

2. Preliminaries

In this section, we summarize some basic results related to \mathcal{L}^*-algebras, collected from [14, 15]. First of all, we point out that the notation concerning Lie algebras follows principally from [8, 14]. Let \mathcal{L} be the complex numbers field, \mathcal{L} a semisimple \mathcal{L}^*-algebra, H a fixed Cartan subalgebra of \mathcal{L}, and $\overline{\cdot}$ denotes the conjugation operator on \mathcal{L}, a root of \mathcal{L} relative to H is a linear form commuting with the involution:

$$\alpha: (H, \ast) \longrightarrow (\mathbb{C}, \ast).$$

That is, $\alpha(h^*) = \overline{\alpha(h)}$ for any $h \in H$, such that there exists $v_\alpha \in \mathcal{L}$, $v_\alpha \neq 0$ satisfying $[h, v_\alpha] = \alpha(h)v_\alpha$ for any $h \in H$. The subspace

$$\mathcal{Y}_\alpha = \{v_\alpha \in \mathcal{L} : [h, v_\alpha] = \alpha(h)v_\alpha \text{ for all } h \in H\},$$

is called the root space associated to α; it follows from this that if α is a root, then $-\alpha$ is also one and $(\mathcal{Y}_\alpha)^* = \mathcal{Y}_{-\alpha}$. The root space associated to the zero root is equal to the Cartan subalgebra H, using the Jacobi identity; one proves that if $\alpha + \beta$ is a root, then $[\mathcal{Y}_\alpha, \mathcal{Y}_\beta] \subseteq \mathcal{Y}_{\alpha + \beta}$, and if $\alpha + \beta$ is not a root, then $[\mathcal{Y}_\alpha, \mathcal{Y}_\beta] = 0$. Let Φ denote the set of nonzero roots of \mathcal{L} relative to H, then we have the following Cartan decomposition $\mathcal{L} = H \oplus (\sum_{\alpha \in \Phi} \mathcal{Y}_\alpha)$, where \oplus is the usual Hilbert space direct sum.

Let α be a root of \mathcal{L} relative to H, then α is a linear functional on H; this implies that there exists a unique vector $h_\alpha \in H$ such that $\alpha(h) = \langle h, h_\alpha \rangle$ where $\langle \cdot, \cdot \rangle$ denotes the inner product of \mathcal{L}. Consequently, h_α is self-adjoint, which means that $h_\alpha^* = h_\alpha$ and $h_\alpha = [v_\alpha, v_\alpha^*]$ for any $v_\alpha \in \mathcal{Y}_\alpha$ with $\|v_\alpha\| = 1$. Then, we have the following result.

Lemma 1 (see [15]). The set $\{h_\alpha : \alpha \in \Phi\}$ is total in H, i.e., for any $h \in H$, $(h, h_\alpha) = 0$ for all h_α, implies $h = 0$.

Let \mathcal{H} be a Hilbert space, the orthogonal dimension of \mathcal{H} is denoted by $\dim \mathcal{H}$, i.e., the cardinality of an orthonormal basis for \mathcal{H}. We will define the cardinality of an arbitrary set E by $|E|$.

Now, we will define the root system relative to a Cartan subalgebra of the semisimple \mathcal{L}^*-algebra \mathcal{L}.

Definition 1. Let \mathcal{L} be a semisimple \mathcal{L}^*-algebra, H a Cartan subalgebra of \mathcal{L}, and Φ the set of nonzero roots of \mathcal{L} relative to H. A subset Φ_0 of Φ will be called a root system of Φ if the following conditions are satisfied:

(i) If $\alpha \in \Phi_0$, then $-\alpha \in \Phi_0$

(ii) If $\alpha, \beta \in \Phi_0$, such that $\alpha + \beta \in \Phi$, then $\alpha + \beta \in \Phi_0$

We need some further notations; \mathbb{R} and \mathbb{Q} will refer to the real and the rational fields, respectively. For a subset \mathcal{S} of Φ, the set of all \mathbb{C}-linear combinations of elements of \mathcal{S} will be denoted by $\mathcal{S} \mathbb{C}$ and the set of all \mathbb{Q}-linear combinations of elements of \mathcal{S} by $\mathcal{S} \mathbb{Q}$. If we write $(\mathcal{S}) \mathbb{Q} = \mathcal{S} \mathbb{Q} \cap \Phi$, then $(\mathcal{S}) \mathbb{Q}$ is obviously a root system. The following results will be useful in our main proofs.

Lemma 2. Let \mathcal{L} be a topologically simple \mathcal{L}^*-algebra and Φ the set of its nonzero roots relative to some Cartan subalgebra H. For any subset \mathcal{S} of Φ, there exists a topologically simple \mathcal{L}^*-subalgebra $\mathcal{L}_\mathcal{S}$ of \mathcal{L}, with Cartan subalgebra $H_\mathcal{S}$, such that

(i) $\mathcal{S} \subseteq \Phi_\mathcal{S}$, where $\Phi_\mathcal{S}$ is the set of roots of $\mathcal{L}_\mathcal{S}$ (relative to $H_\mathcal{S}$) and $\Phi_\mathcal{S} = (\mathcal{S}) \mathbb{Q} \cap \Phi$

(ii) $\mathcal{L}_\mathcal{S}$ is finite-dimensional if \mathcal{S} is finite

(iii) $\mathcal{L}_\mathcal{S}$ is infinite-dimensional and $\dim \mathcal{L}_\mathcal{S} = |\mathcal{S}|$ if \mathcal{S} is infinite.

Proof. See Proposition 3 in [14].

Definition 2. Let \mathcal{L} be a topologically simple \mathcal{L}^*-algebra and Φ the set of nonzero roots relative to a Cartan subalgebra H. Let $\alpha, \beta \in \Phi$; we say that α is connected to β if there are some $y_1, y_2, \ldots, y_k \in \Phi$ such that $\alpha + \beta = y_1 + y_2 + \ldots, y_k + \beta \in \Phi \cup \{0\}$.

Obviously, the connected relation is an equivalence relation on Φ.

Lemma 3. Any two roots of a topologically simple \mathcal{L}^*-algebra are connected.

Proof. Let $\mathcal{S} = \{\beta_1, \beta_2\} \subseteq \Phi$, then by Lemma 2 there exists a finite-dimensional simple \mathcal{L}^*-algebra $\mathcal{L}_\mathcal{S}$ of \mathcal{L}, with Cartan subalgebra $H_\mathcal{S}$, such that β_1 and β_2 are roots of $\mathcal{L}_\mathcal{S}$. Using Lemma 1.3 in [8], we obtain that β_1 and β_2 are connected in $\mathcal{L}_\mathcal{S}$. Since $\Phi_\mathcal{S} \subseteq \Phi$, then β_1 and β_2 are connected in \mathcal{L}.

3. Semi-Inner Biderivations on \mathcal{L}^*-Algebras and Commuting Linear Maps on Topologically Simple \mathcal{L}^*-Algebras

In this section, we introduce the notion of semi-inner biderivation in order to show that every continuous commuting linear map on a topologically simple \mathcal{L}^*-algebra \mathcal{L}
is a scalar multiple of the identity mapping. The aim of the first main theorem of this section is to prove that every semi-inner biderivation of a topologically simple \mathcal{L}^*-algebra is inner. To get this result, we have to show two lemmas.

Definition 3. Let \mathcal{L} be an \mathcal{L}^*-algebra and $f: \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ a biderivation of \mathcal{L}; f is said to be a semi-inner biderivation of \mathcal{L} if there exists two continuous linear maps $\phi: \mathcal{L} \to \mathcal{L}$ and $\psi: \mathcal{L} \to \mathcal{L}$ such that
\[
f(x, y) = [\phi(x), y] = [x, \psi(y)], \quad \forall x, y \in \mathcal{L},
\]
where f will be denoted by $f_{\phi, \psi}$.

Remark 1. By using Lemma 2.1 in [8], any biderivation of a finite-dimensional simple complex Lie algebra is semi-inner (a linear map between two finite-dimensional vector spaces is continuous).

From now on, \mathcal{L} will represent an infinite-dimensional simple topologically simple \mathcal{L}^*-algebra of arbitrary dimension and $\mathcal{L} = H \oplus \left(\sum_{\alpha \in \Phi, |\alpha| \neq 1} \mathcal{Y}^{\alpha} \right)$, where its Cartan decomposition is relative to a Cartan subalgebra $H (\Phi$ is the set of nonzero roots relative to $H)$.

Lemma 4. Let $f_{\phi, \psi}: \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ be a semi-inner biderivation of \mathcal{L}, then for any $h \in H$, we have $\phi(h), \psi(h) \in H$.

Proof. For any $\alpha \in \Phi$, we select $x_\alpha \in \mathcal{Y}^{\alpha}$ such that $\|x_\alpha\|_1 = 1$, $x_{-\alpha} = x_\alpha \in \mathcal{Y}^{-\alpha}$, and $h \in H$. Then, we have
\[
\begin{align*}
[x_\alpha, x_{-\alpha}] &= h_\alpha, \\
h_{-\alpha} x_\alpha &= \alpha(h_\alpha) x_{-\alpha}, \\
h_\alpha x_{-\alpha} &= -\alpha(h_\alpha) x_\alpha.
\end{align*}
\]
Let $\alpha \in \Phi$, we denote by $\bar{\Phi}_\alpha$ the set $\Phi \setminus \{\alpha, -\alpha\}$. Let
\[
\begin{align*}
\phi(h_\alpha) &= a_1 h_1 + a_2 x_\alpha + a_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} k_\beta x_\beta, \quad (9) \\
\phi(x_\alpha) &= b_1 h_2 + b_2 x_\alpha + b_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} t_\beta x_\beta, \quad (10) \\
\phi(x_{-\alpha}) &= c_1 h_3 + c_2 x_\alpha + c_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} s_\beta x_\beta, \quad (11) \\
\psi(h_\alpha) &= s_1 h_4 + s_2 x_\alpha + s_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} m_\beta x_\beta, \quad (12) \\
\psi(x_\alpha) &= p_1 h_5 + p_2 x_\alpha + p_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} n_\beta x_\beta, \quad (13) \\
\psi(x_{-\alpha}) &= q_1 h_6 + q_2 x_\alpha + q_3 x_{-\alpha} + \sum_{\beta \in \bar{\Phi}_\alpha} r_\beta x_\beta. \quad (14)
\end{align*}
\]
By equations (10) and (14), we have
\[
\begin{align*}
f(h_\alpha, x_\alpha) &= \left[\phi(h_\alpha), x_\alpha\right] = a_1 a(h_\alpha) x_{-\alpha} - a_3 h_\alpha \\
&\quad + \sum_{\beta \in \bar{\Phi}_\alpha} k_\beta [x_\beta, x_\alpha],
\end{align*}
\]
\[
\begin{align*}
f(h_\alpha, x_{-\alpha}) &= \left[\phi(h_\alpha), x_{-\alpha}\right] = a_1 a(h_\alpha) p_2 x_{-\alpha} - a_3 h_\alpha \\
&\quad + \sum_{\beta \in \bar{\Phi}_\alpha} m_\beta [x_\beta, x_{-\alpha}]
\end{align*}
\]
If we compare the two equations above and $[x_\beta, x_\alpha] \in L_{\alpha, \beta} \neq H$ since $\beta \in \bar{\Phi}_\alpha$, we obtain $a_j = 0$. In the same way, by considering $f(h_\alpha, x_{-\alpha})$ with equations (10) and (14), $a_3 = 0$. Similarly, considering the images $f(x_\alpha, h_\alpha)$ and $f(x_{-\alpha}, h_\alpha)$, we obtain $s_2 = s_3 = 0$, by equations (11)-(13).

If we put $a_1 h_1 = \tilde{h}^\alpha \in \eta$ and $s_1 h_3 = \tilde{h}^\alpha \in \eta$, then equations (9) and (12) can be written as follows:
\[
\begin{align*}
\phi(h_\alpha) &= \tilde{h}^\alpha + \sum_{\beta \in \bar{\Phi}_\alpha} k_\beta x_\beta, \quad (16) \\
\psi(h_\alpha) &= \tilde{h}^\alpha + \sum_{\beta \in \bar{\Phi}_\alpha} m_\beta x_\beta. \quad (17)
\end{align*}
\]
Now, for any root $\gamma \in \bar{\Phi}_\alpha$, the set $\Phi \setminus \{\alpha, -\alpha, \gamma, -\gamma\}$ is denoted by $\bar{\Phi}_{\alpha, \gamma}$. By equations (16) and (17), we can write
\[
\begin{align*}
\phi(h_\gamma) &= \tilde{h}^\gamma + k_\gamma x_\gamma + k_{-\gamma} x_{-\gamma} + \sum_{\beta \in \bar{\Phi}_{\alpha, \gamma}} k_\beta x_\beta, \\
\psi(h_\gamma) &= \tilde{h}^\gamma + m_\gamma x_\gamma + m_{-\gamma} x_{-\gamma} + \sum_{\beta \in \bar{\Phi}_{\alpha, \gamma}} m_\beta x_\beta.
\end{align*}
\]
The two equations above imply that
\[
\begin{align*}
f(h_\gamma, x_\gamma) &= \left[\phi(h_\gamma), x_\gamma\right] = -\gamma(h_\gamma) k_\gamma x_\gamma + \gamma(h_\gamma) k_{-\gamma} x_{-\gamma} \\
&\quad - \sum_{\beta \in \bar{\Phi}_{\alpha, \gamma}} k_\beta [x_\beta, x_\gamma],
\end{align*}
\]
\[
\begin{align*}
f(h_\gamma, x_{-\gamma}) &= \left[\phi(h_\gamma), x_{-\gamma}\right] = \gamma(h_\gamma) m_\gamma x_{-\gamma} - \gamma(h_\gamma) m_{-\gamma} x_\gamma \\
&\quad + \sum_{\beta \in \bar{\Phi}_{\alpha, \gamma}} m_\beta [x_\beta, x_{-\gamma}]
\end{align*}
\]
By comparing, one has $k_\gamma = k_{-\gamma} = \mu_\gamma = \mu_{-\gamma} = 0$. Due to the arbitrariness of γ, we obtain $\phi(h_\alpha) = \tilde{h}^\alpha \in H$ and $\psi(h_\alpha) = \tilde{h}^\alpha \in H$. By Lemma 1, the set $\{h_\alpha, \alpha \in \Phi\}$ is total in H and ϕ and ψ are continuous, and we have $\phi(H) \subset H$ and $\psi(H) \subset H$.

Lemma 5. Let $f_{\phi, \psi}: \mathcal{L} \times \mathcal{L} \to \mathcal{L}$ be a semi-inner biderivation of \mathcal{L}, then there is a complex number λ such that
\[\phi(x) = \psi(x) = \lambda x, \quad \forall x \in \mathcal{L}_a, \alpha \in \Phi. \]
(20)

Proof. Let \(h \in H \) and \(\alpha, \gamma \in \Phi \) such that \(\alpha \neq \gamma \), then we have
\[f(x_{\alpha}, h) = [\phi(x_{\alpha}), h] = [-h, \phi(x_{\alpha})], \]
(21)
\[f(x_{\alpha}, h) = [x_{\alpha}, \psi(h)] = [-\psi(h), x_{\alpha}] = -\alpha(\psi(h))x_{\alpha}. \]
(22)

Let
\[\phi(x_{\alpha}) = \tilde{h}^\alpha + \sum_{\beta \in \Phi} t_{\beta}x_{\beta}, \]
(23)
where \(t_{\beta} \in \mathbb{C} \) and \(\tilde{h}^\alpha \in H \). Using equations (21) and (23), we obtain
\[f(x_{\alpha}, h) = -\sum_{\beta \in \Phi} t_{\beta}\beta(h)x_{\beta}. \]
(24)

Combining equations (22) and (24), we obtain \(t_{\alpha}(\alpha(h)) = a(\psi(h)) \) and \(t_{\beta}(\beta(h)) = 0 \) for every \(\beta \in \Phi \).\(\Box \)

Remark 2. In the above proof, there is another method to show that \(t_{\gamma} = 0 \) if \(\gamma \neq \alpha \). Indeed, using equation (23), we have
\[f(x_{\alpha}, h_{\gamma}) = -[\phi(x_{\alpha}), h_{\gamma}] = -\phi(x_{\alpha}), \]
(25)
\[f(x_{\alpha}, h_{\gamma}) = [x_{\alpha}, \psi(h_{\gamma})] = k_{\alpha}[x_{\alpha}, h_{\gamma}] - \alpha(h_{\gamma})x_{\alpha}. \]
(26)

By combining equations (27) with (28), we first see that \(\beta(\tilde{h}^\alpha) = \alpha(\tilde{h}^\alpha) = 0 \) if \(\alpha \neq \beta \). However, \(-\alpha(\tilde{h}^\alpha) = \alpha(-\tilde{h}^\alpha) = 0 \) by taking \(\beta = -\alpha \). This means that \(\beta(\tilde{h}^\alpha) = 0 \) for all \(\beta \in \Phi \), i.e., \(\tilde{h}^\alpha \in \bigcap_{\beta \in \Phi} \ker \beta \), which gives \(\tilde{h}^\alpha = 0 \). Similarly, by taking \(\alpha = -\beta \), we have \(\tilde{h}^\beta = 0 \). Therefore, by equations (25) and (26), one can obtain
\[\phi(x_{\alpha}) = t_{\alpha}x_{\alpha}, \]
(29)
\[\psi(x_{\alpha}) = k_{\alpha}x_{\alpha}. \]
(30)

Using equation (29) and \(f(x_{\alpha}, x_{\gamma}) = [\phi(x_{\alpha}), x_{\gamma}] = [x_{\alpha}, \psi(x_{\gamma})] \), it follows that
\[t_{\alpha} = k_{-\alpha}, \quad \forall \alpha \in \Phi. \]
(31)

Then, comparing equations (27) with (28), we obtain
\[t_{\gamma} = k_{\gamma}, \quad \text{for} \, \alpha + \beta \in \Phi. \]
(32)

Let \(S = [\alpha] \subseteq \Phi \), then by Lemma 2 there exists a finite-dimensional simple \(\mathcal{L}^* \)-algebra \(S \) of \(\mathcal{L} \), with Cartan subalgebra \(H_S \), such that \(\alpha \) is a root of \(\mathcal{L}_S \). Now, let us prove that \(f_{\phi_\psi}(\mathcal{L}_S \times \mathcal{L}_\gamma) \subseteq \mathcal{L}_S \) indeed; let \(x, y \in \mathcal{L}_S \), then
\[x = h_{\gamma} + \sum_{\beta \in \Phi_\gamma} x_{\beta} \quad \text{and} \quad y = h_{\gamma} + \sum_{y \in \Phi_\gamma} y_{\gamma}. \]
(33)
\[f_{\phi_\psi}(x, y) = [\phi(x), y] = \sum_{\beta \in \Phi_\gamma} [\phi(h_{\gamma}), y_{\gamma}] + \sum_{\beta \in \Phi_\gamma} [y_{\beta}x_{\beta}, h_{\gamma}] + \sum_{\beta \in \Phi_\gamma} \sum_{y \in \Phi_\gamma} [t_{\beta}x_{\beta}, y_{\gamma}]. \]
(34)

Then, \(f_{\phi_\psi}(\mathcal{L}_S \times \mathcal{L}_\gamma) \) is a biderivation of \(\mathcal{L}_S \) by Theorem 2.4 in [8], there exists \(\mu \in \mathbb{C} \) such that \(f_{\phi_\psi}(x, y) = \phi(x, y) \) for any \(x, y \in \mathcal{L}_S \). Then, \(\mu[x_{\beta}, y] = t_{\beta}[x_{\beta}, y] = -k_{\beta}[y, x_{\beta}] \) for any \(\beta \in \Phi_\gamma \) and \(y \in \mathcal{L}_\gamma \); this implies that
\[t_{\alpha} = t_{-\alpha} = k_{\alpha} = k_{-\alpha} = \mu, \quad \text{for arbitrary} \, \alpha \in \Phi. \]
(35)

If we pose \(t_{\alpha} = \lambda \) in equation (34), we get our result. \(\Box \)

Remark 3. In the case where \(\mathcal{L} \) is separable, Theorem 2 in [16] will facilitate some difficulties encountered in the above proof (the above proof will look like the proof of Lemma 2.2 in [8]).

Thanks to the above Lemmas, we can state our first main theorem.

Theorem 1. Let \(\mathcal{L} \) be a topologically simple \(\mathcal{L}^* \)-algebra. Then, \(f \) is a semi-inner biderivation of \(\mathcal{L} \) if and only if it is inner, i.e., there is a complex number \(\lambda \) such that \(f(x, y) = \lambda[x, y] \).

Proof. Let \(\mathcal{L} \) be a topologically simple \(\mathcal{L}^* \)-algebra, any inner biderivation \(f \) of \(\mathcal{L} \) such that \(f(x, y) = \lambda[x, y] \) is a semi-inner biderivation \(f_{\phi_\psi} \) with
\[\phi = \psi = \lambda \text{id}_{\mathcal{L}^*}. \]
(36)

Now, let us prove the “only if direction.”
The first case: if \mathcal{L} is finite-dimensional, the result follows from Theorem 2.4 in [8]. The second case: if \mathcal{L} is infinite-dimensional, then, for $f_{\phi, \psi}$ a semi-inner biderivation of \mathcal{L}, by using Lemma 5, there is $\lambda \in \mathbb{C}$ such that $\phi(x) = \psi(x) = \lambda x$, $\forall x \in L$, $\alpha \in \Phi$. For any $h \in H$ and $\alpha \in \Phi$, we have $f(h, x) = [\phi(h), x] = [h, \psi(x)]$. This implies that $\alpha(\phi(h)x) = \lambda(h)x$, which means that

$$a(\lambda h - \phi(h)) = 0, \quad \forall \alpha \in \Phi, \quad (37)$$

this implies $h = \lambda h$ for all $h \in H$. For any $x, y \in L$, with $x = h + \sum_{\alpha \in \Phi} l_{\alpha}x_{\alpha}$, where $l_{\alpha} \in \mathbb{C}$, with $l_{\alpha} = 0$ except for a countable number. Therefore,

$$f(x, y) = [\phi(x), y] = \sum_{\alpha \in \Phi} l_{\alpha} \phi(x_{\alpha}) + \phi(h), y = \sum_{\alpha \in \Phi} l_{\alpha} \lambda x_{\alpha} + \lambda h, y = [\lambda x, y]. \quad (38)$$

In recent years, many authors have studied commuting linear maps of certain algebra structures; for some of these achievements, refer to [3, 4, 6, 8, 9, 17, 18]. It should be noted that this subject is not new since it was studied in 1957, exactly in Posner’s works [19]. As we said in the introduction, if f is a commuting linear map on \mathcal{L}, then $[\phi(x), y] = [x, \phi(y)]$ for any $x, y \in \mathcal{L}$, and $f(x, y) = [\phi(x), y] = [x, \phi(y)]$ is a biderivation of \mathcal{L}. Using Theorem 1, the present theorem aims to determine all continuous commuting linear maps on topologically simple L^\ast-algebras. \hfill \square

Theorem 2. Let \mathcal{L} be a topologically simple \mathcal{L}^\ast-algebra. Then, every continuous linear map ϕ on \mathcal{L} is a commuting linear map if and only if it is a scalar multiplication map on \mathcal{L}.

Proof. Let ϕ be a continuous commuting linear map on a topologically simple \mathcal{L}^\ast-algebra \mathcal{L}. Then, f defined by $f(x, y) = [\phi(x), y] = [x, \phi(y)]$ is a semi-inner biderivation of \mathcal{L}. By Theorem 1, we have $f(x, y) = [\phi(x), y] = \lambda[x, y]$ for some $\lambda \in \mathbb{C}$. Since \mathcal{L} is topologically simple \mathcal{L}^\ast-algebra and y is arbitrary, therefore, we have $\phi(x) = \lambda x$.

The following Lemma is one of the interesting results given in (see p.7 in [3]). \hfill \square

Lemma 6. Let \mathcal{L} be a simple Lie algebra over an algebraically closed field F of characteristic different from 2 such that $\text{card}(\mathcal{F}) > \dim(\mathcal{L})$ (cardinal of \mathcal{F} is the cardinality of \mathbb{F} and $\dim(\mathcal{L})$ is the dimension of \mathcal{L}). For any skew-symmetric biderivation f of \mathcal{L}, there exists $\lambda \in F$ such that

$$f(x, y) = \lambda[x, y], \quad \text{for all } x, y \in \mathcal{L}. \quad (39)$$

Remark 4. Let \mathcal{L} be a simple complex Lie algebra of countable dimension and ϕ a commuting linear map on \mathcal{L}. Then, ϕ is of the form $\phi(x) = \lambda x$ for all $x \in \mathcal{L}$ where $\lambda \in \mathbb{C}$. Indeed, let ϕ be a commuting linear map on \mathcal{L}, then $f(x, y) = [\phi(x), y] = [x, \phi(y)]$ for all $x, y \in \mathcal{L}$ which is a skew-symmetric biderivation of \mathcal{L}. By Lemma 6, there exists $\lambda \in \mathbb{C}$, such that f is of the form $f(x, y) = \lambda[x, y]$ for all $x, y \in \mathcal{L}$. Then, ϕ is of the form $\phi(x) = \lambda x$ for all $x \in \mathcal{L}$.

We mention here that this proof does not seem to work in our case when the underlying Hilbert space of the \mathcal{L}^\ast-algebra is infinite-dimensional. However, Corollary 2.4 in [3] may simplify some of the proofs in our paper.

4. **Conclusions**

This paper aimed to show that every continuous commuting linear map on a topologically simple \mathcal{L}^\ast-algebra \mathcal{L} is a scalar multiplication map on \mathcal{L}.

Data Availability

No data were used to support this study.

Conflicts of Interest

The author declares that there are no conflicts of interest.

Acknowledgments

The author would like to thank Professor M. Ait Ben Haddou and Professor M. Raouyane.

References

