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Te problem of plane waves in nonlocal fractional-order thermoelasticity has been studied. We have considered the x-y plane for
the governing equation of nonlocal fractional thermoelasticity and solved these governing equations to calculate the equation in
terms of frequency. Tis frequency shows that three sets of waves exist, in which two are coupled and one is uncoupled. Te
refection coefcient of plane waves for classical theory and LS theory has been calculated. Te efect of phase speeds, specifc
losses, and attenuation coefcients with respect to the frequency and nonlocal parameter for the two theories (LS theory and the
classical theory of thermoelasticity) has been studied numerically for all propagating waves, and the same has been plotted
graphically and explained thoroughly.

1. Introduction

Te mechanics of deformable bodies that restore their
original shape once the forces that caused the deformation
are removed is known as elasticity theory. Te earliest
signifcant attempts to create a theory of elasticity using the
continuum method, in which speculations about the mo-
lecular structure of the body are avoided and macroscopic
events are represented in terms of feld variables, originate
from the frst part of the eighteenth century. Since then, a
huge amount of research has gone into understanding the
theory of elasticity and its applications in the areas of en-
gineering and physics. Elastic characteristics are one of the
most essential mineral characterizations for detecting the
earth’s physical and chemical condition and also defning
interatomic forces. Acoustic velocities in single crystal
samples provide the most complete and precise collection of
elasticity data. Ultrasonic methods such as MC Skimin’s
[1961] pulse superposition method and Papadakis’s [1967]
pulse echo overlap method can produce acoustic velocities
with fractions of percent uncertainty. However, due to the
technique’s sample size limitations and the additional
challenge of poor crystal symmetries, the number of rock-

forming minerals that have been described using this
method is very minimal. Cutting and polishing are required
to create surfaces that are correctly aligned with respect to
crystallographic axes. In reference to the acoustic wave-
length, the sample should be huge (typically in the range
30–300mm). Moreover, the sample should be large enough
for the transit time to be accurately measured and for in-
dividual echoes to be distinguished in time without causing
difculties due to nanosecond pulse resolutions. After
parallel sides have been constructed, all of these criteria
normally determine a minimum sample length of around
2mm. Eringen[1] discussed the dispersion of plane waves
and the nonlocal linear theory of elasticity. Mohamed and
Song [2] studied the refection of plane waves under hy-
drostatic initial stress from the elastic solid half space
without energy loss.

Biot [3] proposed the theory of coupled thermoelasticity,
which eliminates the contradiction of uncoupled theory,
which states that elastic changes have no efect on tem-
perature. In both theories, heat equations are of the difusion
type, which predicts that heat waves propagate at infnite
speeds that contradict physical observations. During the past
few years, thermoelasticity theories have been developed,
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which state that thermal signals propagate at a fnite speed.
Tese nonclassical theories, in contrast to traditional ther-
moelasticity theory, use a hyperbolic-type heat transport
equation that shows the presence of wave-type heat transfer.
Te theory of thermoelasticity has been addressed by several
authors in recent years. Hitnarski and Ignaczak [4] discussed
generalized thermoelasticity, which shows the existence of
diferent models such as the L-S model, G-L model, H-I
model, G-N model, and C-T model. Lord and Shulman [5]
discussed the generalized theory of dynamical thermo-
elasticity based on the equation of heat transfer. Dhaliwal
and Sherief [6] derived a generalized equation of thermo-
elasticity for an isotropic material. Eringen [7] developed
constitutive equations for nonlocal thermoelastic solids. Roy
Choudhuri [8] discussed generalized thermoelasticity with
relaxation times and rotation on plane waves. Roychoudhuri
and Mukhopadhyay [9] examined generalized thermo-
viscoelasticity with rotation and relaxation times on plane
waves. Mohamed [10] investigated two relaxation times for
general thermoelasticity with a rotational efect on plane
waves. Sherief and Anwar [11] studied the efect of tem-
perature and thermal stresses on generalized thermo-
elasticity. Casas and Quintanilla [12] proved the uniqueness
theorem for diferent thermoelastic theories. Paria [13]
studied plane-wave propagation thermoelasticity in the
presence of magnetic felds.

Te fractional order has been used by several authors to
describe the viscoelastic material property. Ahmed El-Sayed
[14] studied the fractional-order difusion wave equation.
Ahmed and El-Sayed [15] discussed the fractional-order
linear diferential equation. Momani and Odibat [16] in-
vestigated the numerical solution of fractional-order dif-
ferential equations. Zhang [17] discussed a solution to the
fractional-order boundary value problem. Odibat and
Momani [18] applied diferent numeric methods to the
nonlinear partial diferential equation of fractional order.
Arara et al. [19] studied the boundary value problem on
unbounded domains for fractional-order diferential equa-
tions. Wang [20] studied a numerical method with constant
and time-varying delay for nonlinear fractional-order dif-
ferential equations. Demirci and Ozalp [21] studied a
technique to solve the diferential equation of fractional
order. Shah et al. [22] discussed the application and the
survey of single and multiple component fractional-order
elements. Sherief et al. [23] discussed fractional-order
thermoelasticity theory. Youssef [24] derived a new theory of
thermoelasticity based on the Duhamel–Neumann frac-
tional-order stress-strain relation. Lata and Kaur [25]
studied the propagation of plane waves with fractional-or-
der-generalized heat transfer in an isotropic magneto-
thermoelastic rotating medium.

Nonlocal theory states that the stress of a continuum
body depends on the strain at that particular point and its
neighbourhood. When dealing with wave and vibration
problems, the behavior of material is dependent on the
internal characteristic length such as atomic size and the
exterior characteristic length such as wavelength. When
exterior and internal characteristic lengths are compared,
the theory of nonlocal elasticity becomes useful. Tese

characteristic lengths are comparable in the theory of
micropolar materials; hence, the micropolar elastic model is
suitable for the theory of nonlocal elasticity. Eringen
[26, 27] discussed the continuum theory of nonlocal fuid
dynamics and nonlocal polar bodies. Birman [28] studied
the current developments in the area of nonlocal optics,
which indicate the presence of four kinds of optical non-
locality phenomena. Wang et al. [29] discussed that de-
terministic rough surfaces can exhibit spatial dispersion in
the presence of complete optical responses. Adolph et al.
[30] discussed the optical properties of semiconductors in
terms of nonlocality and many body efects. Frank and
Gerhardts [31] discussed the applications of nonlocal metal
optics. Singh et al. [32] examined the nonlocal elastic solid
material with voids for the propagation of harmonic plane
waves. Lata [33] discussed that in a layered nonlocal an-
isotropic and elastic-thermoelastic medium, plane waves
refect and refract. Sarkar and Tomar [34] discussed that in a
nonlocal thermoelastic medium with void pores, a har-
monic plane wave propagates. Das et al. [35] studied the
refection of harmonic plane waves in a nonlocal thermo-
elastic solid medium with stress-free-insulated and iso-
thermal boundary conditions. Das et al. [36] studied
propagation of plane waves with nonlocal efects based on
G-N type-III. Patnaik and Semperlotti [37] discussed the
propagation of elastic waves in nonlocal-attenuating ma-
terials using generalized elastodynamic theory based on
fractional-order operators. Kaur and Singh [38] studied the
three-phase lag fractional-order heat transfer and the Hall
efect in a nonlocal semiconducting rotating medium in
plane wave. Das et al. [39] discussed the propagation of
plane waves in generalized thermoelasticity with nonlocal
efects. Sarkar et al. [40] investigated the refection of
thermoelastic plane waves from homogeneous, isotropic,
and thermally conducting elastic half space. Sheoran et al.
[41] investigated the transmission and refection of plane
waves in a nonlocal thermoelastic and nonlocal micropolar
thermoelastic solid half space with rotation. Using the dual-
phase lag model, Kumar et al. [42] examined the refection
of plane harmonic waves in a nonlocal micropolar ther-
moelastic material with voids. In a rotating thermoelastic
medium with temperature-dependent properties, Sheoran
et al. [43] investigated nonlocal, homogeneous, isotropic
deformations in two dimensions. With temperature-de-
pendent properties, Deswal et al. [44] discussed the plane
wave propagation in nonlocal, microstretch thermoelastic
half space. With the efect of rotation, Kumar Kalkal et al.
[45] studied the refection of plane waves in nonlocal
micropolar thermoelastic media.

2. Formulation of the Problem

We consider a constitutive relation and feld equation for
nonlocal fractional thermoelasticity. We consider a ther-
moelastic body occupying the region A in R3 at time t, and
with the volume V and the surface S. Let the position of a
point of A in the unbounded state be represented by Xi and
in the deformed state by xi. Te displacement ui is repre-
sented by ui= xi − Xi.
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(1) Let the strain tensor be denoted by eij

eij �
1
2

ui,j + uj,i􏼐 􏼑. (1)

(2) Te consecutive relation is as follows:

(a) Te stress relation in terms of a nonlocal oper-
ator is

1 − e
2∇2􏼐 􏼑σij � 2μeij(x) + −

α
KT

T(x) + λekk(x)􏼢 􏼣δij􏼢 􏼣,

(2)

where T � ϑ − T0, the temperature of the body in
a natural state is represented by T such that
|T/T0|≤ 1 and λ and µ are Lame’s constant, KT is
the isothermal compressibility, and the ampli-
tude temperature of the material is represented
by θ, and e= ϵ0acl where, ϵ0 is a material constant
and acl is the internal characteristic length.

(b) Te energy equation for the linear theory of the
thermoelastic material:

− 1 − e
2∇2􏼐 􏼑ρ0T0η

•
� qi,i, (3)

where qi,i � − (ρ0CeT + (αT0/KT)eij) is the equation of
motion in the absence of body forces and Ce is the specifc
heat.

In the absence of body forces, the equation of motion for
nonlocal isotopic thermoelastic solid can be written as

σij,j � ρ0 €ui( 􏼁, (4)

where ρ0 is the density of the material.
Te modifed Fourier law is (1 − e2∇2)(q + τ0 _q) � K∇T.
Te nonlocal heat conduction in thermoelastic material is

1 − e
2∇2􏼐 􏼑 1 + τ0

z
α

zt
α􏼠 􏼡qi � K∇T, (5)

whereK is the thermal conductivity, τ0 is the relaxation time,
and α is the fractional-order parameter such that

z
α

zt
α f(x, t) �

f(x, t) − f(x, 0), α⟶ 0,

l
(1− α)zf(x,t)/zt

, 0< α< 1,

zf(x, t)

zt
, α⟶ 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

With

l
α
f(x, t) �

1
Γ(α)

􏽚
t

0
(t − g)

α− 1
f(x, g)dg. (7)

Here, Γ is the gamma function and is constant such that
0≤ α≤1.

When α⟶0, (5) reduces to the theory of classical
coupled thermoelasticity, and when α⟶1, (5) reduces to
the Lord and Shulman theory of thermoelasticity.

Substituting equations (1)–(3) into equations (4) and (5),
we get the equation of motion as

μ∇2u + (μ + λ)∇(∇.u) −
α

KT

∇T � ρ0 1 − e
2∇2􏼐 􏼑€u, (8)

1 + τ0
z
α

zt
α􏼠 􏼡 ρ0Ce

_T +
αT0

KT

∇. _u􏼠 􏼡 � K∇2T. (9)

2.1. Remarks

Case 1: Te L-S theory of classical coupled thermo-
elasticity is as follows:
If e� 0 in equations (1)–(4) and (8) and (9), we get

σij � 2μeij(x) + λekk(x) −
α

KT

T(x)􏼢 􏼣δij,

ρ0η �
α

KT

ekk(x) +
ρ0Ce

T0
T(x),

1 + τ0
z
α

zt
α􏼠 􏼡u � K∇T.

(10)

And

μ∇2u +(μ + λ)∇(∇.u) −
α

KT

∇T � ρ0 €u,

1 + τ0
z
α

zt
α􏼠 􏼡 ρ0Ce

_T +
αT0

KT

∇. _u􏼠 􏼡 � K∇2.T.

(11)

Case 2: Classical thermoelasticity is as follows:

If e� 0 and α/KT � 0 in equations (1)–(4) and (8) and
(9), we obtain

σij � 2μeij(x) + λekk(x)δij,

ρ0η �
ρ0Ce

T0
T(x),

1 + τ0
z
α

zt
α􏼠 􏼡u � K∇T,

(12)

μ∇2u +(μ + λ)∇(∇.u) � ρ0 €u , 1 + τ0
z
α

zt
α􏼠 􏼡ρ0Ce

_T � K∇2T.

(13)

3. Wave Propagation

We consider the homogeneous thermoelastic medium ro-
tating about the y-axis. Te vector and scalar potential ψ and
ϕ through the Helmholtz vector theorem can be represented
as

∇.ψ � 0, u � ∇φ + ∇ × ψ. (14)
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By putting these potentials in (8) and (9), the absence of
heat source density, and body forces, we get the following
equations as

V
2
T∇

2φ −
α

KT

T � 1 − e
2∇2􏼐 􏼑∇2φ, (15)

V
2
S∇

2ψ � 1 − e
2∇2􏼐 􏼑€ψ, (16)

1 + τ0
z
α

zt
α􏼠 􏼡 Ce

_T +
αT0

KT

∇2. _φ􏼠 􏼡 �
K

ρ0
∇2T.

(17)

Here, (15) and (17) are coupled in the form of ϕ and T,
whereas (16) is uncoupled. So, to get the solution of these
equations, we take

(φ, T,ψ) � A1, B1, C1( 􏼁expik(x sin ϑ+y cos ϑ− vt)
, (18)

where A1, B1, and C1 are the constant amplitudes which can
be complex numbers and k is the wave number and the
vector constant, where r= (xi+ yj+ zk) is the position vector.
By putting equations (18) into equations (15) and (17), we get

− v
2

+ e
2ω2

􏼐 􏼑 + V
2
T􏼐 􏼑A1 − βB1 � 0, (19)

− ω2τ∗0βT0A1 +
K

ρ0
+ Cev

2τ∗0􏼠 􏼡B1 � 0, (20)

where the following variables are used in the equations,

V
2
T �

2μ + λ
ρ0

, β �
α

ρ0KT

, V
2
S �

μ
ρ0

, τ∗0 �
ι
ω

+ τ0􏼒 􏼓, τ0 � τ0(− ιω)
α− 1

.

(21)

Tis system of homogeneous linear (19) and (20) has a
nonvanishing solution for unknowns A1 and B1 when the
determinant of their coefcient matrix vanishes,

P v
2

􏼐 􏼑
2

+ Q v
2

􏼐 􏼑 + R � 0, (22)

where

P � Ceτ
∗
0 ,

Q �
K

ρ0
1 + e

2
k
2

􏼐 􏼑 + e
2ω2

Ceτ
∗
0 − Ceτ

∗
0V

2
T − β2τ∗0T0,

R � −
K

ρ0
V

2
T.

(23)

(22) is the dispersion relation for the propagation of
plane waves in a nonlocal thermoelastic solid medium that
gives the speeds of various wave propagation.

Te roots of equation (22) are

v
2
1 �

− Q +

��������

Q
2

− 4PR

􏽱

2P
,

v
2
2 �

− Q −

��������

Q
2

− 4PR

􏽱

2P
.

(24)

Te phase velocity (Vi), specifc loss (Si), and attenuation
coefcient (Qi) are represented in the following form [34]:

Vi �
R vi( 􏼁( 􏼁

2
+ I vi( 􏼁( 􏼁

2

R vi( 􏼁
,

Si �
ΔW
W

􏼒 􏼓
i

� 4π
I vi( 􏼁

R vi( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

Qi �
− ωI vi( 􏼁

R vi( 􏼁( 􏼁
2

+ I vi( 􏼁( 􏼁
2,

(25)

where R(vi), I(vi) are the real and imaginary part of (vi)

where i= 1, 2, 3, respectively. To fnd the value of v3, putting
equation (18) into equation (16), we get,

v3 �

��������

V
2
S − e

2ω2
􏽱

. (26)

(26) is the plane-wave propagation for the nonlocal
thermoelastic medium that gives the speed of propagation
for diferent waves, and for a given real value of ω lying
within the range, we get

0<ω<ωc,ωc �
VS

e
. (27)

From the expression, it has been noted that the speed of
v3 is that of an uncoupled wave that does not depend on
thermal parameters. It travels slower than classical local
elastic solid. Te existence of e (nonlocal parameter) in the

x

y

P3

P2

P1

P1

θ2
θ1

θ0 θ3

Figure 1: Diagram of the problem.
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thermoelastic material results in the reduction of the phase
speed of the uncoupled wave. As can be seen in (26), the
phase speed of the uncoupled wave vanishes when ω=ωc.
Tis implies that for ω<ωc, the speed of the phase velocity v3
is real and that for ω>ωc, it is complex.Tus, we can say that
the uncoupled wave is a propagating wave in the frequency
range: 0<ω<ωc.

Based on the formula in (25), we can get the attenuation
coefcient as well as the specifc losses of the existing
uncoupled wave as

Q3 � 0,
ΔW
W

􏼒 􏼓
3

� 0. (28)

4. Reflection at the Stress-Free Surface

In half space, the P1 wave makes an angle of incidence (θ0)
with the normal, which yields three refected waves, P1, P2,
and P3 as shown in Figure 1. Te suitable potentials of
incident and refected waves are considered as

φ � A2exp
ik2 x sin ϑ2+y cos ϑ2( )− iωt[ ] + A1exp

ik1 x sin ϑ1+y cos ϑ1( )− iωt[ ] + A2exp
ik2 x sin ϑ2− y cos ϑ2( )− iωt[ ], (29)

T � ξ2A2exp
ik2 x sin ϑ2+y cos ϑ2( )− iωt[ ] + ξ1A1exp

ik1 x sin ϑ1+y cos ϑ1( )− iωt[ ] + ξ2A2exp
ik2 x sin ϑ2− y cos ϑ2( )− iωt[ ], (30)

ψ � B1exp
ik3 x sin ϑ3− y cos ϑ3− iωt( ), (31)

where ξi � (k2
i v2i − k2

i V
2
T)/β for i� 1, 2.

4.1. Boundary Condition. We now describe the following
boundary conditions that must be satisfed for the proposed
problem. Since the boundary surface at y� 0 is stress free, we
have,

σyx � 0, σyy � 0,
zT

zy
� 0 at y � 0. (32)

Taking equations (29)–(31) and making use of equation
(2) in the boundary conditions, we get

A1

A0
c11 +

A2

A0
c12 +

B1

A0
c13 � d1,

A1

A0
c21 +

A2

A0
c22 +

B1

A0
c23 � d2,

A1

A0
c31 +

A2

A0
c32 +

B1

A0
c33 � d3,

(33)

where

c11 � λ + 2μcos2ϑ1􏼐 􏼑k
2
1 − βρ0ξ1,

c12 � λ + 2μcos2ϑ2􏼐 􏼑k
2
2 − βρ0ξ2,

c13 � − 2μk
2
3 sin ϑ3 cos ϑ3,

c21 � μk
2
1 sin2ϑ1 − sin ϑ1 cos ϑ1􏼐 􏼑,

c22 � μk
2
2 sin2ϑ2 − sin ϑ2 cos ϑ2􏼐 􏼑,

c23 � μk
2
3 cos2ϑ3 + sin ϑ3 cos ϑ3􏼐 􏼑,

c31 � k1ξ1 cos ϑ1,

c32 � k2ξ2 cos ϑ2,

c33 � 0,

d1 � λ + 2μcos2ϑ2􏼐 􏼑k
2
2 − βρ0ξ2,

d2 � μk
2
2 sin2ϑ2 + sin ϑ2 cos ϑ2􏼐 􏼑,

d3 � k2ξ2 cos ϑ2.

(34)

Here, the ratio of the amplitude of the refected wave and
incident wave represented by A1/A0,A2/A0 and B1/A0,
which gives the refection coefcient, where

A1 � d1 c23c32 − c22c33( 􏼁 + d2 c12c33 − c13c32( 􏼁 + d3 c13c22 − c12c23( 􏼁􏼂 􏼃,

A2 � d1 c23c31 − c21c33( 􏼁 + d2 c11c33 − c13c31( 􏼁 − d3 c13c21 − c11c23( 􏼁􏼂 􏼃,

B1 � d1 c23c31 − c21c32( 􏼁 + d2 c11c32 − c12c31( 􏼁 + d3 c12c21 − c11c22( 􏼁,

A0 � c11 c23c32 − c22c33( 􏼁 + c12 c21c33 − c23c31( 􏼁 + c13 c31c22 − c21c32( 􏼁.

(35)

5. Numerical Results and Discussion

Te values of the parameters mentioned in Table 1 have been
used to fnd the numeric results taken from [2].

Figure 2 represents the variation of the phase velocityV1,
V2, and V3 with respect to the frequency for two diferent

theories when α⟶ 0 and α⟶ 1. In Figure 2(a), it can be
seen that the phase velocity frst decreases sharply and then
decreases slowly with the increase in the frequency for both
theories. Figure 2(b) shows that the phase velocity increases
at frst and then decreases sharply for α⟶ 0 and that the
phase velocity slightly decreases and then increases for

International Journal of Mathematics and Mathematical Sciences 5



Table 1: Values of parameters.

Symbols Value
E 6.9
Σ 10.1
ρ0 2.7
Ce 0.236
K 0.0492
KT 0.5
T0 20
µ 1
Ω 2
E 0.1
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Figure 2: Phase velocity w.r.t. frequency ω.
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α⟶ 1. In Figure 2(c), it can be seen that the phase velocity
decreases slowly with the increase in the frequency for both
theories.

Figure 3 represents the variation of the specifc loss S1
and S2 with respect to the frequency for two diferent
theories when α⟶ 0 and α⟶ 1. Figure 3(a) represents
that when the frequency increases, the specifc loss re-
mains constant for α⟶ 0. Te specifc loss decreases
with the increase in the frequency for α⟶ 1.
Figure 3(b) shows that the specifc loss increases and then
slightly decreases for theory when α⟶ 0 and for α⟶
1, the specifc loss slowly increases with the increase in the
frequency.

Figure 4 represents the variation of the attenuation coef-
fcientQ1 andQ2 with respect to the frequency for two diferent

theories when α⟶ 0 and α⟶ 1. Figure 4(a) shows that the
attenuation coefcient slightly increases with the increase in the
frequency for α⟶ 0. For α⟶ 1, the attenuation coefcient
sharply increases with the increase in the frequency. Te at-
tenuation coefcient slowly increases with the increase in the
frequency for both theories. Figure 4(b) shows that the atten-
uation coefcient sharply increases with the increase in the
frequency in both theories for α⟶ 0 and α⟶ 1.

Figure 5 represents the variation of the phase velocityV1,V2,
andV3 with respect to the nonlocal parameter e for twodiferent
theories when α⟶ 0 and α⟶ 1. In Figure 5(a), the phase
velocity remains constant when the nonlocal parameter in-
creases for both α⟶ 0 and α⟶ 1. Figure 5(b) represents
that the phase velocity decreases for both theories with the
increase in the nonlocal parameter. Figure 5(c) shows no efect
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of α on both theories. Te phase velocity slowly decreases with
the increase in the nonlocal parameter.

Figure 6 represents the variation of the specifc loss S1
and S2 with respect to the nonlocal parameter e for two
diferent theories when α⟶ 0 and α⟶ 1. In Figure 6(a),
the specifc loss remains constant for both theories when the
nonlocal parameter increases. Figure 6(b) represents that the
specifc loss decreases sharply with the increase in the
nonlocal parameter for the theory α⟶ 0.For α⟶ 1, with
the increase in the nonlocal parameter, the phase velocity
slowly decreases.

Figure 7 represents the attenuation coefcient Q1 and Q2
with respect to the nonlocal parameter e for two diferent
theories when α⟶ 0 and α⟶ 1. Figure 7(a) shows that for

both theories, the attenuation coefcient remains constant with
the increase in the nonlocal parameter. Figure 7(b) shows that
there is no efect of α on both theories seen in this case. Te
attenuation coefcient slowly increases with the increase in the
nonlocal parameter.

5.1. Special Cases

Case 1. If the nonlocal efect is neglected from the medium,
then we get a thermoelastic medium as e� 0 in equation (15),

A v
2

􏼐 􏼑
2

+ B v
2

􏼐 􏼑 + C � 0, (36)

where
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A � τ0Ce,

B � − τ0CeV
2
T − τ∗0β

2
T0 +

K

ρ0
,

C � − V
2
T

K

ρ0
.

(37)

(36) gives the speed of propagation of coupled waves in
the thermoelastic medium. Similarly, when we use e� 0 in
(26), the speed of transverse waves in the thermoelastic
medium becomes the speed of a classical wave.

6. Conclusion

Te propagation of plane waves in nonlocal fractional-
order thermoelasticity has been studied. Te constitutive
relation for the propagation of plane waves in nonlocal
fractional thermoelastic solid media is considered and
solved. Te specifc loss, phase speed, and attenuation
coefcient have been obtained for three waves. Te efects
of the specifc loss, attenuation coefcient, and phase
velocity on the frequency and nonlocal parameter for the
two theories (classical theory and L-S theory) are shown
graphically.

Te following observations can be seen in the graphs:
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(i) On applying the two theories α� 0 and α� 1 to the
phase speeds, specifc losses, and attenuation coef-
fcients against frequency ω, it has been found that
both theories have more efects on the phase ve-
locities V1 and V2, specifc losses S1 and S2, and
attenuation coefcient Q1.

(ii) On applying the two theories α� 0 and α� 1 to the
phase speeds, specifc losses, and attenuation coef-
fcients against the nonlocal parameter e, it has been
found that these theories have more signifcant ef-
fects on the phase velocitiesV1 and V2, specifc losses
S1 and S2, and attenuation coefcient Q1.
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