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In this article, we apply the Daftardar-Gejji and Jafari method (DJM) to solve the multispecies Lotka–Volterra equation. A
comparison between the DJM, diferential transformation method (DTM), the variational iteration method (VIM), and Adomian
decomposition method (ADM) shows that the DJM is a reliable and powerful method for solving nonlinear equations. Te
efciency and applicability of this method are confrmed by considering some examples. Te proposed procedure provides better
results in comparison to some existing methods.

1. Introduction

Te area of mathematics called numerical analysis is in
charge of coming up with practical methods for calculating
answers to difcult computational calculations.Temajority
of mathematical issues in engineering and science are very
challenging, and sometimes, there is no straightforward
solution. To make a difcult mathematical problem simpler
to solve, measurement is thus crucial. As a contemporary
tool for scientists and engineers, numeracy has grown in
popularity as a result of the tremendous developments in
computing technology. As a consequence, a variety of
software packages, including MATLAB, Mathematica,
Maple, and others, are being created to solve even the most
challenging issues quickly and simply. Tese programs
provide features that make use of conventional numerical
techniques, allowing the user to run a single command
without entering any parameters and obtain the desired
results. Te creation, analysis, and application of algorithms
for solving numerical problems in continuous mathematics
are all made using the numerical analysis approach, which is
mostly utilized in mathematics and computer science. Tese

kinds of issues often come up in the actual world when
algebra, geometry, and calculus are applied, and they also
include continuous variables.Tese issues arise in all areas of
study, including the scientifc and social sciences, engi-
neering, health care, and business [1–9]. Numerical analysis
introduced realistic mathematical models which have be-
comemore prevalent in science and engineering over the last
50 years as a result of the expansion in the power and ac-
cessibility of digital computers. We shall learn more about
numerical approaches and their analysis here. PDE solutions
may be solved using the same numerical techniques used for
ODEs. Many difculties may be solved using the techniques
mentioned for handling initial value concerns, for example,
see references [6, 10–14].

Te Lotka–Volterra equations describe the time history
of a biological system [15].Te Lotka–Volterra equations are
applied in a number of engineering areas. Te one-species
Lotka–Volterra equation is used to demonstrate a simple
nonlinear control system [16].

Te Lotka–Volterra equations were solved by many
numerical methods like hybrid deep network [17], Gröbner
bases elimination method [18], generalized backstepping
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control method [19], the diferential transformation method
(DTM) [20], the Adomian decomposition method (ADM),
and variational iteration method (VIM) [21].

Te diferential transformation method (DTM) was frst
proposed by Zhou [22] (also check [23, 24]). Te DTM is an
iterative method that obtains the Taylor series solutions of
diferent kinds of diferential equations (see [20, 25–27]).
Te DTM can be applied directly to diferent kinds of DEs
without requiring linearization, discretization, or pertur-
bation, and it is a very accurate method with less compu-
tational work [28].

Te Adomian decomposition method (ADM) was in-
troduced by Adomian [29] to solve nonlinear diferential
equations and physical problems [30–33].

Te VIM was frst proposed by He [34] (see also
[35–37]). Te VIM has successfully been used for many
ordinary and partial diferential equations [21, 38–40].

In 2006, the DJM was frst proposed by Daftardar-Gejji
and Jafari [41]; the method can solve many nonlinear dif-
ferential equations and physical problems [42–52]. Recently,
the DJM was applied to create a quite new predictor-cor-
rector method [53, 54]. Noor et al. [55–59] used the DJM to
create numerical techniques to solve algebraic equations.

In this paper, we apply the DJM to solve the multispecies
Lotka–Volterra equation and compare the results obtained
with DTM, VIM, ADM, and exact solution to show the
simplicity and accuracy of this method. Te efciency and
applicability of this method are confrmed by considering
some examples. Te proposed procedure provides better
results in comparison to some existing methods. Te DJM
method will be implemented in a direct way without any
linearization, perturbation, or restrictive assumptions.

2. TheDaftardar-Gejji and JafariMethod (DJM)

Here, the DJM ([41]) will be described, which was suc-
cessfully applied to solve nonlinear DEs of the following
form:

v � f + L(v) + N(v), (1)

where f is a function given, L is the linear operator and N is
the nonlinear operator. Te solution of equation (1) will be
as follow:

v � 􏽘
∞

i�0
vi. (2)

Suppose

H0 � N v0( 􏼁,

Hm � N 􏽘
m

i�0
vi

⎛⎝ ⎞⎠ − N 􏽘
m−1

i�0
vi

⎛⎝ ⎞⎠.
(3)

So,

H0 � N v0( 􏼁,

H1 � N v0 + v1( 􏼁 − N v0( 􏼁,

H2 � N v0 + v1 + v2( 􏼁 − N v0 + v1( 􏼁,

H3 � N v0 + v1 + v2 + v3( 􏼁 − N v0 + v1 + v2( 􏼁.

(4)

Tus, N(v) is decomposed as follows:

N 􏽘
∞

i�0
vi

⎛⎝ ⎞⎠ � N v0( 􏼁 + N v0 + v1( 􏼁 − N v0( 􏼁 + N v0 + v1 + v2( 􏼁 − N v0 + v1( 􏼁

+ N v0 + v1 + v2 + v3( 􏼁 − N v0 + v1 + v2( 􏼁 + · · · .

(5)

So,

v0 � f,

v1 � L v0( 􏼁 + H0,

vm+1 � L vm( 􏼁 + Hm, m � 1, 2, . . . .

(6)

Since L is linear, then

􏽘

m

i�0
L vi( 􏼁 � L 􏽘

m

i�0
vi

⎛⎝ ⎞⎠. (7)

Ten,

􏽘

m+1

i�1
vi � 􏽘

m

i�0
L vi( 􏼁 + N 􏽘

m

i�0
vi

⎛⎝ ⎞⎠

� L 􏽘
m

i�0
vi

⎛⎝ ⎞⎠ + N 􏽘
m

i�0
vi

⎛⎝ ⎞⎠, m � 1, 2, . . . .

(8)

Tus,

􏽘

∞

i�0
vi � f + L 􏽘

∞

i�0
vi

⎛⎝ ⎞⎠ + N 􏽘
∞

i�0
vi

⎛⎝ ⎞⎠. (9)

Te k− term approximate solution is given as follows:
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v � 􏽘
k−1

i�0
vi. (10)

3. Convergence of the DJM

Theorem 1. “For any n and for some real L> 0 and
‖ui‖≤M< 1/e, i � 1, 2, . . . , if N is C(∞) in the neighborhood
of u0 and ‖N(n)(u0)‖≤L, then 􏽐

∞
n�0 Hn is absolutely con-

vergent and ‖Hn‖≤LMnen− 1(e − 1), n � 1, 2, . . ..”

Proof. Please see reference [46] for full details of the
proof. □

Theorem  . “Te series 􏽐
∞
n�0 Hn is absolutely convergent if N

is C(∞) and ‖N(n)(u0)‖≤M≤ e− 1, ∀n.”

Proof. Please see reference [46] for full details of the
proof. □

 . Analysis of Multispecies
Lotka–Volterra Equations

In this section, we will study the nth general Lotka–Volterra
system in the form as follows:

dyi

dt
� yi βi + 􏽘

n

j�1
αijyj

⎛⎝ ⎞⎠, i � 1, 2, . . . , n. (11)

To solve equation (11) with the initial condition y(0) �

y(0) by the Daftardar-Gejji and Jafari method (DJM), we
write it in the following integral equation:

y(t) � y0 + 􏽚
t

0
yi βi + 􏽘

n

j�1
αijyj

⎛⎝ ⎞⎠dt, i � 1, 2, . . . , n.

(12)

Ten, we will apply the DJM as in the previous section.

4.1. One Species. In this section, equation (11) is reduced to
one species:

dy

dt
� y(β + αy), β> 0, α< 0, y(0)> 0, (13)

where α and β are constants. With exact solution,

y(t) �
βeβt

β + αy(0)/y(0) − αeβt
for β≠ 0,

y(t) �
y(0)

1 − αy(0)t
, for β � 0.

(14)

To solve equation (13) with the initial condition y(0) �

0.1 by the Daftardar-Gejji and Jafari method (DJM), we write
it in the following integral equation:

y(t) � 0 · 1 + 􏽚
t

0
y(β + αy)dt. (15)

By applying DJM, we obtain the following:

y0 � 0.1,

y1 � 0.07t,

y2 � −0.0049t
2
(t − 2.857143),

⋮.

(16)

Te four-term solution is as follows:

y(t) � 0.1 + 0.07t − 0.0049t
2
(t − 2.857143)

− 0.00001029(t + 5.587558)t
3
(t − 1.234763)(t − 3.493845)(t − 7.525617)

− 2.117682 × 10− 11
(t + 5.877433)(t + 5.005629)t

4
(t − 4.090877)

· (t − 6.871677)(t − 7.828486) t
2

+ 6.991252t + 21.95022􏼐 􏼑

· t
2

− 2.520506t + 1.605527􏼐 􏼑 t
2

− 10.84848t + 38.63197􏼐 􏼑.

(17)

4.2. Two Species. In this section, equation (11) is reduced to
two species:

dy1

dt
� y1 β1 + α11y1 + α12y2( 􏼁, (18)

dy2

dt
� y2 β2 + α21y1 + α22y2( 􏼁, (19)

where α11, α12, α21, α22, β1, and β2 are constants.

To solve equations (18) and (19) by DJM with initial
conditions y1(0) � 4 and y2(0) � 10, we write it in the
following integral equation:

y1,1 � 4 + 􏽚
t

0
y1 β1 + α11y1 + α12y2( 􏼁dt,

y2,1 � 10 + 􏽚
t

0
y2 β2 + α21y1 + α22y2( 􏼁dt.

(20)
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Table 1: Comparison study when β � 1, α � −3, y(0) � 0.1.

t Exact DJM4 ADM, ϕ3 [21] VIM2 [21] DTM6 [20]

0.0 0.1000000 0.1000000 0.1000000 0.1000000 0.1000000
0.2 0.1145329 0.1145329 0.1145600 0.1145545 0.1145329
0.4 0.1300011 0.1300011 0.1302400 0.1302590 0.1300004
0.6 0.1461629 0.1461627 0.1470400 0.1474445 0.1461546
0.8 0.1627259 0.1627256 0.1649600 0.1671263 0.1626790
1.0 0.1793672 0.1793669 0.1840000 0.1915249 0.1791887

Table 2: Comparison study when β � 1, α � −3, y(0) � 0.1.

t Exact DJM4 VIM2 [40] ADM, ϕ3 [21] DTM9 [20]

0.0 0.10000 0.10000 0.10000 0.10000 0.10000
0.5 0.13801 0.13801 0.13862 0.13850 0.13801
1.0 0.17936 0.17937 0.19152 0.18400 0.17937
1.5 0.21921 0.21921 0.29877 0.23650 0.21932
2.0 0.25333 0.25333 0.30286 0.29600 0.25442
2.5 0.27975 0.27969 −4.4899 0.36250 0.28519
3.0 0.29864 0.29824 −69.317 0.43600 0.31533

Table 3: Numerical comparison when β1 � 0.1, α11 � −0.0014,α12 � −0.0012, β2 � 0.08,α21 � −0.0009,α22 � −0.001, y1(0) � 4, y2(0) � 10,
and h � 0.001.

DJM 2-iterate VIM [21] RK4
t y1 y2 y1 y2 y1 y2

0.0 4.00000 10.00000 4.00000 10.00000 4.00000 10.00000
0.1 4.03308 10.06657 4.03307 10.06657 4.033070 10.0665
0.2 4.06639 10.13348 4.06636 10.13349 4.066363 10.1334
0.3 4.09983 10.20075 4.09987 10.20075 4.099878 10.2007
0.4 4.13365 10.26835 4.13361 10.26836 4.13361 10.2683
0.5 4.16753 10.33631 4.16758 10.33632 4.167580 10.3363
0.6 4.20176 10.40460 4.20177 10.40462 4.201767 10.4046
0.7 4.23617 10.47324 4.23618 10.47328 4.236180 10.4732
0.8 4.27073 10.54223 4.27082 10.54228 4.270818 10.5422
0.9 4.30562 10.61156 4.30569 10.61163 4.305683 10.6116
1.0 4.34067 10.68124 4.34079 10.68133 4.340775 10.6813

Table 4: Numerical comparison when α � 0.1, β � 0.1, y1(0) � 0.2, y2(0) � 0.3, y3(0) � 0.5, and h � 0.001.

DJM 4-Iterate VIM [21] RK4
t y1 y2 y3 y1 y2 y3 y1 y2 y3

0.0 0.20000 0.30000 0.50000 0.20000 0.30000 0.50000 0.20000 0.30000 0.50000
0.1 0.21475 0.31915 0.52233 0.21473 0.31914 0.52234 0.21473 0.31914 0.52234
0.2 0.23019 0.33886 0.54442 0.23010 0.33873 0.54429 0.23010 0.33873 0.54428
0.3 0.24623 0.35903 0.56627 0.24609 0.35867 0.56573 0.24609 0.35867 0.56572
0.4 0.26298 0.37977 0.58778 0.26265 0.37889 0.58662 0.26264 0.37888 0.58655
0.5 0.28034 0.40099 0.60902 0.27975 0.39931 0.60693 0.27973 0.39927 0.60667
0.6 0.29838 0.42264 0.62993 0.29734 0.41987 0.62679 0.29729 0.41974 0.62601
0.7 0.31714 0.44484 0.65062 0.31540 0.44054 0.64653 0.31527 0.44020 0.64449
0.8 0.33653 0.46763 0.67109 0.33393 0.46138 0.66683 0.33361 0.46054 0.66208
0.9 0.35658 0.49082 0.69122 0.35294 0.48254 0.68887 0.35222 0.48068 0.67871
1.0 0.37732 0.51467 0.71106 0.37256 0.50438 0.71455 0.37105 0.50053 0.69438
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Te rest components of the formulas (20) and (20) can be
obtained using the computer algebra package Maple.

4.3.Tree Species. In this section, equation (11) is reduced to
three species:

dy1

dt
� y1 1 − y1 − αy2 − βy3( 􏼁, (21)

dy2

dt
� y2 1 − βy1 − y2 − αy3( 􏼁, (22)

dy3

dt
� y3 1 − αy1 − βy2 − y3( 􏼁, (23)

where α and β are constants.
To solve equations (21)–(23) by DJM with initial con-

ditions y1(0) � 0.2, y2(0) � 0.3, and y3(0) � 0.5, we write it
in the following integral equation:

y1,1 � 0.2 + 􏽚
t

0
y1 1 − y1 − αy2 − βy3( 􏼁dt, (24)

y2,1 � 0.3 + 􏽚
t

0
y2 1 − βy1 − y2 − αy3( 􏼁dt, (25)

y3,1 � 0.5 + 􏽚
t

0
y3 1 − αy1 − βy2 − y3( 􏼁dt. (26)

Again, the rest components of the formulas (24)–(26)
can be obtained using the computer algebra package Maple.

5. Discussion

We used Maple to code the DJM algorithm. Maple envi-
ronment variable digits is set to 16 in all calculations done in
this paper.

Te numerical solutions obtained by using the DJM are
compared with the exact solution and those obtained by
ADM [21], DTM [20], and VIM [40]. Table 1 shows a
comparison between the exact solution, the four iterations
DJM with the DTM of order 6, two iterations of VIM, and 3-
term ADM in the case b � 1, a � −3, and y(0) � 0.1 for
t ∈ [0, 1]; we can see the method is efcient to solve the one-
species Lotka–Volterra equation. In Table 2, we compare
four iteration DJM with DTM, VIM, ADM, and the exact
solution where b � 1, a � −3, and y(0) � 0.1 for t ∈ [0, 3]; in
this table, we can prove the stability of DJM for large t. In
Table 3, we perform the numerical comparison when β1 �

0.1, α11 � −0.0014, α12 � −0.0012, β2 � 0.08, α21 � −0.0009,

α22 � −0.001, y1(0) � 4, y2(0) � 10, and h � 0.001. In Ta-
ble 4, we compare DJM with 4-Iterate VIM and RK4 when
α � 0.1, β � 0.1, y1(0) � 0.2, y2(0) � 0.3, y3(0) � 0.5, and
h � 0.001

6. Conclusions

In this article, the DJM is used for solving the multispecies
Lotka–Volterra equation. Te Daftardar-Gejji and Jafari
method was implemented in a direct way without any

linearization, perturbation, or restrictive assumptions.
Comparisons with the VIM, DTM, and ADM show that the
DJM is a better method for solving nonlinear equations. We
proved that DJM is a precise and efcient method to solve
the multispecies Lotka–Volterra equation.
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