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We convert a classical magic cube of order 4, which is an arrangement of 1, 2, . . . , 64{ }, to a cube of order 4 whose entries
belong to F6

2. By using �nite-dimensional vector spaces over the �eld F2, we introduce the notion of a�ne magic cubes and study
their properties. �e obtained results can be applied to describe some features of various types of magic cubes of order 4.

1. Introduction

A magic cube of order n is an arrangement of the numbers
1, 2, . . . , n3{ } in an n × n × n cube in which the entries in each
row, column, pillar, and triagonal sum to the same number.
In 1650, Pierre de Fermat found a cube of order 4 which is
almost magic but its four triagonals failed to have the same
sum. �is type of cube is called semi-magic. Joseph Sauveur
later in 1710, published a cube of order 5 with all correct
triagonal sums, however, it is still not magic because most
orthogonal lines sum incorrectly. �e �rst published magic
cube we have been able to locate was published in Germany
in 1898 by Hermann Schubert [1]. �e appearance of magic
cubes has subsequently been found by many mathemati-
cians, for example, other well-known magic cubes are found
by Hermann Weidemann and John Hendricks.

Appearing as a 3-dimensional shape, a magic cube is
more complicated to study than a magic square.�is leads to
a study on magic cubes by transferring them to magic
squares �rst, e.g., Allan Adler and Shuo-Yen Robert Li in [2]
demonstrated a method for transforming a magic cube of
order m into a magic square of order 2m.

In our work, we transform a magic cube of order 4 into a
magic square of order 8 and study the relations between magic
cubes and linear algebra. Motivated by John Henrich in [3]
where he introduced an a�ne magic square of order 4, we
introduce the notion of a�nemagic cubes of order 4 and study

their properties. Moreover, we show that the famous magic
cubes by Hermann Schubert, HermannWeidemann, and John
Hendricks are a�ne.�eir di�erent features are also discussed.

2. Preliminary

In this section, the de�nitions of a�ne subspaces and a�ne
transformations are given. We also introduce the de�nitions
of magic cubes and their special kinds and provide some
examples.

2.1. A�ne Subspaces and A�ne Functions

De nition 1 (see [4]). Let V be a �nite-dimensional vector
space over a �eld F. For a vector v inV and a subspaceW ofV,
the set v +W: � v + w |w ∈W{ } is called an a�ne subspace
of V.

De nition 2 (see [4]). Let V be a �nite-dimensional vector
space over a �eld F. We say that a function f: V⟶ F is an
a�ne function if there are a linear functional g: V⟶ F and
a constant β ∈ F such that f(x) � g(x) + β for all x ∈ V.
Here, the linear functional g and the constant β with respect
to f are unique.

From the above de�nitions, an a�ne subspace of V
needs not to be a subspace of V, and an a�ne function does
not need to be a linear functional.
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Example 1. Let F be the field F2 � 0, 1{ } and let V be the
vector space F3

2 over F2, i.e., V � 000, 001, 010,{

011, 100, 101, 110, 111}. *e set 010, 101{ } is not a subspace
of V. However, it is an affine subspace of V because
010, 101{ } � 010 + 000, 111{ } is the translation of the sub-
space 000, 111{ }. *e constant function f(x) � 1 is not a
linear functional but f is an affine function when the
corresponding g is the zero linear functional and β � 1.

Example 2. Let F be a field and α1, α2, . . . , αn scalars in F. Let
g: Fn⟶ F be the function defined by

g x1, . . . , xn(  � α1x1 + α2x2 + · · · + αnxn. (1)

Clearly, g is a linear function. For any β≠ 0, the function
f(x1, . . . , xn) � α1x1+ α2x2 + · · · + αnxn + β � g(x1, . . . ,

xn) + β is not a linear functional, but it is an affine function.

2.2. Magic Cubes

Definition 3. For n ∈ N, a cube of order n is an n × n × n cube
of n3 numbers. In a cube of order n, a row is a set of n

numbers on a horizontal line from left to right or right to left.
A column is a set of n numbers on a line from back to front or
front to back. A pillar is a set of n numbers on a vertical line
from top to bottom or bottom to top. A face diagonal is a
diagonal on one of the faces of a cube.*emain triagonal is a
set of n numbers on a line from a corner of a cube, though
the center of the cube, toward the opposite corner. A bent
triagonal is a set of n numbers on a line from a corner of a
cube, through the center of the cube, and then toward the
other corners different from the opposite corner. A broken
triagonal is a set of numbers that follow a line parallel to the
main triagonal of a cube and continues on the corresponding
point of an opposite face whenever it reaches the face of the
cube.

Note that a broken triagonal may consist of 2 or 3
segments. For n≥ 2, a cube of the order n has n2 rows, n2

columns, n2 pillars, and 4 main triagonals.

Definition 4. A magic cube of order n is an n × n × n cube of
n3 numbers such that the sums of the numbers on each row,
each column, each pillar, and each of the main triagonals are
equal to the same number called a magic sum.

In this paper, all entries in a cube are thought of as
natural numbers 1, 2, . . . , n3 where each number is used only
once. *en, the magic sum of a magic cube of order n

becomes n(n3 + 1)/2.

Example 3. In Figure 1, there are 4 rows 1, 2{ }, 3, 4{ },

5, 6{ }, 7, 8{ }, 4 columns 1, 5{ }, 2, 6{ }, 3, 7{ }, 4, 8{ }, 4 pillars
1, 3{ }, 2, 4{ }, 5, 7{ }, 6, 8{ }, and 4 main triagonals 1, 8{ }, 2, 7{ },

3, 6{ }, 4, 5{ }.

Example 4. From Figure 2, this cube is a magic cube of order
3, and there are 9 rows, 9 columns, 9 pillars, and 4 main
triagonals. *e sum of the numbers in any row, column, and
pillar is 42 (for example, row: 2 + 13 + 27, column: 2 + 22 +

18, and pillar: 2 + 16 + 24). *e sum along each of the main

triagonals is also 42 (2 + 14 + 26, 1 + 14 + 27, 18+ 14+ 10, 24
+14 + 4). However, the sum along every face diagonal is not
necessary to be the same as the magic sum (for example,
18 + 7 + 26≠ 42). Examples of bent triagonals are 2, 14,{

27}, 2, 14, 18{ }, 2, 14, 4{ }, 2, 14, 24{ }, 2, 14, 1{ }, 2, 14, 10{ }, and
1, 14, 26{ }. *e sum along each bent triagonal is not required
to be the same as the magic sum.

*e above example shows that the sum of entries on
some lines of a magic cube needs not be the same as the
magic sum, for example, on bent triagonals or broken tri-
agonals.*is leads to a study of specific types of magic cubes.
We shall give definitions of the types discussed in this work.

Definition 5. A bent triagonal magic cube is a magic cube
such that the sum of all entries in each bent triagonal equals
the magic sum. A pantriagonal magic cube is a magic cube
such that the sum of all entries in each broken triagonal
equals the magic sum.

Example 5. It is clear that the cube of order 3 in example 4 is
not pantriagonal. In fact, the smallest pantriagonal magic
cube possible is of order 4.

Definition 6. A semi-pantriagonalmagic cube of order n is a
magic cube of order n such that the sum of all entries in each
2-segment broken triagonals which each segment contains
n/2 cells when n is even and (n − 1)/2 cells (the center cell is

5 6

1 2

7 8

3 4

Figure 1: An example of cubes of order 2 but not magic.

2 13 27

22 9 11

18 20 4

16 21 5

3 14 25

23 7 12

24 8 10

17 19 6

1 15 26

Figure 2: An example of magic cubes of order 3.
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added) or (n + 1)/2 cells (the center cell is subtracted) when
n is odd equals the magic sum.

Example 6. From Figure 2, the sum of all entries in each 2-
segment broken triagonals in which each segment contains
(3 + 1)/2 � 2 cells when the center cell is subtracted equals
the magic sum. In fact, 13 + 25 + 3 + 15 − 14 � 11 + 21+ 7 +

17 − 14 � 20 + 25 + 3 + 8 − 14 � 22 + 7 + 21 + 6 − 14 � 42.
Clearly, the sum of all entries in each 2-segment broken
triagonals which each segment contains (3 − 1)/2 � 1 cell
when the center cell is added also equals the magic sum
because they are main triagonals in this case.

Clearly, all pantriagonal magic cubes are semi-pan-
triagonal. In a cube of order 4, there are 12 broken triagonals
that consist of 2-segments where each segment contains 2
cells.

Definition 7. An associatedmagic cube of order n is a magic
cube of order n such that every pair on the opposite sides of
the center of the cube sums to the same number.

Example 7. *e cube of order 3 in example 4 is associated
because 2 + 26 � 22 + 6 � 18 + 10 � 20 + 8 � 4 + 24 � 11+

17 � 27 + 1 � 13 + 15 � 9 + 19� 16 + 12 � 3 + 35 � 23 + 5 �

7 + 21 � 28.

Definition 8. A compact magic cube of order n is a magic
cube of order n such that every 1 × 2 × 2, 2 × 1 × 2 or 2 ×

2 × 1 block, parallel to the side of the cube, sums to the magic
sum.

Example 8. *e cube of or order 3 in example 4 is not
compact because 18 + 20 + 23 + 7 � 68≠ 42.

3. Magic Cubes of Order 4

We first consider a cube of order 4 whose entries belong to
F6
2. *e points on each row (left to right), each column (back

to front), and each horizontal plane (top to bottom), starting
with 0 by using base-2 notation, are placed accordingly (see
Figure 3). In [2], Alder and Li showed that one can transform
a magic cube of order m into a magic square of order 2m by
taking the rows of the cube one at a time and using them to
fill up the square. Figure 4 is the resulting square of order 8
converted from the cube of order 4 when each pair of ad-
jacent rows (no repeated row used) of the cube of Figure 3 is
put into one row of the square.

4. Affine Magic Cubes of Order 4

On the finite-dimensional vector space F6
2 over F2, there are

26 � 64 elements in F6
2 and dimF6

2 � 6 with the standard
basis e1 � 100000, e2 � 010000, e3 � 001000, e4 � 000100,

e5 � 000010, e6 � 000001}. From Figure 3, we observe that
the first pillar is 000000, 100000, 010000, 110000{ } � span
e1, e2 , the first column is 000000, 001000, 000100, 001100{ }

� span e3, e4 , the first row is 000000, 000010, 000001,{

000011} � span e5, e6 , and the main triagonal is
000000, 101010, 010101, 111111{ } � span e1 +e3+ e5, e2+

e4 + e6}. *e following subspaces of F6
2 and their parallel

affine subspaces in Figure 3 are noticed:

(1) span e1, e2  and the affine subspaces parallel to it
correspond to each pillar.

(2) span e3, e4  and the affine subspaces parallel to it
correspond to each column.

(3) span e5, e6  and the affine subspaces parallel to it
correspond to each row.

(4) span e1 + e3 + e5, e2 + e4 + e6  and the affine sub-
spaces parallel to it correspond to 4 main triagonals
and 12 broken triagonals consisting of 2-segments
where each segment containing 2 cells.

(5) span e1 + e3 + e5, e1+ e2 + e4 + e6}, span e1+ e3 + e5,

e2 + e3 + e4 + e6}, span e1 + e3 + e5, e2 + e4 + e5 + e6 

and the affine subspaces parallel to them correspond
to 2-segment and 3-segment broken triagonals.

(6) span e1 + e2 + e3 + e4 + e5 + e6  and the affine sub-
spaces parallel to it correspond to each pair on the
opposite sides of the center of the cube.

(7) span e2, e4 , span e2, e6 , span e4, e6 , span e2, e3+

e4}, span e2, e5 + e6 , span e4, e5 + e6 , span e1 + e2,

e3 + e4}, span e1 + e2, e5 + e6}, span e3 + e4, e5 + e6 

and the affine subspaces parallel to them correspond
to 1 × 2 × 2, 2 × 1 × 2, or 2 × 2 × 1 block, parallel to
the sides of the cube.

(8) span e1 + e3 + e6, e2 + e4 + e6 , span e1 + e4 + e5, e2+

e4 + e6}, span e1 + e4 + e6, e2 + e4 + e6 , span e2+ e3+

e5, e2 + e4+e6}, span e2 + e3+e6, e2+e4+ e6}, span e2+

e4 + e5, e2 + e4 + e6} and the affine subspaces parallel
to them correspond to all bent triagonals in the cube.

Let f1, f2, f3, f4, f5, f6  be the dual basis of
e1, e2, e3, e4, e5, e6 . *en, fi(ej) is 1 if i � j and 0 otherwise.
Moreover, for any linear functional ψ ∈ F

6∗
2 , there exist

α1, α2, α3, α4, α5, α6 ∈ F2 such that ψ � α1f1 + α2f2 + α3f3 +

α4f4 + α5f5 + α6f6. In [5], Henrich mentioned that each
linear functional on F4

2 either is constant or takes the values 0
and 1 equally often. *e following proposition is an anal-
ogous result for nonzero linear functionals on F6

2:

Proposition 1. Let ψ be a linear functional on F6
2 with values

in F2 and E a subspace of F6
2 which is not contained in the null

space of ψ .  en, on any affine subspace parallel to E , the
functional ψ takes the values 0 and 1 equally often.

Proof. Let E be an affine subspace parallel to E. *en, there
exists a vector v ∈ F6

2 such that E � E + v. Let A � u ∈ E|

ψ(u) � 0} and B � u ∈ E|ψ(u) � 1 . Since E is not in the
null space of ψ, there is y ∈ E such that ψ(y) � 1. *en, y +

v ∈E and ψ(y + v) � ψ(y) + ψ(v) � 1 + ψ(v).

Case 1: If ψ(v) � 1, then ψ(y + v) � 1 + 1 � 0, and
hence y + v ∈ A. Define a map ϕ: A⟶ B by

ϕ(a) � a + y, (2)
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for all a ∈ A. Note that for all a ∈ A, a + y ∈E, and
ψ(a + y) � ψ(a) + ψ(y) � 0 + 1 � 1, hence a + y ∈ B.
It is easy to see that ϕ is injective. To show that ϕ is
surjective, let b ∈ B. *en, b + y ∈E such that ψ(b +

y) � ψ(b) + ψ(y) � 1 + 1 � 0, and hence b + y ∈ A.
Also, we have ϕ(b + y) � b + y + y � b. *us, ϕ is
surjective and hence bijective.
Case 2: If ψ(v) � 0, then ψ(y + v) � 1 + 0 � 1, and
hence y + v ∈ B. Define a map ϕ: B⟶ A by

ϕ(b) � b + y, (3)

for all b ∈ B. Note that for all b ∈ B, b + y ∈E and ψ(b +

y) � ψ(b) + ψ(y) � 1 + 1 � 0, hence b + y ∈ A. It is
easy to see that ϕ is injective. To show that ϕ is sur-
jective, let a ∈ A. *en, a + y ∈E such that ψ(a + y) �

ψ(a) + ψ(y) � 0 + 1, and hence a + y ∈ B. Also, we
have ϕ(a + y) � a + y + y � a. *us, ϕ is surjective and
hence bijective.

Since A and B are finite, the number of elements in A

must be equal to the number of elements in B from both
cases. *erefore, ψ takes the values 0 and 1 equally often
on E. □

Definition 9. Let V1, V2, . . . , V6 be affine functions on F6
2

with values in F2. *e map W from F6
2 to Z given by

W(x) � 
6

j�1
26−j

Vj(x) + 1, (4)

is an affine cube.
In the discussion of a particular affine cube W, we shall

denote the linear part of Vj by ψj.

Definition 10. Let V1, V2, . . . , V6 be affine functions on F6
2

with values in F2, and let W be the affine cube from F6
2 to Z

determined by all Vj. Let E be a subspace of F6
2. *en, E is

magic for W if each linear functional ψj of Vj is nonzero on
E for all j � 1, . . . , 6.

Proposition 2. Let V1, V2, . . . , V6 be affine functions on F6
2

with values in F2 , and let E be a subspace of F6
2 .  en, E is

magic for the affine cube W determined by all Vj if and only if
W has uniform sums on the affine subspaces parallel to E .

Proof. Let E be a subspace of F6
2 with dimension d. Suppose

E is magic. Let E be an affine subspace parallel to E. By
Proposition 1, each linear functional ψj takes the values 0
and 1 each 2d− 1 times on E. Since each affine function Vj is
either ψj + 0 or ψj + 1, Vj takes the values 0 and 1 each 2d− 1

times on E. *us, the sum in Z of Vj over E is 2d− 1. Hence,
we have that the sum of W over E is

000000 000001 000010 000011
000100 000101 000110 000111

001000 001001 001010 001011
001100 001101 001110 001111

010000 010001 010010 010011
010100 010101 010110 010111

011000 011001 011010 011011
011100 011101 011110 011111

100000 100001 100010 100011
100100 100101 100110 100111

101000 101001 101010 101011
101100 101101 101110 101111

110000 110001 110010 110011
110100 110101 110110 110111

111000 111001 111010 111011
111100 111101 111110 111111

Figure 3: Cube of order 4 in base 2.

000000 000001 000010 000011 000100 000101 000110 000111

001000 001001 001010 001011 001100 001101 001110 001111

010000 010001 010010 010011 010100 010101 010110 010111

011000 011001 011010 011011 011100 011101 011110 011111

100000 100001 100010 100011 100100 100101 100110 100111

101000 101001 101010 101011 101100 101101 101110 101111

110000 110001 110010 110011 110100 110101 110110 110111

111000 111001 111010 111011 111100 111101 111110 111111

Figure 4: Square of order 8.
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32 · 2d−1
+ 16 · 2d−1

+ 8 · 2d− 1

+ 4 · 2d− 1
+ 2 · 2d− 1

+ 2d− 1
+ 2d

.
(5)

To prove the converse, suppose E is not magic. Let i be
the smallest index such that ψi is zero on E. Since ψi is
nonzero on F6

2, there exists a vector v ∈ F6
2 such that

ψi(v)≠ 0. Set E � E + v. If Vi � ψi + 0, then the sum in Z of
Vi over E is 0 but the sum in Z of Vi over E is 2d. *en, the
sum of 26− iVi over E is 0 and the sum of 26− iVi over E is
26+d− i. *is implies the sum of W over E is less than the sum
of W over E because the sum in Z of Vj is between 0 and 2d

and 26− i > 26− j for all j> i. On the other hand, we can show
that if Vi � ψi + 1, the sum of W over E is greater than the
sum of W over E. □

Definition 11. Let V1, V2,. . .,V6 be affine functions on F6
2

with values in F2 and let W be the affine cube from F6
2 to Z

determined by all Vj. *en, W is nonsingular if ψ1, . . . ,ψ6
are linearly independent.

Proposition 3. Let V1, V2,. . .,V6, be affine functions
onF6

2with values inF2. If the affine cube
WfromF6

2toZdetermined by allVjis nonsingular, then the
values ofW(x)are exactly 1, . . . , 64{ }with no omissions or
duplications.

Proof. Since W(x) ∈ Z, 1≤W(x)≤ 64 for x ∈ F6
2. Since

there are 64 elements in F6
2, it is sufficient to show that W(x)

has a nonrepeating value. Suppose x and y are elements of
F6
2 such that W(x) � W(y). *en Vj(x) � Vj(y) for j �

1, . . . , 6 and hence ψj(x) � ψj(y) for j � 1, . . . , 6. However,
W is nonsingular implies that ψ1, . . . ,ψ6 are linearly in-
dependent, and therefore, span F

6∗
2 . Let e1, e2, e3, e4, e5, e6 

be the dual basis of ψ1,ψ2,ψ3,ψ4,ψ5,ψ6  for F6
2. *en, x �

α1e1 + α2e2 + α3e3 + α4e4 + α5e5 + α6e6 and y � β1e1+ β2e2+
β3e3 + β4e4 + β5e5 + β6e6 for some αj, βj ∈ F2 for
j � 1, . . . , 6. Since ψj(x) � ψj(y) for j � 1, . . . , 6, we have
αj � βj for j � 1, . . . , 6. It follows that x � y. □

Analogously to the affine magic squares, we will give the
definition of affine magic cubes of order 4. Since we only
study the magic cube of order 4, we shall omit “of order 4”
for convenience.

Definition 12. An affine magic cube is an affine cube that is
nonsingular and of which the subspaces span e1, e2 , span
e3, e4 , span e5, e6 , and span e1 + e3 + e5, e2 + e4 + e6  are
magic.

In [3], it is shown that an affine magic square is quasi-
pandiagonal or pandiagonal. *e following theorem is the
analog for affine magic cubes.

Theorem 1. Let A be an affine magic cube.  en

(1) A is semi-pantriagonal.
(2) A is pantriagonal if and only if span e1 + e3 + e5, e1 +

e2 +e4 + e6}, span e1 + e3 + e5, e2 + e3 + e4 + e6 ,
andspan e1 + e3 + e5, e2 + e4 + e5 + e6 are magic.

Proof. Let Vj, j � 1, . . . , 6, be affine functions on F6
2 with

values in F2 which determine A. Let W be the affine cube from
F6
2 toZ determined by Vj, j � 1, . . . , 6. Suppose W is an affine

magic cube. *is implies the subspaces span e1, e2}, span e3,

e4}, span e5, e6 , and span e1 + e3 + e5, e2+ e4 + e6} aremagic.
By Proposition 2, W has uniform sums on the affine subspaces
parallel to span e1, e2 , span e3, e4 , span e5, e6 , and span
e1+ e3 + e5, e2 + e4 + e6}. Note that the subspace span e1, e2 

corresponds to the first pillar of A, and the affine subspaces
parallel to it correspond to the other pillars. Likewise, span
e3, e4  corresponds to the first column of A, and the affine
subspaces parallel to it correspond to the other columns.
Moreover, span e5, e6  corresponds to the first row of A, and
the affine subspaces parallel to it correspond to the other rows.
Finally, span e1 + e3 + e5, e2+ e4 + e6} corresponds to themain
triagonal ofA, and the affine subspaces parallel to it correspond
to the 4 main triagonals and 12 broken triagonals consist of 2-
segments where each segment containing 2 cells of A. *us, A

is semi-pantriagonal. By Proposition 2, the subspaces
span e1 + e3+ e5, e1 + e2 + e4+ e6}, span e1 + e3 + e5, e2+ e3 +

e4 + e6}, and span e1 + e3 + e5, e2 + e4 + e5 + e6  are all magic
if and only if W has uniform sums on the affine subspaces
parallel to span e1 + e3 + e5, e1 + e2 + e4 + e6 , span e1+ e3 +

e5, e2+ e3 + e4 + e6} and span e1 + e3 + e5, e2 + e4 +e5 + e6}

which correspond to 2-segment and 3-segment broken tri-
agonals, i.e., A is pantriagonal by definition. □

*e following results follow directly from Proposition 2
and the definitions of associated, compact, and bent tri-
agonal magic cubes.

Theorem 2. Let A be an affine magic cube.  en

(1) A is associated if and only if span e1 + e2 + e3+ e4 +

e5 + e6} is magic.
(2) A is compact if and only if span e2, e4 , span e2, e6 ,

span e4, e6 ,span e2,e3+e4 , span e2, e5+ e6 , span e4,

e5 + e6}, span e1 + e2, e3 + e4 , span e1 + e2, e5 + e6 

and span e3 + e4, e5 + e6  are magic.
(3) A is bent triagonal if and only ifspan e1 + e3 + e6

, e2 + e4 + e6}, span e1 + e4 + e5, e2 + e4 + e6 , span
e1 + e4 + e6, e2 + e4 + e6 , span e2+ e3+ e5, e2 + e4 +

e6}, span e2 + e3 + e6, e2 + e4 + e6 . and span
e2 + e4 + e5, e2 + e4 + e6  are magic.

5. Applications

*e results we have derived in this work can be applied to
study some features of magic cubes. In this section, we will
discuss some well-knownmagic cubes of order 4 by applying
our results to these affine magic cubes.

5.1. Hermann Schubert’s Magic Cube. *e following magic
cube of order 4 was published by Hermann Schubert in
Germany in 1898 [1]. It is the first published magic cube of
order 4 by the now-accepted rules.

By subtracting 1 from each number in Figure 5 and
writing them in base 2, we obtain the magic cube on F6

2 as in
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Figure 6. Next, we would like to find affine functions
V1, V2, V3, V4, V5, and V6 which define Figure 6. Since
000000 needs to be matched with 000000, the following can
be derived:

V1(000000) � 0, V2(000000) � 0, V3(000000) � 0,

V4(000000) � 0, V5(000000) � 0, V6(000000) � 0.
(6)

Hence, the affine functions must be in the following
forms:

V1 � ψ1, V2 � ψ2, V3 � ψ3,

V4 � ψ4, V5 � ψ5, V6 � ψ6,
(7)

where, ψj is the linear part of Vj for j � 1, . . . , 6. Note that in
this case Vj is a linear functional for j � 1, . . . , 6. To find
linear parts ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6, we consider mappings
of basis elements e1, e2, e3, e4, e5, and e6 of F6

2 in Table 1.
*us, the values of ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6 of the basis

are as in Table 2.
Hence, the affine functions which determine Figure 6 are

V1 � f1 + f2 + f3 + f4 + f6,

V2 � f1 + f2 + f3 + f4 + f5,

V3 � f1 + f2 + f4 + f5 + f6,

V4 � f1 + f2 + f3 + f5 + f6,

V5 � f2 + f3 + f4 + f5 + f6,

V6 � f1 + f3 + f4 + f5 + f6,

(8)

and the corresponding number isW(x) � 
6
j�1 2

6− j Vj(x) +

1. Note that W is an affine function, and the linear part ψj of
each Vj are as follows:

ψ1 � f1 + f2 + f3 + f4 + f6,

ψ2 � f1 + f2 + f3 + f4 + f5,

ψ3 � f1 + f2 + f4 + f5 + f6,

ψ4 � f1 + f2 + f3 + f5 + f6,

ψ5 � f2 + f3 + f4 + f5 + f6,

ψ6 � f1 + f3 + f4 + f5 + f6.

(9)

It is easy to see that ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6 are linearly
independent. *us, W is nonsingular. Since each ψj is nonzero
on the subspaces span e1, e2 , span e3, e4 , span e5, e6  and
span e1 + e3 + e5, e2 + e4 + e6 , span e1, e2 , span
e3, e4 , span e5, e6  and span e1 + e3 + e5, e2 + e4 + e6  are
magic. *erefore, Schubert’s cube is an affine magic cube, and
hence semi-pantriagonal. *is cube is also associated because
span e1 + e2 + e3 + e4 + e5 + e6  is magic. However, it is not
pantriagonal, not compact, and also not bent triagonal because
the subspaces span e1 + e3 + e5, e1 + e2 + e4 + e6 , span
e2, e3 + e4  and span e1 + e3 + e6, e2 + e4 + e6  are not magic.

5.2. Hermann Weidemann’s Magic Cube. *e following
magic cube of order 4 by Hermann Weidemann was first
published in 1922 [5].

To find the affine functions V1, V2, V3, V4, V5, and V6,
which define the Modified Weidemann, obtained by sub-
tracting one from each number in Figure 7 and writing them
in base 2, we observe that 000000 needs to map to 011000.
*us,

V1(000000) � 0, V2(000000) � 1, V3(000000) � 1,

V4(000000) � 0, V5(000000) � 0, V6(000000) � 0.
(10)

Hence, the affine functions must be in the following
forms:

V1 � ψ1 + 0, V2 � ψ2 + 1, V3 � ψ3 + 1,

V4 � ψ4 + 0, V5 � ψ5 + 0, V6 � ψ6 + 0,
(11)

where, ψj is the linear part of Vj, for j � 1, . . . , 6. Note that
V2 and V3 are not linear in this case. To find linear parts
ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6, we consider mappings of basis
elements e1, e2, e3, e4, e5, and e6 of F6

2 in Table 3.
Hence, the affine functions which determine the Mod-

ified Weidemann are

V1 � f2 + f4 + f5 + 0,

V2 � f1 + f2 + f3 + f4 + f6 + 1,

V3 � f1 + f3 + f6 + 1,

V4 � f1 + f2 + f4 + f5 + f6 + 0,

V5 � f1 + f4 + f5 + 0,

V6 � f2 + f3 + f4 + f6 + 0,

(12)

and the corresponding number isW(x) � 
6
j�1 26− j Vj(x) +

1. Note that W is an affine function and the linear part ψj of
each Vj are as follows:

ψ1 � f2 + f4 + f5,

ψ2 � f1 + f2 + f3 + f4 + f6,

ψ3 � f1 + f3 + f6,

ψ4 � f1 + f2 + f4 + f5 + f6,

ψ5 � f1 + f4 + f5,

ψ6 � f2 + f3 + f4 + f6.

(13)

1 48 32 49
60 21 37 12

56 25 41 8
13 36 20 61

63 18 34 15
6 43 27 54

10 39 23 58
51 30 46 3

62 19 35 14
7 42 26 55

11 38 22 59
50 31 47 2

4 45 29 52
57 24 40 9

53 28 44 5
16 33 17 64

Figure 5: Schubert 1898.
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000000 101111 011111 110000
111011 010100 100100 001011

110111 011000 101000 000111
001100 100011 010011 111100

111110 010001 100001 001110
000101 101010 011010 110101

001001 100110 010110 111001
110010 011101 101101 000010

111101 010010 100010 001101
000110 101001 011001 110110

001010 100101 010101 111010
110001 011110 101110 000001

000011 101100 011100 110011
111000 010111 100111 001000

110100 011011 101011 000100
001111 100000 010000 111111

Figure 6: Modified Schubert.

Table 1: Mappings of basis elements to the Modified Schubert.

Basis Image V1 � ψ1 V2 � ψ2 V3 � ψ3 V4 � ψ4 V5 � ψ5 V6 � ψ6

100000 111101 1 1 1 1 0 1
010000 111110 1 1 1 1 1 0
001000 110111 1 1 0 1 1 1
000100 111011 1 1 1 0 1 1
000010 011111 0 1 1 1 1 1
000001 101111 1 0 1 1 1 1

Table 2: Linear parts of each basis element.

Basis ψ1 ψ2 ψ3 ψ4 ψ5 ψ6

100000 1 1 1 1 0 1
010000 1 1 1 1 1 0
001000 1 1 0 1 1 1
000100 1 1 1 0 1 1
000010 0 1 1 1 1 1
000001 1 0 1 1 1 1

25 6 63 36
48 51 10 21

2 29 40 59
55 44 17 14

46 29 12 23
27 8 61 34

53 42 19 16
4 31 38 57

7 28 33 62
50 45 24 11

32 3 58 37
41 54 15 20

52 47 22 9
5 26 35 64

43 56 13 18
30 1 60 39

Figure 7: Weidemann 1922.
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It is easy to see that ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6 are linearly
independent. *us, W is nonsingular. Since each ψj is
nonzero on the subspaces span e1, e2 , span e3, e4 , span
e5, e6  and span e1 + e3 + e5, e2 + e4 + e6 , span e1, e2 , span
e3, e4 , span e5, e6  and span e1 + e3 + e5, e2 + e4 + e6  are
magic. *erefore, Weidemann’s cube is an affine magic cube
and hence semi-pantriagonal. However, it is not pan-
triagonal, not associated, not compact, and also not bent
triagonal because the subspaces span e1 + e3 + e5, e1 + e2+

e4 + e6}, are not magic.

5.3. John Hendricks 1972's Magic Cube. John Hendricks
published this cube in 1972 when he introduced pan-
triagonal magic cubes [6].

*e affine functions which determine the Modified
Hendricks 1972 obtained by subtracting one from each
number in Figure 8 and writing them in base 2 are

V1 � f2 + f4 + f5,

V2 � f2 + f4 + f5 + f6,

V3 � f2 + f3 + f6,

V4 � f2 + f3 + f4 + f6,

V5 � f1 + f4 + f6,

V6 � f1 + f2 + f4 + f6,

(14)

and the corresponding number is W(x) � 
6
j�1

26− jVj(x) + 1. Note that W is an affine function. In this case,
we have that Vj � ψj is a linear function for j � 1, . . . , 6.
Since ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6 are linearly independent, W

is nonsingular. It is easy to see that span e1, e2 , span
e3, e4 , span e5, e6 , and span e1 + e3 + e5, e2 + e4 + e6  are
magic. *us, Hendrick 1972's cube is an affine magic cube
and hence semi-pantriagonal. It is pantriagonal and also
compact because span e1 + e3 + e5, e1 + e2 + e4 + e6 ,

span e1+e3 + e5, e2 + e3 + e4 + e6 , span e1 + e3 + e5, e2+ e4+

e5+e6},span e2, e4 span e2,e6 ,span e4, e6 , span e2, e3 + e4 ,

span e2, e5 + e6 , span e4, e5 + e6 , span e1 + e2, e3 + e4 ,

span e1 + e2, e5 + e6  and span e3 + e4, e5 + e6  are magic.
However, it is neither bent triagonal nor associated because
span e1 + e3 + e6, e2 + e4 + e6  and span e1 + e2 + e3+ e4 + e5
+e6} are not magic.

5.4. John Hendricks 1999’s Magic Cube. In this last example,
we consider the magic cube by John Hendricks appearance
in his 1999 book [7]. It has the unique feature of containing
bent triagonals.

*e affine functions which determine the Modified
Hendricks 1999 obtained by subtracting one from each
number in Figure 9 and writing them in base 2 are

V1 � f1 + f3 + f5 + f6 + 1,

V2 � f1 + f3 + f6 + 1,

V3 � f1 + f3 + f4 + f5 + 0,

V4 � f1 + f4 + f5 + 1,

V5 � f1 + f2 + f3 + f5 + 1,

V6 � f2 + f3 + f5 + 1,

(15)

and the corresponding number is W(x) � 
6
j�1 2

6− j

Vj(x) + 1. Note that W is an affine function and the linear
part ψj of each Vj are as follows:

ψ1 � f1 + f3 + f5 + f6,

ψ2 � f1 + f3 + f6,

ψ3 � f1 + f3 + f4 + f5,

ψ4 � f1 + f4 + f5,

ψ5 � f1 + f2 + f3 + f5,

ψ6 � f2 + f3 + f5.

(16)

*en ψ1,ψ2,ψ3,ψ4,ψ5, and ψ6 are linearly independent,
and so W is nonsingular. Since span e1, e2 , span e3, e4 ,

span e5, e6 , and span e1 + e3 + e5, e2 + e4 + e6  are magic,
Hendrick 1999s cube is an affinemagic cube and hence semi-
pantriagonal. It is bent triagonal because span e1+

Table 3: Mappings of basis elements to the Modified Weidemann.

Basis Image V1 � ψ1 + 0 V2 � ψ2 + 1 V3 � ψ3 + 1 V4 � ψ4 + 0 V5 � ψ5 + 0 V6 � ψ6 + 0

100000 000110 0 0 0 1 1 0
010000 101101 1 0 1 1 0 1
001000 000001 0 0 0 0 0 1
000100 101111 1 0 1 1 1 1
000010 111110 1 1 1 1 1 0
000001 000101 0 0 0 1 0 1

1 32 49 48
56 41 8 25

13 20 61 36
60 37 12 21

62 35 14 19
11 22 59 38

50 47 2 31
7 26 55 42

4 29 52 45
53 44 5 28

16 17 64 33
57 40 9 24

63 34 15 18
10 23 58 39

51 46 3 30
6 27 54 43

Figure 8: Hendricks 1972.
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e3+e6, e2 + e4 + e6}, span e1 + e4 + e5, e2 + e4 + e6 , span e1+

e4 + e6, e2 + e4 + e6}span e2 + e3 + e5, e2 + e4 + e6}, span e2+

e3 + e6, e2 + e4 + e6},
and span e2 + e4 + e5, e2 + e4 + e6  are magic. However,

it is not pantriagonal, not associated, and also not compact
because span e1 + e3 + e5, e1 + e2 + e4 + e6 , span e1 + e2+

e3 + e4 + e5 + e6}, span e2, e4  are not magic.
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56 8 25 41
60 12 21 37

13 61 36 20
1 49 48 32

53 5 28 44
57 9 24 40

16 64 33 17
4 52 45 29

10 58 39 23
6 54 43 27

51 3 30 46
63 15 18 34

11 59 38 22
7 55 42 26

50 2 31 47
62 14 19 35

Figure 9: Hendricks 1999.

International Journal of Mathematics and Mathematical Sciences 9


