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In this paper, we propose a new method for estimating trends in extreme spatiotemporal processes using both information from
marginal distributions and dependence structure. We combine two statistical approaches of an extreme value theory: the temporal and
spatial nonstationarities are handled via a tail trend function in the marginal distributions. �e spatial dependence structure is modeled
by a latent spatial process using generalized ℓ-Pareto processes. �is methodology for trend analysis of extreme events is applied to
precipitation data from Burkina Faso. We show that a signi�cant increasing trend for the 50 and 100 year return levels in some parts of
the country. We also show that extreme precipitation is spatially correlated with distance for a radius of approximately 200 km.

1. Introduction

In the framework of climate change, the modeling and
accurate prediction of the magnitude and extent of extreme
events that occur in space and time of climate variables is a
particularly di�cult task, since it implies taking into account
spatial and temporal nonstationarities. Nowadays, there is a
general consensus in the scienti�c community that climate
change has accelerated in recent decades and that the climate
will continue to change in the coming decades, mainly due to
natural and anthropogenic changes (IPCC 2007, 2018, 2019).
�is change is manifested in most regions of the world by a
resurgence of heavy rainfall, heat waves, and pollution peaks
with very signi�cant economic and social consequences.

In sub-Saharan Africa, works on this topic have shown an
increasing trend in the occurrence of extremes in meteoro-
logical parameters [1–4]. In Burkina Faso, a study conducted
in the framework of the National Action Program for Ad-
aptation to climate change (PANA, 2007) showed that pre-
cipitation is highly variable in space and time. �ere is a

decreasing trend in cumulative and daily rainfall. According
to recent publications from the National Meteorology
Agency, precipitation has returned to humid periods since the
late 1980s and decades of 1990 and 2000.�e return of rains is
more related to a high frequency of high intensity rainfall
events than to an increase in the number of rainy days. For
example, we can cite the �oods of 1st September 2009 that
a�ected Ouagadougou and its outskirts with a record of
261.3mm of rainfall not registered since 1919.�e �oods have
a�ected more than 150000 peoples, damaged several bridges,
and �ooded more than 9300 hectares of crops throughout the
country. From a statistical point of view, this raises the
question of trend detection in extreme events.

�e classical extreme value theory extended both to
nonstationary and non-independent observations provides a
rigorousmathematical framework to deal with this question of
trend detection in extremes [5–8].�is issue was �rst generally
studied in extreme value literature by parametric pointwise
approaches in which an extreme valuemodel (GEVorGPD) is
�tted to the data at each site in turn, leaving the parameters of
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the marginal distributions to evolve with time or other sig-
nificant covariates [9–13]. Although it is relatively simple to
construct nonstationary models in the univariate framework,
it is more difficult to account for spatial and temporal trends in
these univariate models. +e spatial and temporal dimension
of extreme events was first developed for block maxima in a
stationary framework and modeled by max-stable processes
[14–18]. +ese spatial models have been readapted to handle
nonstationarities induced by global warming [19, 20]. Al-
though attractive, these models are expensive in computing
time when tending toward large dimensions and are not
adapted for modeling threshold exceedances.

+e threshold exceedance approach introduced by
[21, 22] was first extended to multivariate environments [23]
before being generalized to functional data [24–27] to give
birth to the family of generalized ℓ-Pareto processes. +is
family of processes are good candidates for modeling the
spatial dependence structure of exceedance data. However,
these approaches do not sufficiently take into account
marginal nonstationarities and spatial dependence between
margins. In this paper, we propose a new method to capture
nonstationarities in marginal distributions, while taking into
account the spatial dependence structure. To reach this goal,
we combine two statistical approaches to the extreme value
theory. First temporal and spatial nonstationarities are
controlled via a tail trend function in marginal distributions
[5–7]. Subsequently, the spatial dependence structure is
taken into account by a hidden auxiliary spatial process
using generalized ℓ-Pareto processes [25, 26]. Finally, we use
the model to simulate and predict future extreme events.

+e article is organized as follows: Section 2 details the
methodology implemented and the methods used to esti-
mate the parameters. In Section 3, we present our main
results from the data analysis, and in particular, we calculate
the nonstationary return levels from the developed ap-
proaches. Section 4 concludes the study.

2. Methodology

2.1. Space-Time Trends Modeling. Let X � Xt(s), s ∈ S,

t ∈ T} be a continuous nonstationary space-time stochastic
process with sample paths in the family of continuous
functions C(S × T) equipped with the uniform norm ‖ .‖∞,
where S × T ⊂ Rd × R+ and C+(S × T) its restriction to
nonnegative functions deprived of the null function. In
practice X is observed at each stations s1, . . . , sm and at given
dates t � 1, . . . , n. Let Ft,s be the continuous univariate
marginal distribution with a common right endpoint xF and
Z � Z(s), s ∈ S{ } an unobserved latent spatial stochastic
process with sample paths in C(S × T) satisfying the pro-
portional tail condition such that

lim
x⟶xF

P Xt sj > x 

P Z sj > x 
� cθ

t

n
, sj ,with,

1
m



m

j�1

1

0
cθ u, sj du

� 1, u ∈ [0, 1],

(1)

where cθ: [0, 1] × S⟶ (0,∞) is assumed to be a contin-
uous and positive function depending on a parameter vector
θ ∈ Θ ⊂ R called a tail trend function or skedasis function
[5, 7]. +e skedasis function describes the evolution of
extreme events jointly in space and time. In the framework
of the model (1), Mefleh et al. [8] shows that the empirical
point measure converges in distribution in the space of point
measure Mp � Mp([0, 1] × t(0,∞]) to a Poisson point
process with intensity measure c(u)ducz− (c+1)dz on
[0, 1] × (0,∞). In this case, the times of exceedances for
high threshold x and the value of exceedances are asymp-
totically independent with distributions respectively equal to
the trend density function cθ(u, s), s ∈ S and the Pareto
distribution of tail index c.

Moreover, we assume that the continuous marginal
distributions FZ of the latent process is in the maximum
domain of attraction condition for some constant c ∈ R and
appropriate real normalization constants an > 0, bn ∈ R.
+anks to the equation (1) and the convergence of Z

exceedances to a GPD distribution we deduce a sample of
Zt(s), s ∈ S  as mentioned in [5, 7] in the following
manner:

Zt sj  � cθ
t

n
,sj  

− c

Xt sj  −
cθ t/n,sj  

c
− 1

c
an − cbn ⎡⎢⎣ ⎤⎥⎦,

j � 1, . . . ,m; t � 1, . . . ,n,

(2)

where c, an, bn, and cθ are parameters to be estimated.
Parameter inference techniques will be discussed in Section
2.4.1.

2.2. Nonstationary Return Period and Return Level. +e
concept of return period and level becomes very ambiguous
when we leave the stationary context to the nonstationary
framework. For example, in the stationary framework, an
extreme event with a 100-year return period is likely to occur
on average once every 100 years, but with an annual
exceedance probability of 1% in a given year. In this case, it is
assumed that the underlying probability distribution re-
mains unchanged over time. More formally, for a stationary
random variable Z with distribution function FZ, the m-year
return period is expressed as m � 1/FZ(Z> zm), where zm is
the return level associated with the return period. However,
in the nonstationary context, the underlying probability
distribution is no longer constant but is supposed to evolve
with time. In this paper, we have chosen to follow return
period based approaches, i.e., expected number of exceed-
ances (ENE) [12] and expected waiting time (EWT) [9, 11].
In the ENE approach, the number of times the variable
Xt(s), s ∈ S exceeds the return level value xm in m years is
defined by Nm � 

nxm
t�1 1 Xt(s)>xm,s∈S{ } under nonstationary

context. +e return level xm can be defined as the value for
which the expected number of events exceeding xm in m

years equals to one, i.e., the return level xm is the solution of
the following equation:
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1 � 

nxm

t�1
1 − Ft,s xm|θt(s)(  , s ∈ S, (3)

where nx is the number of days in the year and θt(s) the
vector of time-dependent marginal parameters or other
covariates. Parey et al. [12] uses the ENE method in a
pointwise POT model where the parameters of the distri-
bution of exceedances and the intensity of extreme event
occurrences are described as polynomial functions of time.

+e EWTmethod was first proposed by Olsen et al. [11],
and then derived by Salas and Obeysekera [13] using a
geometric distribution with time-varying parameters. Under
nonstationary conditions, the distribution describing wait-
ing time Y before the first occurrence of an event exceeding
the return level xm is as follows:

fs(y) � P(Y(s) � y) � py,s 

y− 1

i�1
1 − pi,s ,

y � 1, 2, . . . , ymax,

s ∈ S,

(4)

where variable Y is the day of the first occurrence of an event
exceeding the quantile and pt,s � 1 − Ft,s(xm|θt(s)) is daily
exceedance probability varying with time step t. ymax is the
time when the daily exceedance probability pt,s is equal to 1
for an increasing-trend series or is equal to 0 for a de-
creasing-trend series. Reused and simplified by [9], the EWT
approach defines the m-year return level xm, as the value for
which the expected waiting time until an exceedance of this
level is m years, i.e, xm is the solution of the equation:

nxm � E[Y] � 1 + 

∞

y�1

y

t�1
Ft,s xm|θt(s)( , s ∈ S. (5)

Using the relationship (1), P(Xt(s)> xm) can be re-
written ascθ(t/n, s)P(Z(s) > u)P(Z(s) > xm|Z(s)> u) for
u<xm and we obtain the following results.

Proposition 1. Let Xt(s), s ∈ S, t ∈ T  be a nonsta-
tionary stochastic process defined on a region S ⊂ Rd and
Z(s), s ∈ S{ } a latent spatial process satisfying equation (1).
Given a return period m and threshold u< xm, the return
level xm for all s ∈ S is a solution of the following two
equations:

(i) Return period as expected number of events

1 � 

t0+nxm

t�t0

cθ
t

n
, s ϕu(s)FZ(s)|ℓ(Z)>u xm − u(  . (6)

(ii) Return period as expected waiting time

nxm � 1 + 
∞

i�1


i

t�1
1 − cθ

t

n
, s ϕu(s)FZ(s)|ℓ(Z)>u xm − u(  ,

(7)

where FZ(s)|ℓ(Z)>u is a survival of generalized Pareto
distribution of ℓ-exceedances at position s ∈ S;
ϕu(s) � P(Z(s)> u) is the probability of exceedances,

cθ is the tail trend function and nx is the number of
days in the year.

+e nonstationary return levels obtained from (6) and
(7) are evaluated by numerical algorithms taking into ac-
count information from the extrapolation of the trend
function cθ. To derive the nonstationary return level at
points where we have not observations, we use spatial
marginal model (15) described in Section 2.4.1 to extrapolate
the parameters at these points. An alternative approach is to
calculate the nonstationary return levels from the following
result.

Proposition 2. Let Xt(s), s ∈ S, t ∈ T  be a nonsta-
tionary spatio-temporal stochastic process defined on a region
S ⊂ Rd and Z(s), s ∈ S{ } a latent spatial process. /e
nonstationary return level xm(s), s ∈ S of the nonstation-
ary process X is deduced from the return level zm of the latent
spatial process Z such that

xm(s) � zm(s)cθ tm, s( 
c

+
cθ tm, s( 

c
− 1

c
an − c

bn ,

s ∈ S,

(8)

where an,
bn, cθ, and c are the respective estimators of an, bn,

cθ, and c. tm � 1 + nxm/n with nx the number of days in the
year and n the size of the sample observed.

+is result is a consequence of the (2). In practice, the
return level zm of the latent spatial process is first computed
at grid points where we have not observations using (15).
+en, the nonstationary return level xm is deduced using the
Proposition 2.

2.3. Spatial POT Modeling. After removing the non-
stationarity, thanks to the (2), the modeling is then focused
on the evaluation of the extreme spatial dependence
structure in Z using functional POT [24–26]. In the mul-
tivariate and spatial framework a threshold exceedances for a
random function Z � Z(s), s ∈ S{ } is defined by [26] to be
an event of the form ℓ(Z)> u{ } for some u≥ 0, where
ℓ: C(S)⟶ R+ is a continuous and homogeneous non-
negative risk function, i.e., there exists α> 0 such that
ℓ(λy) � λαℓ(y) when y ∈ C+(S) and λ> 0.+e risk function
ℓ determines the type of extreme events of interest. For
example, such a function can be the maximum, minimum,
average, or value at a specific point s0 ∈ S. Under minimal
assumptions on the risk function, the conditional distri-
bution of ℓ-exceedance for some threshold u≥ 0 of the
process (Z − bn)/an) can be approximated by a generalized
ℓ-Pareto process, for n large enough [25].

P ⌊
Z − bn

ℓ an( 
⌋ ∈A|ℓ

Z − bn

ℓ an( 
 ≥u ⟶ P Wℓ ∈A , n⟶∞,

(9)

where Wℓ is a nondegenerate stochastic process over S
and belongs to the family of generalized ℓ-Pareto processes
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with tail index c (see appendix B for more details). Specifically,
Wℓ is a stochastic process taking values in z ∈ C+(S):

ℓ (z − b)/ℓ(a){ }≥ 0} and defined by the following:

Wℓ �

a Y
c

ℓ − 1( 

c + b
, c≠ 0,

a log Yℓ + b, c � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(10)

where a> 0 and b are continuous functions on S, respec-
tively, scale and location functions and Yℓ is a stochastic
process whose probability measure is completely determined
by the limit measure Λ. More details on generalized ℓ-Pareto
processes can be found in [24, 25].

For the modeling of spatial dependence structure of the
latent process, we use Yℓ whose margins are in the Frechet
domain of attraction with tail index c � 1, as the process of
reference. A pseudo-polar decomposition of Yℓ in (11) leads
to the following formulation [24, 26].

Yℓ � RQ, (11)

where R is a unit Pareto random variable of index cR

representing the intensity of process and Q is stochastic
process denoted the angular component with state space S

and taking values in S � y ∈ C+(S): ‖y‖1 � 1  whose
probability measure is characterized by limit measure Λ.

2.4. Statistical Inference

2.4.1. Marginal Model of the Spatial Latent Process.
Marginal parameters an, bn, and c of latent process can be
estimated into fixing bn at a high quantile of ℓ(Z), i.e.,
bn � q1− α ℓ(Z){ }. In general, a parametric model may be
necessary for an and bn, as in Engelke et al. [28]. However,
some forms of parameterization can lead to problems of
parameter identifiability and inference. For these reasons
and simplicity purpose, we consider in this work that
an(sj) � aj > 0 and bn(sj) � bj ∈ R for any j � 1, . . . , m. +e
threshold stability of the generalized Pareto distributions
does not allow us to identify the bn function without ad-
ditional assumptions, so we set

bn(s) � uq′ Z(s){ } − bn, s ∈ S, (12)

where uq′ Z(s){ } is an empirical quantile of the order q′ of the
ℓ-exceedances at each location s ∈ S, where q′ is chosen such
that ℓ(bn) � bn in order to impose the identifiability of the
parameters. +us, the tail index c ∈ R and the scale pa-
rameters an(s)> 0 are estimated by maximizing the inde-
pendent log-likelihood; that is,

ℓin de p c,an sj   � 
n

t�1


m

j�1
1

xt sj( ≥bn sj(  

· log
1

an sj 
1+ c

xt sj  − bn sj 

an sj 

⎧⎨

⎩

⎫⎬

⎭

− 1/c− 1

+

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦.

(13)

+e assumptions of parameter identifiability (see ap-
pendix B) implies that ℓ(an) � an.

+e trend function parameter cθ is estimated using the
maximum likelihood method under the assumption that the
dates of exceeding the marginal thresholds bn are asymp-
totically independent and identically distributed, from the
density function cθ(t/n, s) [8]. Several models are eligible to
model the function cθ. However, in this study, we opt for
parametric models because of their flexibility in trend de-
tection and in order to make extrapolations of the trend
beyond the observed data. To facilitate inference by the
maximum likelihood method, we are interested in mono-
tonic log-linear and simple linear trend models of cθ such
that

c
1
θ

t

n
, s  �

θ(s)

exp θ(s){ } − 1
exp θ(s)

t

n
 , θ(s) ∈ R;

t

n
∈ [0, 1]

c
2
θ

t

n
, s  � θ(s) 2

t

n
− 1  + 1, θ(s) ∈ − 1; 1

t

n
∈ [0, 1],

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

where θ(s), s ∈ S is a characteristic parameter of the trend
function. θ(s)> 0 suggests that extreme are getting more
frequent, while θ(s) < 0 indicates that extremes are getting
less frequent.

2.4.2. Spatial Extremal Dependence. +e spatial dependence
structure is taken into account in the marginal parameters of
spatial process Z by letting these parameters evolve as a
function of space covariates. More precisely, we use a spatial
model of the marginal parameters as functions of the sig-
nificant space covariates using a generalized linear regres-
sion model [9, 12, 13].

an(s) � gan
(v(s)) > 0,

bn(s) � gbn
(v(s)) ∈ R

θ(s) � gθ(v(s)) ∈ R

c(s) � c0 ∈ R,

, s ∈ S,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(15)

where v is a vector of covariates which can contain for
example the space coordinates, or any other spatialized data
explaining significantly the weather variable studied.

Furthermore, after removing the nonstationarity, mod-
eling is focused on the evaluation of the remaining spatial
dependence structure in Z. +us, we approach the limit
distribution of ℓ-exceedances of spatial latent process by a
generalized ℓ-Pareto process (9). To estimate the parameters
of spatial dependence structure, we have chosen to model its
angular component Q (11) by a log-Gaussian process with
stationary increments and within the framework of the
Brown–Resnick model. In this case, we have access to the
limit measure Λ. In order to better capture this dependence
structure, we use a flexible parametric semi-variogram be-
longing to the class of power semi-variograms.+e parameter
of the dependence structure is estimated using the gradient
score method or the censored likelihood method [24, 29].
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3. Application to Extreme Precipitation in
Burkina Faso

3.1. Data Set Analysis. +is study uses time series of daily
precipitation measurements from 1957 to 2016 provided by
ten synoptic stations extracted from the Burkina Faso cli-
matological database. +ese stations have been selected to
ensure good spatial uniformity and representativeness of
different climatic regimes and data quality. Figure 1 gives the
spatial distribution of selected stations in our study area. In
order to limit the problems related to seasonal rainfall cycles
on each station, we worked from the sub-series corre-
sponding to rainy days.+e period fromMay to October was
chosen because it is during this period that the most rainfall
is recorded in the country. +us, a series of 60 years (1957-
2016) by 184 days (May to October) is extracted to constitute
the time series of daily rainfall. On these time series, we apply
a run declustering procedure with a daily step (r� 1 day) to
identify the groups of approximately independent extreme
observations within the sample in order to avoid short-term
dependencies in the time series.

3.2.MarginalCharacteristics. +e first line of Figure 2 shows
the maps of the parameters an and bn estimated on our
selected stations. Map (a) gives us the variability parameter
of the precipitation distribution and shows a very high
variability of extreme precipitation. While map (b) gives us
the estimated level or threshold for each station using
equation (12) and we see that the level is higher in the
Sudanian climate and lower in the Sahelian climate.In
practice, we deduce from the generalized ℓ-Pareto model
fitted to the data, the marginal tail behavior of the survival
distribution F

Z(s),c(s),σ(s)
for any s ∈ S from the (16) given a

sufficiently large uq > 0 threshold.

P Z(s) − uq(s)≥ z|Z(s)≥ uq(s)  ≈ F
Z(s),c(s),σ(s)

(z), z≥ 0,

(16)

with σ(s) � an(s) + c(uq(s) − bn(s)), s ∈ S, where an, bn,
and c are the marginal parameters estimators described in
Section 2.4.1. We can use it to check the quality of the
marginal adjustment of the stationary process Z. Figure 3
shows the qq-plots of the local tail distribution due to two
stations by climatic zone. Columns 1, 2, and 3 of Figure 3
represent the respective adjustments for the Sudanian,
Sudano-Sahelian, and Sahelian climate. Globally, the fit
of the marginal models seems convincing, as most of the
observations remain within the confidence intervals.

+e second row of Figure 2 shows the maps of pa-
rameter θ estimated for the log-linear and simple linear
trend functions. We can observe a strong spatial vari-
ability in the occurrence of extreme precipitation. +us,
we observe a decreasing trend in the frequency of extreme
rainfall in Ouaga, Dori, and Bobo. In contrast, in Boromo,
Ouahigouya, and Pô, extreme precipitation events will
become more and more frequent. Figure 4 gives us the
details of the adjustment of the tail trend function by a
log-linear model.

3.3. Estimated Spatial Dependence Model. We use a spatial
marginal model (15) to estimate the marginal parameters at
the different grid points.+is is to prepare the ground for the
calculation of nonstationary return levels at locations where
we have no observations.

an(s) � a0 + a1Long × Lat(s),

bn(s) � b0 + b1Lat
2
(s) + b2Long × Lat(s),

θ(s) � θ0 + θ1Long + θ2Lat,

c(s) � c0.

, s ∈ S,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(17)

An alternative to the spatial model of marginal pa-
rameters is to consider small subsetsNs0

⊂ S, whereNs0
is a

small neighborhood around s0. In what follows, these re-
gional neighborhoods will be determined by a small
number D0 of nearest stations from the site s0, thus we will
writeNs0

� Ns0,D0
. In principle, the choice of D0 should be

such that the spatial dependence structure and marginal
parameters is approximately stationary within each se-
lected neighborhood Ns0 ,D0

around s0 ∈ S. Obviously, the
choice of neighborhood is important; the assumed sta-
tionary marginal parameters could be a poor approxima-
tion for large neighborhoods (i.e., for large D0), while the
simulation of the process could be cumbersome for small
neighborhoods characterized by a small D0 number of
stations. We obtain the relatively homogeneous, non-
overlapping subregions using the k-means clustering
method centered on the reference stations [30, 31]. +is
method is extensively used because it is computationally
simple and produces accurate results, compared to other
more complex clustering methods. +e longitude and
latitude of the grid points were used as input variables in
the k-means clustering algorithm to form the ten clusters
centered on the reference stations.
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Figure 1: Spatial distribution of synoptic sampling stations as-
sociated with climatic regimes; source: National Meteorology
Agency of Burkina Faso.
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Figure 2: Estimated functions an (a) and bn (b) of the generalized ℓ-Pareto process for modelling extreme precipitation, and θ for Log-linear
(c) and simple linear (d) trends. Estimates are obtained by shifting the local empirical quantiles u0.80 ℓ(Z(s)){ } by bn � 33.4mm.
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In addition, to better take into account the dependence
structure of precipitation data and capture the possible iso-
tropic, we choose a flexible parametric semi-variogram ]
belonging to the power class models such that
](h) � (‖h‖/τ)κ, with τ > 0, h ∈ R2, κ ∈ ]0, 2]. We check the
adequacy of the fit of the model to the data using the
extremogram and the variogram. Figures 5(a) and 5(b) show,

respectively, the good quality of the fit of the dependence
measures such as the semi-variogram and extremogram. In
Figure 5(a), the points in gray represent the calculated em-
pirical extremogram and the blue curve is the fitted empirical
extremogram, while the red curve represents our fitted de-
pendence model. +e red curve in Figure 5(b) is the vario-
gram model fitted to the data as a function of distance.
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Figure 6: Maps of the nonstationary 50-years return levels (a) and 100-years return level (b) obtained by extrapolating the information from
the log-linear tail trend function and the dependence structure.
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It is noted that extreme precipitation is spatially cor-
related for distances of the order of 200 km. In other words,
an extreme precipitation event is likely to affect an area
within a 200 km radius. +is spatial dependence decreases
gradually as the distance increases before stabilizing for
example for a value of π(h) � 0.0625. We find the very
localized nature of extreme precipitation for long distances.
+is is generally a property present in rainfall data [32].

3.4. Nonstationary Return Level Results. After estimating the
marginal parameters and those of the dependence structure,
we now evaluate the nonstationary return levels. +e return
levels x50 and x100 are first estimated (see Figure 6) using the
(6) and (7). +en, they are spatially interpolated at points
where we have no observations using the spatially extrap-
olated trend function and dependence structure estimated
from the observed data.

For a given return period m, we first compute the return
levels zm on each point of grid from the latent spatial process
Z using the estimated spatial model. +e nonstationary
return levels xm is deducted using the (8) of Proposition 2.
We repeat this operation for different values of the return
period m and we deduce on each point of the grid, the
associated return level (Figure 7). We can then produce
maps of the return levels obtained from the dependence
structure and the extrapolation of the trend function for a
future period m. +us, the extreme precipitation, likely to be
observed on average at least once every 50 years (resp.
100 years), will be particularly intense in the Sudanian and
Sudano-Sahelian zone and less intense in the Sahelian zone,
with a potentially quite strong spatial dependence within a
radius of 200 km. +e southwest and eastern regions of the
country will be most affected by extreme precipitations. +e
results of the return level for a return period m � 50 and 100
years are displayed in Figure 6.

4. Discussion and Conclusion

In summary, modeling the spatiotemporal trends of extreme
precipitation in the sub-Saharan Africa is a challenge and a
necessity. Climate models do not often agree on this issue.
Advanced statistical methods remain a fairly powerful al-
ternative to obtain pertinent information on possible spa-
tiotemporal changes in the underlying precipitation
distribution. A frequently used approach to dealing with
nonstationarity in trend analysis of extreme precipitation is
to include covariates, such as space and time, in the pa-
rameters of the underlying distribution [9, 10, 12, 13]. +ese
approaches are built under certain important assumptions
that the underlying process that generates the data is locally
stationary and that the observations generated can be
considered as independent approximations and generally do
not take into account spatial dependence.

In this study, we proposed a new flexible methodology
for trend detection in extremes of spatiotemporal processes.
+is is capable of capturing marginal nonstationarities and
the dependence structure between margins. Marginal
nonstationarity is taken into account by a trend function

called the skedasis function which models the frequency of
extreme events jointly in space and time. While the spatial
dependence structure is governed by a latent spatial process
and modeled using generalized ℓ-Pareto processes. We
calculated the nonstationary return levels of precipitation in
Burkina Faso and exhibit some regions in which there may
be a significant increase or decrease of extreme precipitation.
We showed that these extreme rainfall events are spatially
correlated around a radius of 200 km. +is spatial depen-
dence decreases progressively as the distance increases. In
sum, we set up a nonstationary stochastic generator of
extreme rainfall in Burkina Faso.

Previous studies conducted in the sub-Saharan African
region have shown trends in extreme precipitation similar to
those we obtained using Burkina Faso data set. According to
the latest publications of the National Meteorological Agency
of Burkina Faso, rainfall has started to move back toward a
wet period since the end of the 1980s and the decade 1990-
2000. +is return of rain is more related to an increase in the
frequency of heavy rainfall events than to an increase in the
number of rainy days. Our results are also in agreement with
the results found by [2–4] in the region which indicate a
similar intensification of rainfall events. Based on a point GEV
model with time-dependent parameters, these authors show
that intense precipitation events will become more frequently
occurring in the region. Nkrumah et al. [33] and Mouhamed
et al. [34] observed that the average annual precipitation has a
decreasing trend in the same region due to less frequent but
more intense precipitation during the last decade.

Our method generates extreme events consistent enough
with the data already observed. +e return levels computed
can be improved by introducing also a nonstationarity in the
structure of spatial dependence.

Appendix

A. Proof of Proposition 1

(i) Proof. Let Nm be a random variable describing the
number of exceedances for a period of time m; it
comes that

Nm � 

to+nxm

t�t0

1 Xt(s)> xm(s){ }⇒E Nm 

� 

t0+nxm

t�t0

E 1 Xt(s)> xm(s){ )} .

(A.1)

And according to the (1), we have as follows:

E Nm  � 

t0+nxm

t�t0

P Xt(s)> xm(s)( 

� 

t0+nxm

t�t0

cθ
t

n
, s P Zt(s)>xm(s)( .

(A.2)

Moreover, given a sufficiently large us(s) threshold
with s ∈ S,
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P Zt(s)>xm(s)  � P Zt(s)> u(s) ∗P Zt(s) − u(s)>xm(s)|Zt(s)> u(s) 

≈ ϕu(s)∗FZ xm(s) − u(s), σ(s), c(s) , xm(s)> u(s).
(A.3)

Furthermore, it follows that

E Nm  � 1⇒ 

t0+nxm

t�t0

cθ
t

n
, s ϕu(s)∗FZ xm(s) − u(s), σ(s), c(s)(   � 1, (A.4)

which gives



t0+nxm

t�t0

ϕu(s)cθ
t

n
, s  1 +

c(s)

σ(s)
xm(s) − u(s)  

− 1/c(s)⎧⎨

⎩

⎫⎬

⎭ � 1, (A.5)

with σ(s) � an(s) + c(s)(u(s) − bn(s)).
(ii) +e result (7) is shown in a similar way.

B. Overview on Generalized ℓ-Pareto Process

Let S be a compact subset ofRd denoting the spatial domain
of the study region. We note by C(S) the set of continuous
real functions on S equipped with the uniform norm ‖.‖∞;
C+(S) its restriction to nonnegative functions deprived of
the null function and M C+(S)  the class of measures as-
sociated with C+(S).

Let Z(s), s ∈ S{ } be a latent spatial stochastic process
indexed by s ∈ S ⊂ Rd with sample paths in C(S) of con-
tinuous marginal distribution FZ and common right end-
point zF. As mentioned in [25, 27], we assume that the
spatial process Z is a general functional regular variation
(GRV), i.e., that there exists suitable sequences of contin-
uous functions an: S⟶ R+, bn: S⟶ R and c ∈ R such
that

nP 1 + c
Z − bn( 

an

  

1/c

+

∈ .⎡⎣ ⎤⎦⟶Λ(.) n⟶ +∞,

(B.1)

and noted by Z ∈ GRV(c, an, bn,Λ), where Λ is a nonzero
measure in M C+(S)  and homogeneous of order − 1,
with Λ(tA) � t− 1Λ(A) for any positive real t> 0 and
Borel set A ⊂ C+(S). +e shape parameter c ∈ R is also
called the tail index, which determines the strength of
the tail and its support. According to the sign of c, we end
up with three types of distributions of extreme values
known as Gumbel (c⟶ 0), Frechet (c> 0), and Weibull
(c< 0).

In the multivariate and spatial framework, a threshold
exceedances for a random function Z � Z(s), s ∈ S{ } is
defined by Dombry and Ribatet [26] to be an event of the
form ℓ(Z)> u{ } for some u≥ 0, where ℓ: C(S)⟶ R+ is a

continuous and homogeneous nonnegative risk function,
i.e., there exists α> 0 such that ℓ(λy) � λαℓ(y) when
y ∈ C+(S) and λ> 0. +e risk function ℓ determines the type
of extreme events of interest. For example, such a function
can be the maximum, minimum, average, or value at a
specific point s0 ∈ S. Moreover, as in [25, 28], we assume that
there exists a continuous and positive real function AZ such
that the sequence an and the risk function ℓ satisfy the
following asymptotic decomposition:

lim
n⟶∞

sup
s∈S

an(s)

ℓ an( 
− AZ(s) � 0, i.e an(s) ≈ ℓ an( AZ(s),

n⟶∞.

(B.2)

Furthermore, the marginal distributions of Z are sup-
posed to belong to a location-scale family, thus ensuring a
constant c ∈ R shape parameter over any S, i.e., that there
exist a H distribution function such that

P(Z(s)≤ z) � H
z(s) − BZ(s)( 

AZ(s)
 , (B.3)

where AZ: S⟶ (0;∞] verifies asymptotic decomposition
(B.2) and BZ: S⟶ R are continuous functions. In par-
ticular H must belong to the domain of attraction of a
generalized extreme value (GEV) distribution of tail index
c ∈ R, i.e., FZ ∈ D(Gc). In other words, there are appro-
priate normalization real sequences an > 0, bn ∈ R such that
limn⟶∞Hn(anz + bn) � Gc(z). +e condition of the max-
domain of attraction is equivalent to

lim
n⟶+∞

n 1 − H anz + bn   � − log Gc(z), z> 0. (B.4)

Assuming these conditions and general functional reg-
ular variation, the appropriate sequence of continuous
functions an(s) and bn(s), satisfy the following:
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an(s) � anAZ(s), bn(s) � BZ(s) + AZ(s)bn, s ∈ S. (B.5)

Functions AZ(s) and BZ(s) as well as the spatial de-
pendence structure of Z are assumed to belong to a family of
parametric functions AZ,θA

: θA ∈ ΘA  ; BZ,θB
: θB ∈ ΘB 

and ΛθΛ: θΛ ∈ ΘΛ . Under minimal assumptions on the
risk function and assumptions (18, 19) of Z, the conditional
distribution of ℓ-exceedance for some threshold u≥ 0 of the
process (Z − bn)/ℓ(an) can be approximated by a general-
ized ℓ-Pareto process, for n large enough [25].

P ⌊
Z − bn

ℓ an( 
⌋ ∈ A|ℓ

Z − bn

ℓ an( 
 ≥ u ⟶ P Wℓ ∈ A ,

n⟶∞,

(B.6)

where ⌊z⌋ � max(z, AZc− 1) if c> 0 and ⌊z⌋ � z if c≤ 0. Wℓ
is a nondegenerate stochastic process over S and belongs to
the family of generalized ℓ-Pareto processes with tail index c,
zero location, scaling function AZ and limit measure Λ.
Specifically, a generalized ℓ-Pareto process Wℓ associated to
the limit measure Λ and tail index c ∈ R is a stochastic
process taking values in z ∈ C+(S): ℓ (z − b)/ℓ(a){ }≥ 0 

and defined by the following:

Wℓ �

a Y
c

ℓ − 1( 

c + b
, c≠ 0,

a log Yℓ + b, c � 0,

;

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(B.7)

where a � ℓ(a)AZ > 0 and b are continuous functions on S,
respectively, scale and location functions. Yℓ is a stochastic
process whose probability measure is completely determined
by the limit measure Λ.

C. Asymptotic Distribution of ℓ-Pareto Process

For a threshold vector u � (u1, . . . , ud) ∈ Rd
+ and for any

regularly varying stochastic process Z ∈ GRV c, an, bn,Λ ,
the density function of the ℓ-excess of a ℓ-Pareto process is
obtained by renormalizing suitably the intensity function λ
found by taking the partial derivatives of the previously
defined measure Λ (B.6) by Λ(Aℓ(u)):

fℓ,u(z) �
λ(z)

Λ Aℓ(u) 
, z ∈ Aℓ(u), (C.1)

where

Λ Aℓ(u)  � 
Aℓ(u)

λ(z)dz. (C.2)

while λ is the intensity function and
Aℓ(u) � z ∈ Rd

+: ℓ(z/u)≥ 1  the region of exceedances. In
order to make inferences and to model the dependence
structure of ℓ-Pareto processes, we focus on the
Brown–Resnick model for which the formulas ofΛ and λ are
available. +e d-dimensional intensity function of the
Brown–Resnick model is given as follows:

λBR(z) �
|Σ|− 1/2

z
2
1z2, . . . ,zd(2π)

(d− 1)/2 exp −
1
2
z

TΣ− 1z , z ∈Rd
+,

(C.3)

where zi � logzi/z1 + c(si − s1) and Σ the covariance matrix.
To better capture the possible dependence structure, we

use anisotropic semi-variograms whose parameters change
with time and other covariates. +e different parameters are
estimated using the gradient scoring rule method [24]. For
any z ∈ Aℓ(u), the log-density function is given by the
following:

δw λθ, z(  � 
d

j�1
2wj(z)

zwj(z)

zzj

z log λθ(z)

zzj

+ wj(z)
2 z

2log λθ(z)

zz
2
j

+
1
2

z log λθ(z)

zzj

 

2
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠, (C.4)

where w is a differentiable weighting function that vanishes
on the boundaries of Aℓ(u) and θ is an element in the
Θ ⊂ Rp parameter space.
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