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We fully describe the envelope of all line segments that divide the perimeter of a triangle into the ratio α: (1 − α) as α varies from 0
to 1/2. If α is larger than the ratio of the longest side length to the perimeter, then the envelope is a 12-sided closed curve consisting
of six line segments and six parabolic arcs. For other values of α, the envelope is the union of one to three parabolic arcs and
possibly a 5- or 9-sided nonclosed curve consisting of line segments and parabolic arcs.

1. Introduction

Is there a point P where every line passing through P bisects
the perimeter of a triangle? �e answer is “no.” �ese lines
are not concurrent. Instead, they “wrap” around a curve
called the envelope of perimeter-bisecting lines. Berele and
Catoiu [1] show that the envelope of perimeter-bisecting
lines, called the perimeter-bisecting deltoid, is a 6-sided
closed curve consisting of three line segments and three
parabolic arcs (see Figure 1).

In this article, we extend Berele and Catoiu’s result to
imbalanced proportions. Particularly, we classify and de-
scribe the envelope of all line segments that divide the
perimeter of a triangle into the ratio α: (1 − α), for
0< α≤ 1/2. For example, there are two possibilities for an
equilateral triangle. If α≤ 1/3, then the envelope of all line
segments that divide the perimeter of a triangle into the ratio
α: (1 − α) is the union of three parabolic arcs. On the other
hand, if 1/3< α< 1/2, then the envelope is a 12-sided closed
curve consisting of six line segments and six parabolic arcs
(see Figure 2).

To tackle this problem, �rst, we reduce the problem of
�nding the envelope for a triangle to a smaller problem of
�nding the envelope for each angle. �en, we combine the

results from the three angles together. �e construction of
“single angle envelopes” is given in Section 3, and the
groundwork for combining single angle envelopes is
given in Section 4 and Section 5. A complete description
of the envelope of all line segments that divide the pe-
rimeter of a triangle into the ratio α: (1 − α) is given in
Section 6.

2. Preliminaries

We recall basic facts about the envelope of a family of curves.
A one-parameter family of curves Γ is a collection of all
curves F(x, y, t) � 0 on the xy plane, where t is a parameter.
In other words,

Γ � F(x, y, t) � 0: t ∈ I{ }, (1)

where I is an index set. In this article, we assume that the
index set I is an interval, and the function F is su�ciently
smooth. �ere are multiple de�nitions of the envelope of a
family of curves. Here, we introduce two de�nitions that are
equivalent in our interesting situations. �e reader should
refer to [2, 3] for facts and examples of the envelope of a one-
parameter family of the curve.
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Definition 1. �e envelope of the family Γ is the set E1 of
points given by

E1 � (x, y): F(x, y, t) � Ft(x, y, t) � 0 for some t ∈ I􏼈 􏼉. (2)

Informally, we “eliminate” t between the equations
F(x, y, t) � 0 and Ft(x, y, t) � 0.

Definition 2. �e envelope of the family Γ is a curve E2 that
touches each curve F(x, y, t) � 0 at some point. More
precisely, E2 is the set of points (x(t), y(t)) that belong to
F(x, y, t) � 0 and where E2 and F(x, y, t) � 0 have the same
tangent line there. �e range of values of t may be smaller
than the full interval where Γ is defined.

We are only concerned with a family of straight lines in
this article. Definition 1 and Definition 2 are equivalent in
this case.

Proposition 1 (Proposition 5 in [2]). Assume that
F(x, y, t) � a(t)x + b(t)y + c(t), that is, all curves in Γ are
straight lines. If a′(t)b(t) − a(t)b′(t)≠ 0, then E1 � E2.

3. Single Angle Envelopes

Our goal is to describe the envelope of all line segments that
divide the perimeter of a triangle into the ratio α: (1 − α).
�ese segments are generated from two endpoints, M and
N, which move along the sides of a triangle while dividing
the perimeter into a fixed ratio. �e trip is split into three
parts where separations occur when either M or N meets a
vertex. As a result, our problem reduces to studying the
envelope of all segments MN when M and N travel along
each leg of a fixed angle ∠O such that the sum OM + ON is

constant. In this section, we show that such envelopes are
parabolic arcs and provide some properties of the envelopes.

Definition 3. Let ∠AOC be a fixed angle that measures less
than π and σ be a fixed positive real number. We define the
single angle envelope E(∠O, σ) to be the envelope of all
segments MN such that M is on the ray OA

��→
, N is on the ray

OC
��→

, and OM + ON � σ. Since envelopes of congruent angles
are congruent, we denote by E(θ, σ) the envelope of any
angle of measure θ and sum σ.

�e term and concept of single angle envelopes were
developed by Berele and Catoiu [1] when they studied the
envelope of perimeter-bisecting lines of a triangle. Definition
3 and the statements of Lemma 1 and Lemma 2 are adapted
from [1]. For completeness, we include alternate proofs of
both lemmas here.

�e next lemma shows that a single-angle envelope is a
parabolic arc.

Lemma 1. Let ∠AOC be an angle of measure 2ϕ< π. In a
coordinate system centered at O such that the y-axis is a
symmetry axis of ∠AOC when the point A is in the second
quadrant and the point C is in the first quadrant (see Fig-
ure 3), the single angle envelope E(2ϕ, σ) is a parabolic arc
given by the following equation:

y �
cos ϕ

2σ sin2 ϕ
x
2

+
σ cos ϕ

2
, whenx ∈ [−σ sin ϕ,σ sin ϕ]. (3)

Proof. Let M be a point on the ray OA
��→

and N be a point on
the ray OC

��→
such that OM + ON � σ. Let OM � t where

t ∈ [0, σ]. �en, ON � σ − t. As vectors, OM
���→

� t(−sin ϕ ı→ +

cos ϕ j
→

) and ON
��→

� (σ − t)(sin ϕ ı→ + cos ϕ j
→

). Hence, the
segment MN is part of the line given by the following
equation:

y �
(σ − 2t)cos ϕ

σ sin ϕ
􏼠 􏼡(x + t sin ϕ) + t cos ϕ. (4)

Let Γ be the collection of all such lines. We have that

Γ � F(x, y, t) � 0: t∈[0, σ]􏼈 􏼉, (5)

where

F(x,y,t) � −
2 cos ϕ
σ2

t
2

−
2x cos ϕ
σ2 sin ϕ

t +
x cos ϕ
σ sin ϕ

+
2x cos ϕ

σ
−

y

σ
.

(6)

�e system of equations F(x, y, t) � Ft(x, y, t) � 0 holds
when

t �
σ
2

−
x

2 sin ϕ
. (7)

By substituting the above value of t into (4), we have that
the envelope of Γ is given by the following equation:

Figure 1: Every line tangent to the perimeter-bisecting deltoid
bisects the perimeter of the triangle.

Figure 2: �e envelope of all line segments that divide the pe-
rimeter of an equilateral triangle into the ratio α: (1 − α), for
1/3< α< 1/2.

2 International Journal of Mathematics and Mathematical Sciences



y �
σ cos ϕ

2
+

cos ϕ
2σ sin2 ϕ

x
2
. (8)

Since t ∈ [0, σ], we have x ∈ [−σ sin ϕ, σ sin ϕ]. □
�e following lemma provides a method for calculating

the tangential points of a single angle envelope. □

Lemma 2. Let ∠AOC be an angle of measure 2ϕ< π and σ be
a fixed positive real number. Let M be a point on OA and N

be a point on OC with OM + ON � σ. If MN is tangent to the
single angle envelope E(∠AOC, σ) at P, then

(PM)(OM) � (PN)(ON). (9)

Proof. Let OM � t and λ � PM/MN. �en, ON � σ − t and
PN/MN � 1 − λ. We want to show that
(PM)(OM) � (PN)(ON), which is equivalent to

λt � (1 − λ)(σ − t). (10)

From (7) and (8), we can write the coordinates of P in
terms of t as

P � (σ − 2t)sin ϕ, σ − 2t +
2t

2

σ
􏼠 􏼡cos ϕ􏼠 􏼡. (11)

Alternatively, as a vector,

OP
��→

� (1 − λ)OM
���→

+ λON
��→

� (−t + λσ)sin ϕ ı→ +(t − 2λt + λσ)cos ϕ j
→

.
(12)

(11) and (12) describe the same point. We must have that

(−t + λσ)sin ϕ � (σ − 2t)sin ϕ

and

σ − 2t +
2t

2

σ
􏼠 􏼡cos ϕ � (t − 2λt + λσ)cos ϕ.

(13)

Both equations imply (10) as wanted.
Proposition 1 implies that the single angle envelope

E(∠AOC, σ) is tangent to the legs of the angle ∠AOC. �e
locations of the tangential points can be calculated by (3) at
the endpoints. We get the following lemma.

Lemma 3. Let ∠AOC be an angle of measure 2ϕ< π and σ be
a fixed positive real number. �e single angle envelope
E(∠AOC, σ) is tangent to the ray OA

��→
at a point U and

tangent to the ray OC
��→

at a point V where OU � OV � σ.

4. α-Splitters

From now on, we will assume that 0< α≤ 1/2, and we will
use the following notation for the envelope of all line seg-
ments that divide the perimeter of a triangle into the ratio
α: (1 − α).

Notation 1. We denote the envelope of all line segments that
divide the perimeter of a triangle into the ratio α: (1 − α) by
Dα.

We will also use the following notation for the side
lengths of a triangle.

Notation 2. For a triangle ΔABC, we write a � BC, b � CA,
and c � AB. We denote the perimeter of ΔABC by
p � a + b + c.

Recall that our investigation onDα reduces to the study of
single angle envelopes, which are parabolic arcs. For example,
for a triangle ΔABC, every line segment that is tangent to the
single angle envelopes E(∠A, αp) divides the perimeter of
ΔABC into the ratioα: (1 − α). However, the endpoints of such
line segments are restricted to the sides of ΔABC. As a result,
not every point ofE(∠A, αp) is a part ofDα. It is cut by cevians
that divide the perimeter of a triangle into the ratio α: (1 − α).

Definition 4. We call a cevian that divides the perimeter of a
triangle into the ratio α: (1 − α) an α-splitter. We call the
endpoint of an α-splitter on the opposite side of a vertex an
α-splitting point.

�ere can be up to two α-splitters at each vertex. �us, a
triangle has at most six α-splitters. We will use the following
notation for the six α-splitting points.

Notation 3. For a triangle ΔABC, we let AB
′ and AC

′ denote
the α-splitting points on the side BC such that BA + BAB

′ �
αp and CA + CAC

′ � αp, respectively. It follows that AAB
′

and AAC
′ are α-splitters. �e notations for all α-splitting

points are summarized. Figure 4 shows the locations of
α-splitting points in a triangle.

AB
′ ∈ BCwithBA + BAB

′ � αp;

AC
′ ∈ BCwithCA + CAC

′ � αp;

BA
′ ∈ CAwithAB + ABA

′ � αp;

BC
′ ∈ CAwithCB + CBC

′ � αp;

CA
′ ∈ ABwithAC + ACA

′ � αp;

CB
′ ∈ ABwithBC + BCB

′ � αp.

(14)

O

M

N

σ - t
ϕ

t

A
CP

U V

Figure 3: �e single angle envelope E(2ϕ, σ).
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We note that when α � 1/2, AB
′ coincides with AC

′ , BC
′

coincides with BA
′, and CA

′ coincides with CB
′. In plane

geometry, a 1/2-splitter is simply called a splitter. �e three
splitters concur at a point known as the Nagel point [4].

�e following lemma gives necessary and sufficient
conditions for the existence of α-splitting points.

Lemma 3. Let ΔABC be a triangle. �e following statements
hold.

(1) �e α-splitting points BC
′ and CB

′ exist if and only if
α> a/p

(2) �e α-splitting points CA
′ and AC

′ exist if and only if
α> b/p

(3) �e α-splitting points AB
′ and BA

′ exist if and only if
α> c/p

Proof. We give the proof of (1) here. �e proofs of (2) and
(3) are similar.

(⇒) Assume that the α-splitting points BC
′ and CB

′ exist.
It follows that BC + CBC

′ � αp and BC + BCB
′ � αp, where

BCB
′ > 0 and CBC

′ > 0. We then have αp>BC � a. Hence,
α> a/p.

(⇐) Assume that α> a/p. �en, αp> a � BC. �us,
there exists x> 0 such that x + BC � αp. From the triangle
inequality, α≤ 1/2< (c + a)/p. �is means x + BC � αp

<AB + BC. �us, x<AB. In particular, there exists a point
CB
′ ∈ AB such that BCB

′ � x; that is, BC + BCB
′ � αp. By a

similar argument, there exists a point BC
′ ∈ AC such that

BC + CBC
′ � αp. �e points CB

′ and BC
′ are α-splitting

points. □
�e following corollary determines the number of

α-splitters based on the value of α. It follows directly from
the proof of Lemma 3. □

Corollary 1. Let ΔABC be a triangle such that a≤ b≤ c.
�en, the following statements hold.

(1) If α≤ a/p, then ΔABC has no α-splitters
(2) If a/p< α≤ b/p, then ΔABC has exactly two

α-splitters: BBC
′ and CCB

′

(3) If b/p< α≤ c/p, then ΔABC has exactly four
α-splitters: BBC

′, CCB
′, CCA
′, and AAC

′

(4) If c/p< α< 1/2, then ΔABC has exactly six α-splitters:
BBC
′, CCB
′, CCA
′, AAC
′, AAB
′, and BBA

′

5. Cutting Single Angle Envelopes with α-
Splitters

As discussed earlier, the problem of finding Dα reduces to
studying the single angle envelopes E(∠A, αp) and
E(∠A, (1 − α)p). However, it is not necessary for all points
ofE(∠A, αp) andE(∠A, (1 − α)p) to beDα.�ey are cut by
α-splitters. In this section, we find the locations of these cut
points. �e results in this chapter will serve as key lemmas
for the classification of Dα in Section 6.

5.1. Cutting E(∠A, αp) with α-Splitters. Figure 5 illustrates
the results of Lemma 4 to Lemma 7.

Lemma 4. Let ΔABC be a triangle. If the α-splitters BBA
′ and

CCA
′ do not exist, then E(∠A, αp) ⊂ Dα and E(∠A, αp) is

tangent to the sides AB and AC at the points U and V where
AU � AV � αp, respectively.

Proof. From Lemma 1 and Lemma 3, E(∠A, αp) is a par-
abolic arc which is tangent to the rays AB

��→
and AC

��→
at the

points U and V where AU � AV � αp, respectively. Because
the α-splitters BBA

′ and CCA
′ do not exist, Lemma 4.5 implies

that αp<AB and αp<AC.�is means that the points U and
V are on the sides AB and AC, respectively. �erefore,
E(∠A, αp) ⊂ Dα. □ □

Lemma 5. Let ΔABC be a triangle. If the α-splitter BBA
′ exists

but the α-splitter CCA
′ does not exist, thenE(∠A, αp) ∩Dα is

a parabolic arc with endpoints Bα
A on BBA

′ and V on the side
AC such that

B
α
AB

B
α
ABA
′

�
ABA
′

AB

�
αp − c

c
,

AV � αp.

(15)

Proof. From Lemma 1 and Lemma 3, E(∠A, αp) is a par-
abolic arc that is tangent to the rays AB

��→
and AC

��→
at the points

U and V where AU � AV � αp, respectively.
Since the α-splitter BBA

′ exists, Lemma 3 implies that
AB< αp. �us, the point U is not on the side AB. �erefore,
the single angle envelope E(∠A, αp) is cut by the α-splitter
BBA
′ at a point Bα

A. From Lemma 2, (Bα
AB)(AB) �

(Bα
ABA
′)(ABA
′). Hence,

A

B C

C'A

C'B

A'B A'C

B'A

B'C

Figure 4: α-splitting points.
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B
α
AB

B
α
ABA
′

�
ABA
′

AB

�
αp − c

c
.

(16)

Because the α-splitter CCA
′ does not exist, Lemma 4.5

implies that αp<AC. Hence, the point V is on the side AC
and AV � αp. □

�e proofs of Lemma 6 and Lemma 7 are similar to the
proof of Lemma 5. □

Lemma 6. Let ΔABC be a triangle. If the α-splitter CCA
′ exists

but the α-splitter BBA
′ does not exist, then E(∠A, αp)∩Dα is

a parabolic arc with endpoints Cα
A on CCA

′ and U on the side
AB such that

AU � αp,

C
α
AC

C
α
ACA
′

�
ACA
′

AC

�
αp − b

b
.

(17)

Lemma 7. Let ΔABC be a triangle. If the α-splitters BBA
′ and

CCA
′ exist, then E(∠A, αp)∩Dα is a parabolic arc with

endpoints Bα
A on BBA

′ and Cα
A on CCA

′ such that

B
α
AB

B
α
ABA
′

�
ABA
′

AB

�
αp − c

c
,

C
α
AC

C
α
ACA
′

�
ACA
′

AC

�
αp − b

b
.

(18)

5.2. Cutting E(∠A, (1 − α)p) with α-Splitters

Lemma 8. Let ΔABC be a triangle. If the α-splitters BBC
′ and

CCB
′ do not exist, then E(∠A, (1 − α)p) and Dα are disjoint.

Proof. Since the α-splitters BBC
′ and CCB

′ do not exist,
Lemma 3 implies that αp<BC, that is, (1 − α)p> b + c.

Recall that the single angle envelope E(∠A, (1 − α)p) is
the envelope of all segment MN such that M is on ray AB

��→

and N is on ray AC
��→

such that AM + AN � (1 − α)p. Suppose
for the sake of contradiction that M ∈ AB and N ∈ AC. It
follows that (1 − α)p � AM + AN≤ b + c. �is is a contra-
diction. �erefore, there is no such segment MN. In other
words, E(∠A, (1 − α)p) and Dα are disjoint. □

�eproof of the following lemma is similar to the proof of
Lemma 5. Figure 6 illustrates the result of this lemma. □

Lemma 9. Let ΔABC be a triangle. If the α-splitters BBC
′ and

CCB
′ exist, then E(∠A, (1 − α)p)∩Dα is a parabolic arc with

endpoints B1−α
C on BBC

′ and C1−α
B on CCB

′ such that

B
1−α
C B

B
1−α
C BC
′

�
ABC
′

AB

�
(1 − α)p − c

c
,

C
1−α
B C

C
1−α
B CB
′

�
ACB
′

AC

�
(1 − α)p − b

b
.

(19)

6. Classifying the Envelopes

6.1. Statement of the Main �eorem. �e following theorem
completely describes the envelope of all line segments that
divide the perimeter of a triangle into the ratio α: (1 − α).
Figure 7 illustrates Dα as α varies from 0 to 1/2. For con-
venience, we will denote a parabolic arc with endpoints P

and Q by 􏽣PQ.

Theorem 1. Let ΔABC be a triangle such that a≤ b≤ c. �en,
the following statements hold.

(1) If α≤ a/p, thenDα is the union of three parabolic arcs.
In particular,

Dα � E(∠A, αp)∪E(∠B, αp)∪E(∠C, αp). (20)

A

U
V

CB

(a)

A

V

CB

B'A

Bα
A

(b)

A

U

CB

C'A

 α
A

(c)

A

CB

C'A
B'A

 αABαA

(d)

Figure 5: E(∠A, αp)∩Dα in (a) Lemma 5.1, (b) Lemma 5.2, (c) Lemma 5.3, and (d) Lemma 5.4.
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�e single angle envelope E(∠X, αp) is tangent to the
sides XY and XZ at the points UX and VX, respec-
tively, such that XUX � XVX � αp, when (X, Y, Z) is
a permutation of (A, B, C).

(2) If a/p< α≤ b/p, then Dα is the union of E(∠A, αp)

and a 5-sided nonclosed curve whose sides alternate
between two line segments and three parabolic arcs. In
particular,

Dα � 􏽤VBC
α
B∪C

α
BC

1−α
B ∪

􏽤
C
1−α
B B

1−α
C ∪B

1−α
C B

α
C∪ 􏽤B

α
CUC􏼒 􏼓∪E(∠A,αp),

(21)

where

(a) the single angle envelope E(∠A, αp) is tangent to
the sides AB and AC at the points UA and VA,
respectively, such that AUA � AVA � αp

(b) 􏽤VBCα
B ⊂ E(∠B, αp) and 􏽤Bα

CUC ⊂ E(∠C, αp)

have endpoints VB and UC on the sides AB and
AC, respectively, with BVB � CUC � αp, and

(c) 􏽤C1−α
B B1−α

C ⊂ E(∠A, (1 − α)p)

(3) If b/p< α≤ c/p, then Dα is a 9-sided nonclosed curve
whose sides alternate between four line segments and
five parabolic arcs. In particular,

Dα � 􏽤UAC
α
A∪C

α
AC

1−α
A ∪

􏽤
C
1−α
A A

1−α
C ∪A

1−α
C A

α
C∪ 􏽤A

α
CB

α
C

∪Bα
CB

1−α
C ∪

􏽤
B
1−α
C C

1−α
B ∪C

1−α
B C

α
B∪ 􏽤C

α
BVB,

(22)

where

(a) 􏽤UACα
A ⊂ E(∠A, αp) and 􏽤Cα

BVB ⊂ E(∠B, αp)

have endpoints UA and VB on the side AB with
AUA � BVB � αp

(b) 􏽤Aα
CBα

C ⊂ E(∠C, αp), and
(c) 􏽤B1−α

C C1−α
B ⊂ E(∠A, (1 − α)p) and

􏽤C1−α
A A1−α

C ⊂ E(∠B, (1 − α)p)

(4) If c/p< α< 1/2, then Dα is a 12-sided closed curve
whose sides alternate between six line segments and
six parabolic arcs. In particular,

Dα � 􏽤B
α
AC

α
A∪C

α
AC

1−α
A ∪

􏽤
C
1−α
A A

1−α
C ∪A

1−α
C A

α
C∪ 􏽤A

α
CB

α
C

∪Bα
CB

1−α
C ∪

􏽤
B
1−α
C C

1−α
B ∪C

1−α
B C

α
B∪􏽤C

α
BA

α
B

∪Aα
BA

1−α
B ∪

􏽤
A
1−α
B B

1−α
A ∪B

1−α
A B

α
A,

(23)

where

(a) 􏽤Bα
ACα

A ⊂ E(∠A, αp), 􏽤Aα
BCα

B ⊂ E(∠B, αp), and
􏽤Bα
CAα

C ⊂ E(∠C, αp), and
(b) 􏽤B1−α

C C1−α
B ⊂ E(∠A, (1 − α)p),

􏽤C1−α
A A1−α

C ⊂ E(∠B, (1 − α)p), and
􏽤A1−α

B B1−α
A ⊂ E(∠C, (1 − α)p)

�e locations of endpoints of sides ofDα can be identified
exactly. In all cases, the endpoints Yα

Z and Y1−α
Z are on the

α-splitter YYZ
′ so that

Y
α
ZY

Y
α
ZYZ
′

�
αp − YZ

YZ
,

Y
1−α
Z Y

Y
1−α
Z YZ
′

�
(1 − α)p − XY

XY
,

(24)

when (X, Y, Z) is a permutation of (A, B, C).

We note that when α � 1/2, E(∠X, αp) coincides with
E(∠X, (1 − α)p). As a result, six pairs of sides of Dα co-
incide. In this case, we may consider Dα as a 6-sided closed
curve. Berele and Catoiu [1] call this curve the perimeter-
bisecting deltoid.

6.2. Proof of theorem 1. �eorem 1 can be proven by
combining the results of appropriate lemmas in Section 5
based on the existence of α-splitters, which is given in
Corollary 1. For conciseness, we only give a detailed proof of
�eorem 1 (2) here. �eorem 6.1 (1), (3), and (4) can be
proven with similar methods.

Proof of (2).
Assume that a/p< α≤ b/p. From Corollary 1, the

α-splitters BBC
′ and CCB

′ exist, but AAB
′, AAC
′, BBA
′, and CCA

′
do not exist.

First, we consider the angle ∠A. Because the α-splitters
BBC
′ and CCB

′ exist, Lemma 4 implies thatE(∠A, αp) ⊂ Dα,
and it is tangent to the sides AB and AC at the points UA and
VA where AUA � AVA � αp, respectively. Lemma 9 implies
that E(∠A, (1 − α)p)∩Dα is a parabolic arc that is cut from
E(∠A, (1 − α)p) by BBC

′ and CCB
′. �e endpoints are

B1−α
C ∈ BBC

′ and C1−α
B ∈ CCB

′ such that

B
1−α
C B

B
1−α
C BC
′

�
ABC
′

AB
�

(1 − α)p − AB

AB
,

C
1−α
B C

C
1−α
B CB
′

�
ACB
′

AC
�

(1 − α)p − AC

AC
.

(25)

C'B
B'C

A

CB

B1
 
-α

 1
B
-α

Figure 6: E(∠A, (1 − α)p)∩Dα in Lemma 5.6.
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Next, we consider the angle ∠B. Since the α-splitter CCB
′

exists, Lemma 6 implies that the intersection of E(∠B, αp)

andDα is a parabolic arc which is cut fromE(∠B, αp) by the
α-splitter CCB

′ and the side AB. �e endpoints are Cα
B ∈ CCB

′
and VB ∈ AB such that

C
α
BC

C
α
BCB
′

�
BCB
′

BC

�
αp − BC

BC
,

BVB � αp.

(26)

Because the α-splitters AAC
′ and CCA

′ do not exist, Lemma
5.5 implies that E(∠B, (1 − α)p) and Dα are disjoint.

Lastly, we consider the angle ∠C. Since the α-splitter BBC
′

exists, Lemma 5.3 implies that the intersection ofE(∠C, αp)

and Dα is a parabolic arc that is cut from E(∠C, αp) by the
α-splitter BBC

′ and the side AC. �e endpoints are Bα
C ∈ BBC

′
and UC ∈ AC such that

B
α
CB

B
α
CBC
′

�
CBC
′

CB

�
αp − CB

CB
,

CUC � αp.

(27)

Because the α-splitters AAB
′ and BBA

′ do not exist, Lemma 5.5
implies that E(∠C, (1 − α)p) and Dα are disjoint.

We have shown that Dα contains parabolic arcs 􏽤VBCα
B,

􏽤C1−α
B B1−α

C , and 􏽤Bα
CUC, which are cut from appropriate single

angle envelopes by α-splitters. Since Cα
B and C1−α

B are two
points on the same α-splitter, CCB

′, which divides the pe-
rimeter of ΔABC into the ratio α: (1 − α), the segment
Cα

BC1−α
B is also contained in Dα. Similarly, the segment

B1−α
C Bα

C is also a part of Dα. As a result, we have that

􏽤VBC
α
B∪C

α
BC

1−α
B ∪

􏽤
C
1−α
B B

1−α
C ∪B

1−α
C B

α
C∪ 􏽤B

α
CUC􏼒 􏼓⊂Dα. (28)

�erefore,

Dα � 􏽤VBC
α
B∪C

α
BC

1−α
B ∪

􏽤
C
1−α
B B

1−α
C ∪B

1−α
C B

α
C∪ 􏽤B

α
CUC􏼒 􏼓∪E(∠A,αp).

(29)

In other words,Dα is the union of E(∠A, αp) and a 5-sided
nonclosed curve whose sides alternate between two line
segments and three parabolic arcs. �is completes the proof
of �eorem 1 (2).

6.3. Properties and Special Cases. In this section, we list some
properties and special cases of Dα.

Corollary 2. If α> a/p, then adjacent sides of Dα either
connect smoothly or make a cusp.

Proof. �is follows directly from the properties of the en-
velopes of families of curves (see Proposition 1). □

Corollary 3. Parabolic sides ofDα have the angle bisectors as
their axes of symmetry.

Proof. �e corollary follows directly from Lemma 1. □
�e corollaries below are special cases of �eorem 1. □

Corollary 4 (equilateral case). Let ΔABC be an equilateral
triangle. �en, the following statements hold.

(1) If α≤ 1/3, thenDα is the union of three parabolic arcs
(2) If 1/3< α< 1/2, then Dα is a 12-sided close curve

whose sides alternate between six line segments and
six parabolic arcs

VA
UA

VB

UB
B CVC

UC

A

(a)

UC
VB

UA

B C

VA

A

 αBBα B1
 
-α  1

B
-α

(b)

VB

UA

B C

A

 αB

 αA

Aα 

Bα 

B1
 
-α  1

B
-α

A1
 
-α

 1
A
-α

(c)

B C

A

 αB

 αA

AαB

Aα 

Bα 

BαA
B1
 
-α  1

B
-α

A1
 
-α

 1
A
-α

B1
A
-α

A1
B
-α

(d)

Figure 7: Dα for a triangle ΔABC with a≤ b≤ c when (a) α≤ a/p, (b) a/p< α≤ b/p, (c) b/p< α≤ c/p, and (d) c/p< α< 1/2.
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Corollary 5 (isosceles case). Let ΔABC be an isosceles
triangle.

(1) If a< b � c, then the following statements hold

(a) If α≤ a/p, thenDα is the union of three parabolic
arcs

(b) If a/p< α≤ b/p, then Dα is the union of
E(∠A, αp) and a 5-sided nonclosed curve whose
sides alternate between two line segments and
three parabolic arcs

(c) If b/p< α< 1/2, thenDα is a 12-sided closed curve
whose sides alternate between six line segments
and six parabolic arcs

(2) If a � b< c, then the following statements hold

(a) If α≤ b/p, thenDα is the union of three parabolic
arcs

(b) If b/p< α≤ c/p, then Dα is a 9-sided nonclosed
curve whose sides alternate between four line
segments and five parabolic arcs

(c) If c/p< α< 1/2, thenDα is a 12-sided closed curve
whose sides alternate between six line segments
and six parabolic arcs

7. Conclusion

�e envelopes of area bisectors and perimeter bisectors of
triangles, polygons, and convex regions have been topics of
interest in plane geometry (e.g., see [1, 5–7]). �ese objects
have potential applications in computational hydrody-
namics and naval engineering [8]. �e envelope of area
bisectors of a triangle was generalized to imbalanced pro-
portions by Middleton [9].

�is work generalizes the envelope of perimeter bisec-
tors. We fully describe the envelope of all line segments that
divide the perimeter of a triangle into the ratio α: (1 − α), for
0< α≤ 1/2. �is is the very first step in an exciting avenue
that will lead to interesting questions about the properties
and generalizations of these objects.
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