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In this paper, we study the geometry of biharmonic curves in a strict Walker 3-manifold and we obtain explicit parametric
equations for biharmonic curves and time-like biharmonic curves, respectively.We discuss the conditions for a speed curve to be a
slant helix in a Walker manifold. We give an example of biharmonic curve for illustrating the main result.

1. Introduction

(e study of submanifolds of a given ambiant space is a
natural interesting problem which enriches our knowledge
and understanding of the geometry of the space itself. Here,
the ambient space we will consider is a Lorentzian three-
manifold admitting a parallel null vector field called strict
Walker manifold. It is known that Walker metrics have
served as a powerful tool of constructing interesting in-
definite metrics which exhibit various aspects of geometric
properties not given by any positive definite metrics. For
details, see [1, 2].

As a generalization of Legendre curve, the notion of slant
curves was introduced in [3]. A curve in a Walker 3-
manifold is said to be slant if its tangent vector field has a
constant angle with a position vector field.

Eells and Sampson [4] defined harmonic and biharmonic
map between Riemannian manifolds. Jiang [5, 6] derived the
first variation formula of the bienergy from the Euler–Lagrange
equation. Harmonic maps are clearly biharmonic.

Nonharmonic biharmonic maps are called proper
biharmonic maps. Chen and Ishikawa [7] showed nonex-
istence of proper biharmonic curves in Euclidean 3-space E3.
Moreover, they classified all proper biharmonic curves in
Minkowski 3-space E3

1 (see [8]).

Recently, Sasahara [9] introduced biharmonic maps
between pseudo-Riemannian manifolds and studied proper
biharmonic submanifolds in Lorentzian 3-space forms.

Lee [10] studies biharmonic curves in 3-dimensional
Lorentzian Heisenberg space (H3; g), and he shows that
proper biharmonic space-like curve c in Lorentzian Hei-
senberg space (H3; g) is pseudohelix with some properties
about their curvatures. Moreover, c has the space-like
normal vector field and is a slant curve. Finally, he found the
parametric equations of them.

In [11], the authors study the nongeodesic nonnull
biharmonic curves in 3-dimensional hyperbolic Heisenberg
group with a semi-Riemannianmetric of index 2.(ey prove
that all of the nongeodesic nonnull biharmonic curves in
such a 3-dimensional hyperbolic Heisenberg group are
helices. Moreover, they obtain explicit parametric equations
for nongeodesic nonnull biharmonic curves and non-
geodesic space-like horizontal biharmonic curves,
respectively.

And very recently, the author, in [12], studies proper
biharmonic Frenet curves in 3-dimensional Lorentzian
Sasakian space forms of constant holomorphic sectional
curvature H. He gives a necessary and sufficient condition
for a Frenet curve to be proper biharmonic in the Lorentzian
Sasakian space forms. A classification of proper biharmonic
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Frenet curves in 3-dimensional Lorentzian Heisenberg space
is also given.

Motivated by the above works, in this paper, we study
biharmonic curves in a strict Walker 3-manifold. We give a
necessary and sufficient condition for curve in a Walker 3-
manifold to be a slant helix.

(e paper is organised as follows. In Section 2, we give
some preliminaries tolls about biharmonic maps andWalker
3-manifold. In Section 3, we study biharmonic curves in a
strict Walker 3-manifolds, and Section 4 talks about slant
curves in this ambient space.

2. Preliminaries

2.1. Biharmonic Maps. In this section, we give some basic
notions about biharmonic maps; for more details, see [11].

Let (M, g) and (N, h) be Riemannian manifolds and
ψ: M⟶ N be a smooth map. (e tension field of ψ (see
[6]) is given by τ(ψ) � trace∇dψ, where ∇dψ is the second
fundamental form of ψ defined by
∇dψ(X, Y) � ∇ψXdψ(Y) − dψ(∇M

X Y), X, Y ∈ Γ(TM). For
any compact domain Ω ⊂M, the bienergy is defined by

E2(ψ) �
1
2

􏽚
Ω

|τ(ψ)|
2]g. (1)

(en, a smooth map ψ is called biharmonic map if it is a
critical point of the bienergy functional for any compact
domain Ω ⊂M. We have for the bienergy the following first
variation formula:

d
dt

E2 ψt,Ω( 􏼁|t�0 � 􏽚
Ω
〈τ2(ψ),ω〉]g, (2)

where ]g is the volume element, ω is the variational vector
field associated to the variation ψt􏼈 􏼉 of ψ, and

τ2(ψ) � − J τ2(ψ)( 􏼁

� − Δψτ(ψ) − traceRN
(dψ, τ(ψ))dψ .

(3)

τ2(ψ) is called bitension field of ψ. Here, Δψ is the rough
Laplacian on the sections of the pull-back bundle ψ− 1TN

which is defined by

ΔψV � − 􏽘
m

i�1
∇ψei
∇ψei

V − ∇ψ∇M
ei

ei

V􏼚 􏼛, V ∈ Γ ψ− 1
TN􏼐 􏼑, (4)

where ∇ψ is the pull-back connection on the pull-back
bundle ψ− 1TN and ei􏼈 􏼉

m

i�1 is an orthonormal frame on M.
When the target manifold is semi-Riemannian manifold, the
bienergy and bitension field can be defined in the same way.

Let M be a semi-Riemannian manifold and c: I⟶M

be a nonnull curve parametrized by arc length. By using the
definition of the tension field, we have

τ(c) � ∇c

z/zsdc
z

zs
􏼠 􏼡

� ∇TT,

(5)

where T � c′. In this case, biharmonic equation for the curve
c reduces to

τ2(c) � ∇3TT − R T,∇TT( 􏼁T � 0. (6)

2.2. Walker Manifold. A Walker n-manifold is a pseudo-
Riemannian manifold, which admits a field of null parallel
r-planes, with r≤ n/2. (e canonical forms of the metrics
were investigated by A. G. Walker [1]. Walker has derived
adapted coordinates to a parallel plan field. Hence, the
metric of a three-dimensional Walker manifold (M, gε

f)

with coordinates (x, y, z) is expressed as

g
ε
f � dx ∘ dz + εdy

2
+ f(x, y, z)dz

2
. (7)

And its matrix form is

g
ε
f �

0 0 1

0 ε 0

1 0 f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠with inverse g

ε
f􏼐 􏼑

− 1

�

− f 0 1

0 ε 0

1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(8)

For some function f(x, y, z), ε � ± 1, and thus,
D � Span zx as the parallel degenerate line field. Notice that
when ε � 1 and ε � − 1, the Walker manifold has signature
(2, 1) and (1, 2), respectively, and, therefore, is Lorentzian in
both cases.

It follows after a straightforward calculation that the
Levi-Civita connection of any metric (1) is given by

∇zx
zz �

1
2
fxzx,

∇zy
zz �

1
2
fyzx,

∇zz
zz �

1
2

ffx + fz( 􏼁zx +
1
2
fyzy −

1
2
fxzz,

(9)

where zx, zy, and zz are the coordinate vector fields z/zx,
z/zy, and z/zz, respectively. Hence, if (M, gε

f) is a strict
Walker manifolds, i.e., f(x, y, z) � f(y, z), then the asso-
ciated Levi-Civita connection satisfies

∇zy
zz �

1
2
fyzx,

∇zz
zz �

1
2
fzzx −

ε
2
fyzy.

(10)

Note that the existence of a null parallel vector field (i.e.,
f � f(y, z)) simplifies the nonzero components of the
Christoffel symbols and the curvature tensor of the metric
gε

f as follows:
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Γ123 � Γ132 �
1
2
fy,

Γ133 �
1
2
fz,

Γ233 � −
ε
2
fy.

(11)

Starting from local coordinates (x, y, z) for which (7)
holds, it is easy to check that

e1 � zy,

e2 �
2 − f

2
�
2

√ zx +
1
�
2

√ zz,

e3 �
2 + f

2
�
2

√ zx −
1
�
2

√ zz,

(12)

are local pseudo-orthonormal frame fields on (M, gε
f), with

gε
f(e1, e1) � ε, gε

f(e2, e2) � 1, and gε
f(e3, e3) � − 1. (us, the

signature of the metric gϵf is (ε, 1, − 1).

Proposition 1. For the covariant derivatives of the Levi-
Civita connection of the left-invariant metric g defined above,
we have

∇ei
ej �

0
1
4
fy e2 + e3( 􏼁 −

1
4
fy e2 + e3( 􏼁

1
4
fy e2 + e3( 􏼁 −

ε
4
fye1

ε
4
fye1

−
1
4
fy e2 + e3( 􏼁

ε
4
fye1 −

ε
4
fye1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(13)

2e curvature tensor field of ∇ is given by

R(X, Y)Z � ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z, (14)

where X, Y, Z ∈ Γ(M). If we denote by

Rijk � R ei, ej􏼐 􏼑ek, (15)

where the indices i, j, and k take the values 1, 2, and 3, then
the nonzero components of the curvature tensor field are

R121 � − R131

� −
1
4
fyy e2 + e3( 􏼁,

R122 � − R123

� − R132 � R133 �
ε
4
fyye1.

(16)

2e vector product of u and v in (M, gε
f) with respect to

the metric gε
f is the vector denoted by u×fv in M defined by

g
ε
f u×fv, w􏼐 􏼑 � det(u, v, w), (17)

for all vector w in M, where det(u, v, w) is the determinant
function associated to the canonical basis of R3. If
u � (u1, u2, u3) and v � (v1, v2, v3), then, by using (17), we
have

u×fv �
u1 v1

u2 v2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
− f

u2 v2

u3 v3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡 i

→
− ε

u1 v1

u3 v3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
j
→

+
u2 v2

u3 v3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
k
→

.

(18)

Lemma 1. 2e Walker cross product in M has the following
properties:

(1) 2e Walker cross product is bilinear and
antisymmetric

(2) X×fY is perpendicular to both X and Y

(3) 2e frame defined in (5) verifies the following:
e1×fe2 � − e3, e2×fe3 � − e1, and e3×fe1 � e2

3. Biharmonic Curves in Walker 3-Manifold

Let α: I ⊂ R⟶ (M, gε
f) be a curve parametrized by its arc

length s.
(e Frenet frame of α is the vectors T, N, and B along α,

where T is the tangent, N is the principal normal, and B is
the binormal vector. (ey satisfied the Frenet formulas:

∇TT(s) � ε2κ(s)N(s),

∇TN(s) � − ε1κT(s) − ε3τB(s),

∇TB(s) � ε2τ(s)N(s),

⎧⎪⎪⎨

⎪⎪⎩
(19)

where κ and τ are, respectively, the curvature and the torsion
of the curve α, with ε1 � gf(T; T), ε2 � gf(N; N), and
ε3 � gf(B, B).

From (10), we obtain

∇3TT � − 3ε1ε2κ′κ( 􏼁T + − ε1κ
3

+ ε2κ′′ − ε3κτ
2

􏼐 􏼑N

− ε2ε3 2κ′τ + κτ′( 􏼁B.
(20)

Using (16) and Lemma 1, we obtain

R T,∇TT( 􏼁T �
ε2κfyy B2 − B3( 􏼁

4

· B2 − B3( 􏼁N + N2 − N3( 􏼁B􏼂 􏼃,

(21)

where T � T1e1 + T2e2 + T3e3, N � N1e1 + N2e2 + N3e3,
and B � B1e1 + B2e2 + B3e3.

Hence, we obtain
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τ2(c) � − 3ε1ε2κ′κ( 􏼁T + ε1κ
3

− ε2κ″ + ε3κτ
2

−
ε2κfyy B2 − B3( 􏼁

2

4
⎛⎝ ⎞⎠N

+
ε2κfyy B3 − B2( 􏼁 N2 − N3( 􏼁

4
+ ε2ε3 2κ′τ + κτ′􏼒 􏼓􏼠 􏼡B.

(22)

Theorem 1. Let α: I ⊂ R⟶ (M, gε
f) be a curve parame-

trized by its arc length s. 2en, α is a nongeodesic biharmonic
curve if and only if

κ � Constant ≠ 0,

ε1ε3κ
2

+ τ2 �
ε2ε3fyy B2 − B3( 􏼁

2

4
,

τ′ � fyy N2 − N3( 􏼁 B2 − B3( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

where B2 ≠B3.

Proof 1. From (23), it follows that it is biharmonic if and
only if

κ′κ � 0,

ε1κ
3

− ε2κ′′ + ε3κτ
2

−
ε2κfyy B2 − B3( 􏼁

2

4
� 0,

ε2κfyy B2 − B3( 􏼁 N2 − N3( 􏼁

4
+ ε2ε3 2κτ′ + κτ′( 􏼁 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

(e first equation of (24) shows that κ � constant≠ 0.
(en, the second equation (24) becomes

ε1κ
3

+ ε3κτ
2

−
ε2κfyy B2 − B3( 􏼁

2

4
� 0. (25)

Since κ≠ 0, we obtain

ε1ε3κ
2

+ τ2 �
ε2ε3fyy B2 − B3( 􏼁

2

4
. (26)

Since κ � constant, the third equation also becomes

ε2κfyy B3 − B2( 􏼁 N2 − N3( 􏼁

4
+ ε2ε3κτ′ � 0. (27)

(at implies also

−
ε2fyy B2 − B3( 􏼁

2
N2 − N3( 􏼁

4
+ ε2ε3τ′ B2 − B3( 􏼁 � 0. (28)

(en, we have

τ′ �
ε1ε3κ

2
+ τ2􏼐 􏼑 N2 − N3( 􏼁

4ε2ε3 B2 − B3( 􏼁
. (29)

Since fyy � ε1ε3κ2 + τ2/4ε2ε3(B2 − B3)
2, we obtain

τ′ � fyy N2 − N3( 􏼁 B2 − B3( 􏼁. (30)
□

Corollary 1. Let α: I ⊂ R⟶ (M, gε
f) be a time-like curve

parameterized by its arc length s. We suppose that
f(y, z) � A1(z)y + A2(z), where Ai, i � 1, 2, are functions
of z. 2en, α is a nongeodesic biharmonic curve if and only
if

κ � Constant ≠ 0,

τ � Constant ≠ 0,

τ2 � ε3κ
2
.

⎧⎪⎪⎨

⎪⎪⎩
(31)

Remark 1. In the condition of the corollary, the binormal
must be space-like.

4. Slant Helix in Walker 3-Manifold

Let (M, gf) be a three-dimensional strict Walker manifold.

Definition 1. A unit speed curve α is called a slant helix if
there exists a nonzero constant vector field U in M such that
the function gf(N(s), U) is constant, where N is the normal
of α.

We remark that, in Walker manifold like in Minkowski
ambient space, we cannot define the angle between two
vectors (except that both vectors are of time-like type). For
this reason, we avoid to say about the angle between the
vector fields N(s) and U. We have the following result in the
three-dimensional Walker manifold.

Theorem 2. Let α be a speed unit curve in M. 2en, α is a
slant helix if only if

κ2(τ/κ)′

ε1τ
2

+ ε3κ
2

􏼐 􏼑
3/2 � constant, (32)

with ε1τ2 + ε3κ2 ≠ 0.

Proof 2. Let α be a slant helix. Let U be a vector field such
that the function gf(N(s); U) � constant � b. (ere exist
smooth functions a1 and a3 such that

U � a1T(s) + bN(s) + a3B(s), (33)

where a1 and a3 are functions of s and (T, N, B) is the Frenet
frame of the curve α.

Differentiating (33) with respect to s, one obtains
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∇TU � a1′T(s) + a1∇TT + b∇TN + a3′B + a3∇TB

� a1′T(s) + a1ε2kN − bε1kT − bε3τB + a3′B + a3ε2τN.

(34)

(en, ∇TU � 0 implies that

a1′ − bε1k � 0,

a1ε2k + a3ε2τ � 0,

a3′ − bε3τ � 0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)

From the second equation of (35), we obtain
a1 � − (τ/k)a3.

Moreover,

gf(U; U) � ε1a
2
1 + ε2b

2
+ ε3a

2
3 � m, (36)

where m is a constant. According to a1 � − (τ/k)a3, we
obtain

gf(U; U) � ε1a
2
3
τ
k

􏼒 􏼓
2

+ ε2b
2

+ ε3a
2
3

� constant,

(37)

and then, we get a2
3(ε1(τ/k)2 + ε3) � constant − ε2b2.

We denote

3a
2
3 ε1

τ
k

􏼒 􏼓
2

+ ε3􏼠 􏼡 � εm2
; m> 0, ε ∈ − 1, 0, 1{ }. (38)

If ε � 0, then we have a3 � 0 and a1 � 0. (erefore,
b � 1/ε1ka1′. (en, U � 0, which is a contradiction. So, we
have ε � 1 or ε � − 1.

(e third equation of (35), a3′ − bϵ3τ � 0, implies that
d/ds(a3) � bε3τ. And using the fact that

a3 � ± m/
�����������

ε1(τ/k)2 + ε3
􏽱

, we obtain

d
ds

±m
������������������������

ε1(τ/k)
2

+ ε3
􏽱􏽲

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� bε3τ. (39)

(at is,

d
ds

1
������������������������

ε1(τ/k)
2

+ ε3
􏽱􏽲

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� ±

bε3τ
m

. (40)

Finally,

k
2
(τ/k)′

ε1τ
2

+ ε3k
2

􏼐 􏼑
3/2 � ±

b

m
. (41)

Conversely, assume that

k
2
(τ/k)′

ε1τ
2

+ ε3k
2

􏼐 􏼑
3/2, (42)

is a constant, which we denote by b.

Now, we define the vector U by

U �
− ε1/ε3( 􏼁τ
���������

ε3k
2

+ ε1τ
2

􏽱 T + bN +
ε3/ε1( 􏼁k

���������

ε3k
2

+ ε1τ
2

􏽱 B. (43)

A differentiation of U together with the Frenet equations
gives ∇TU � 0, that is, U is a constant vector. On the
contrary, gf(N(s); U) � 1, and this means that α is a slant
helix. (is concludes the proof of the theorem. □

Example 1. Let c: I ⊂ R⟶ (M, gε
f); the speed curve is

given by

c(s) �
9s

3

s + 6
,
3s

2

2
,
3s

3

2
􏼠 􏼡. (44)

An easy computation gives that the curvature and the
torsion of the curve c are κ2 � τ2 � 9. (en, by (eorem 1,
the curve c is a helix.

By equations (21)–(23), we have τ2 � 0, and then, the
curve c is biharmonic [13].
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and R. Vázquez-Lorenzo, 2e Geometry of Walker Mani-
folds, Synthesis Lectures on Mathematics and Statistics,
Morgan and Claypool Publishers, Williston, VT, USA,
2009.

[2] A. Niang, A. Ndiaye, and A. S. Diallo, “A classification of
strict walker 3-manifold,” Konuralp J. Math.vol. 9, no. 1,
pp. 148–153, 2021.

[3] J. T. Cho, J.-I. Inoguchi, and J.-E. Lee, “On slant curves in
Sasakian 3-manifolds,” Bulletin of the Australian Mathe-
matical Society, vol. 74, no. 3, pp. 359–367, 2006.

[4] J. Eells and J. H. Sampson, “Harmonic mappings of Rie-
mannian manifolds,” American Journal of Mathematics,
vol. 86, no. 1, pp. 109–160, 1964.

[5] G. Y. Jiang, “2-harmonic isometric immersions between
Riemannian manifolds,” Chinese Ann. Math. Ser. A, vol. 7,
no. 2, pp. 130–144, 1986.

[6] G. Y. Jiang, “2-harmonic maps and their first and second
variational formulas,” Chinese Ann. Math. Ser. A, vol. 7, no. 4,
pp. 389–402, 1986.

[7] B.-y. Chen and S. Ishikawa, “Biharmonic surfaces in
pseudo-Euclidean spaces,” Memoirs of the Faculty of Sci-
ence, Kyushu University. Series A, Mathematics, vol. 45,
no. 2, pp. 323–347, 1991.

[8] J.-I. Inoguchi, “Biharmonic curves in m,” International
Journal of Mathematics and Mathematical Sciences, vol. 2003,
no. 21, pp. 1365–1368, 2003.

International Journal of Mathematics and Mathematical Sciences 5



[9] T. Sasahara, “Biharmonic submanifolds in n lorentz 3-space
forms,” Bulletin of the Australian Mathematical Society,
vol. 85, no. 3, pp. 422–432, 2012.

[10] J. E. Lee, “Biharmonic spacelike curves in Lorentzian Hei-
senberg space,” Commun. Korean Math. Soc.vol. 33, no. 4,
pp. 1309–1320, 2018.
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