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In the current research, the numerical solutions for heat transfer in an Eyring–Powell �uid that conducts electricity past an
exponentially growing sheet with chemical reactions are examined. As the sheet is stretched in the x direction, the �ow occupies
the region y> 0. MHD, radiation, joule heating e�ects, and thermal relaxation time are all used to represent the �ow scenario.�e
emergent problem is represented using PDEs, which are then converted to ODEs using appropriate similarity transformations.
�e converted problem is solved numerically using the SLM method. �e main goal of this paper is to compare the results of
solving the velocity and temperature equations in the presence of K changes through SLM, introducing it as a precise and
appropriate method for solving nonlinear di�erential equations. Tables with the numerical results are created for comparison.�is
contrast is important because it shows how precisely the successive linearization method can resolve a set of nonlinear di�erential
equations. Following that, the generated solution is studied and explained in relation to a variety of engineering parameters.
Additionally, the thermal relaxation period is inversely proportional to the thickness of the thermal boundary layer and the
temperature, but the Eckert number Ec is the opposite. As Ec grows, the temperature within the channel increases.

1. Introduction

Non-Newtonian �uids are widely encountered and are used
in a wide variety of engineering applications. Some of these
applications are notable and are applied in the paper, food,
personal care products, textile coating, and suspension so-
lutions industries.�ese �uids havemostly been divided into
three categories: di�erential, rate, and integrals. Recent
technological and engineering advancements have resulted
in the development of a diverse range of non-Newtonian
�uids with a number of major di�erences from viscous
�uids. Ziegenhagen [1] explored the slow �ow of a
Powell–Eyring type �uid and used variation techniques to
obtain results. He studied the behavior of Oldroyd and
Powell–Eyring �uids and discovered that both �uids behave
identically in situations involving extremely slow �uid �ow.
Sirohi et al. [2] studied it by observing the �ow of
Powell–Eyring �uid around the accelerating plate. �ey
compared three distinct techniques. Yoon and Ghajar [3]
pioneered the concept of a stretched sheet by providing a

precise solution to the resulting di�erential system. Recent
academics have investigated this topic from a variety of
perspectives [4–12]. Mushtaq et al. [13] investigated the
Powell–Eyring �uid �ow and heat transport past a stretched
sheet exponentially. �ey discovered that increasing the
velocity ratio parameter results in a thinned boundary layer.
Malik et al. [12] examined the Powell–Eyring �uid �ow and
heat transport with varying viscosity over a stretching cyl-
inder by examining the steady condition. �ey concluded
that as Prandtl and Reynolds numbers increase, the
boundary layer shrinks. Sher Akbar et al. [14] studied the
e�ect of magnetic factors on Eyring–Powell �uid �ow past a
stretched surface. �ey investigated �ow resistance as the
magnetic and hydrodynamic properties of the �uid under
study increased.

Kumar and Srinivas [15] investigated the Powell–Eyring
nano�uid passing via an inclined permeable sheet. �ey
demonstrated that temperature increases as thermophoresis
parameter values increase. While the contrary is true for
nanoparticle concentration due to higher chemical reactions
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and Brownian parameters, increasing thermophoresis pa-
rameter values results in an increase in concentration. Pal
and Mondal [16] demonstrated magneto-bioconvection of
the Powell–Eyring nanofluid via a vertically stretched sheet
that is convectively heated and also contains motile, gyro-
tactic microorganisms. (ey discovered that as the Schmidt
number and chemical reaction parameters increase, the
concentration of nanoparticles drops. (ermal relaxation
time is the time required for fluid to return to its original
temperature after being heated. It is a frequently used pa-
rameter for determining the time required for heat to leave a
fluid. Hayat and Nadeem [17] investigated the effects of mass
flux models on Eyring–Powell fluid flow in three dimen-
sions. (ey discovered that temperature and thermal-re-
laxation time have an inverse relationship. Reddy et al. [18]
studied the effect of chemical reactions on the activation
energy of the Eyring–Powell nanofluid flow via a stretching
cylinder. (ey concluded that as the relaxation parameter
increases, the temperature curves decrease in shape. It takes
a long time for an increase in the relaxation parameter
assessment to transfer heat to neighboring material particles.
Additionally, the Nusselt number improves behavior when
nondimensional thermal relaxation calculations are
performed.

Mustafa [19] researched the Maxwell fluid with a
generalized heat flux model for rotating flow and heat
transfer. (ey also discovered that the thermal relaxation
period is inversely proportional to temperature and
thermal boundary thickness. Ishaq et al. [20] demon-
strated that the entropy production of the Eyring–Powell
fluid flow with nanofluid thin film flow can be calculated
by considering the heat radiation and MHD impact. (ey
discovered that when the Brinkmann, Hartmann, and
Reynolds numbers grow, so does the entropy profile. For
increasing values of the Eyring–Powell and radiation
parameters, the entropy profile reduces. (e Eyr-
ing–Powell nanofluid flow with nonlinear mixed con-
vection and entropy generation was explored by Alsaedi
et al. [21]. (ey arrived at the conclusion that entropy
generation showed a falling tendency for some fluid pa-
rameter values while increasing for others. (rough a
permeable stretching surface, Bhatti et al. [22] studied the
irreversibility of the MHD Eyring–Powell nanofluid.
More interesting articles can be seen in [23–30] and cross
references.

According to the existing literature, no attempt has
been made to investigate the electrically conducting
Eyring–Powell fluid with radiation, thermal relaxation
time, and joule heating effects beyond an exponentially
stretched sheet with chemical reaction. (is work visually
depicts and tabulates the impacts of various flow pa-
rameters encountered in the governing equations. (e
SLM technique is used to solve the issue numerically,
which is more computationally efficient. (e relevant
results are graphed and quantitatively analyzed. (is re-
search fills a void in the literature and lays the groundwork
for future researchers to contribute their perspectives to
the open literature. (is is structured as follows: Section 1

contains the literature survey; Section 2 contains the
mathematical formulation; Section 3 contains the meth-
odology; Section 4 has the results; and Section 5 contains
the conclusion.

2. The Problem’s Formulation

Consider an incompressible Powell–Eyring fluid flowing
across an exponentially stretched surface subjected to
magnetic, joule heating, thermal radiation, and thermal
relaxation periods, as illustrated in Figure 1. (e sheet is put
on the x-and y-axes, respectively, and the flow is restricted
to y ≥ 0. Let Uw(x) � ae(x/l), represent the sheet velocity,
U∞ � be(x/l) represent the external fluid velocity, and
Tw(x) � T∞ + ce(x/2l) represent the surface temperature,
with T∞ being the ambient temperature.

(e governing equations so obtained are given as (see for
example, [13], [21], [22], [31]).
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where ], ρ, u(x, y), v(x, y), β, C0,, T, k, qrad, Cp, B0, q, C, D,

H(x) are kinematic viscosity, fluid density, velocities, fluid
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Figure 1: Interpretation of momentum and thermal boundary
layers.
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parameters, temperature, thermal conductivity, thermal
radiation, specific heat at constant-pressure, strength of the
magnetic field, heat flux, the consternation field, diffusion
coefficient, and chemical reaction rate, respectively, which
satisfy the relation

q + δt

zq

zt
+ V.∇q − q.∇V + (∇.V)q . (5)

(e appropriate boundary conditions are

u � Uw(x) � ae
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,
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Using the similarity transformations as follows:
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(e continuity equation is satisfied in the same way
using (6), and (2)–(5). is transformed into the following
form:
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Here, λ and Pr denote velocity ratio and Prandtl number,
respectively. Where, Sc Schmidt number, CR chemical re-
action parameter, and Γ are the dimensionless fiuid

parameters. Since Γ is a function of x, therefore, we use a
local similarity solution of (8)–(10) that allows us to analyze
parameter behavior. For K � 0, we have the case of a
Newtonian fluid. (e Cf and the local Nu are mathemat-
ically described as follows:
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Here, τw and qw are mathematically described as follows:
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(e mathematical form of the local Nusselt number and
skin friction coefficient are given as follows:
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where the local Reynolds numbers are Re � UwL/v, Rex �

Uwx/v.
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3. Solution Methodology

Bhatti et al. [22] solved a non-Newtonian model known as
the Powell–Eyring fluid model using the collocation ap-
proach. Rahimi et al. [23] addressed this model numerically
by using a sequential linearization approach and the Che-
byshev spectral collocation method. Agrawal and Kaswan
[24] solved the Eyring–Powell fluid model using a fourth-
order precision methodology (BVP4C) and the homotopy
analysis method (H.A.M). Jafarimoghaddam [25] studied
the Eyring–Powell model and described fluid flow and heat
transfer over a stretching sheet. He then solved the gov-
erning PDEs by using homotopy perturbation and homo-
topy analysis methods to convert them to ODEs. (e third-
order nonlinear ordinary differential equations (7) and the
second-order nonlinear ordinary differential equations (8)
are expressed as differential equations and solved using the
successive linearization technique (SLM) [26, 31] in this
article.

3.1. Procedure of Computational. SLM is used to find the
numerical solutions for the nonlinear systems (8)–(10) that
conform to the boundary condition (11). We choose the
initial guess functions for the SLM solution, i.e., f(η), θ(η)

and ϕ(η) are in the form

f(η) � fi(η) + 
i−1

m�0
Fm(η),

θ(η) � θi(η) + 

i−1

m�0
θm(η),

ϕ(η) � ϕi(η) + 
i−1

m�0
ϕm(η).

(16)

Here, the two functions fi(η) and θi(η) are represen-
tative unknown functions. Fm(η), m≥ 1, θm(η), m≥ 1 are
successive approximations, which are obtained by recur-
sively solving the linear part of the equation that results from
substituting (15) in the governing equations. (e mean idea
of the SLM is that the assumption of unknown function
fi(η), θi(η), and ϕi(η) are very small when i becomes larger;
therefore, the nonlinear terms in fi(η), θi(η), and ϕi(η), and
their derivatives are considered to be smaller and thus
neglected. (e intimal guess functions Fo(η), θi(η), and
ϕi(η), which are selected to satisfy the boundary conditions

F0(η) � 0 , F0′(η) � 1 at η � 0,

F0′(η)⟶ 0 , F0″(η)⟶ 0 at η⟶∞,

θo(0) � 1, θo(∞)⟶ 0,

ϕo(0) � 1, ϕo(∞)⟶ 0.

(17)

Which are taken to be in the form

F0(η) � 1 − e
−η

( 

θ0(η) � e
−η

,

ϕ0(η) � e
−η

.

(18)

3.2. Convergence Analysis. Table 1 illustrates the conver-
gence for the numerical values of the skin friction coefficient,
the local Nusselt number, and the local Sherwood number
for various values of the parameters involved in using SLM,
when Ec � M � Γ � K � c � M � λ � 0.10, CR � Pr � 1,

Rd � 0.2.

3.3. Numerical Scheme Testing. Here, we test the validity of
our numerical results and contrast them with those of
published works as limiting examples. As a result, we
compare the current results to those obtained in reference
[13], and we discover that they are in reasonable agreement,
as shown in Table 2.

4. Result and Discussion

(e velocity ratio parameter, the fluid parameter k, the
magnetic parameter M, the nondimensional fluid param-
eter, and the velocity profile are all monitored for variation.
Additionally, this section discusses the influence of the
Prandtl number Pr, the velocity ratio parameter, the fluid
parameter k, the Eckert number Ec, the radiation parameter
Rd, the thermal relaxation time T, and the magnetic pa-
rameter M on the dimensionless temperature θ(η). Lastly,
this section shows the effect of the velocity ratio parameter,
the fluid parameter k, the magnetic parameter M, the
Schmidt number Sc, and the chemical reaction parameter
CR on the dimensionless concentration ∅(η). Two types of
boundary layers near the sheet have evolved in a flow with
exponentially changing free stream velocity over an expo-
nentially stretched sheet.(is means that they are dependent
on the velocity ratio parameter b/a, for values of b/a greater
than or equal to one. Additionally, it’s worth noting that
when b/a � 1, no velocity boundary layer arises near the

Table 1: (e skin friction coefficient −f″(0), the local Nusselt
number −θ′(0), and the local Sherwood number −ϕ′(0).

Order of
approximation −f″(0) −θ′(0) −ϕ′(0)

1 0.994899093 0.999993051 0.971675797
10 1.165245830 0.998642538 0.633874092
15 1.165245830 0.998641243 0.633874092
20 1.165245830 0.998641243 0.633874092
30 1.165245830 0.998641243 0.633874092
50 1.165245830 0.998641243 0.633874092

Table 2: (e local Nusselt number for different values of K and Γ,
when λ � 0.1, Rd � Ec � CR � M � Sc � c � 0, and Pr � 1.

K Γ λ
−θ(0)

HAM [13] Numerical [13] Present
0.0 0.1 0.1 0.977953 0.977955 0.9777595
0.5 1.022158 1.022158 1.0214463
1.0 1.050549 1.050549 1.0489857
1.5 1.070644 1.070644 1.0683282
0.5 0.0 1.023016 1.023016 1.0227978

0.5 1.018406 1.018406 1.0159453
1.0 1.012648 1.012648 1.0072281
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sheet. �e velocity pro¡les for various values are depicted in
Figure 2. �e in�uence of the �uid parameter K on the
velocity is seen in Figure 3. A rise in K can be interpreted as
either a fall in viscosity or a decline in the Powell–Eyring
�uid’s rheological e�ects. Here, we see that velocity and the
thickness of the boundary layer are rising functions of K
when λ< 1. �is observation leads to the conclusion that the
increase in the elastic e�ects of the Powell–Eyring �uid leads
to a thinner momentum boundary layer. However, an op-
posite trend is noticed when λ> 1. increasing K results in a
drop in �uid viscosity, which results in an increase in ve-
locity. Additionally, as K increases, the viscosity of the �uid
becomes lower due to which the increase in the velocity of
the �uid accrues. �e velocity pro¡le declines as Γ grows but
changes toward the border, indicating that the boundary
layer’s thickness has decreased, which is depicted in Figure 4.
As the magnetic ¡eld intensity increases, the velocity pro¡le

in Figure 5 drops. �is is because an increase in the Lorentz
force creates resistance to �uid �ow, resulting in a drop in
the velocity pro¡le.

�e �uctuation of the velocity ratio parameter on the
temperature pro¡le is depicted in Figure 6. �e temperature
is discovered to be a decreasing function of λ. �is data may
imply that a greater sheet velocity results in a thicker thermal
boundary layer. As K increases, there is a slight reduction in
temperature, as illustrated in Figure 7. Due to the lack of
viscous dissipation e�ects, the �uid parameter K is not
explicitly included in the energy calculation, and hence has a
reduced e�ect on the thermal boundary layer. Figure 8 il-
lustrates the e�ect of Pr on temperature θ(η). �e tem-
perature pro¡le falls as Pr � μCp/k increases. Additionally,
rising values of Pr decreases the thickness of the thermal
boundary layer. As a result, heat travels rapidly, leading to a
decrease in �uid temperature.
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(e influence of radiation on temperature distributions
can be seen in Figure 9. Increases in Rd result in an increase
in heat fluxes from the sheet, which results in a rise in
temperature. Ec′s effect on the temperature profile θ(η) is
depicted in Figure 10. As the Ec value grows, the sheet’s wall
temperature increases. Due to the fact that when Ec is high,
the rate of heat transfer at the surface is low, and the
thickness of the thermal boundary layer increases. Frictional
heating happens at the surface, raising the fluid’s temper-
ature. (e effect of thermal relaxation time c on the tem-
perature profile is illustrated in Figure 11. Temperature and
thermal relaxation time have been found to have an inverse
connection. Physically, when we increase the pressure, the
fluid elements have to work harder to transfer heat to their
neighboring components, resulting in a temperature drop.
When c � 0, heat rapidly spreads throughout the fluid.
Figure 12 illustrates the effects of the magnetic parameter M

on the temperature profile. When K increases, there is a
slight reduction in concentration, as seen in Figure 13. (e
fluid parameter K is not explicitly included in the energy
calculation since there are no effects of viscous dissipation,
which reduces its impact on the concentration boundary
layer. Figure 14 depicts the effect of the magnetic field M on
dimensionless concentration. (e increase in M is thought
to raise the concentration profile. Figure 15 shows how the
velocity ratio parameter varies in relation to the concen-
tration profile. It is shown that the concentration decreases
as it increases. According to these findings, a thicker con-
centration boundary layer is produced by a higher sheet
velocity. (e effect of the Schmidt number Sc on dimen-
sionless concentration is shown in Figure 16. It is seen that as
the Schmidt number Sc increases, the concentration falls.
Figure 17 shows how the chemical reaction CR affected the
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Table 3: (e local skin friction coefficient, the Nusselt number, and the local Sherwood number coefficient for different values of K, Γ, CR

and Pr, when λ � 0.1, Rd � 0.2, Ec � 1, M � 0.1, Sc � 0.22, c � 0.1.

K Γ λ CR Pr −f″(0) −θ(0) −ϕ′(0)

0.0 0.1 0.1 1 1 1.221318822 1.012648801 0.630823360
0.1 1.165245830 0.969874308 0.633874092
0.2 1.116369456 0.980347509 0.636646743
0.3 1.073275828 0.989750630 0.639183845
0.4 1.034911535 0.998251857 0.641518987
0.5 0.0 0.997518705 1.007551228 0.644179699

0.3 1.006411953 1.002811373 0.642676417
0.4 1.009395133 1.001205355 0.642174480

1.5 1.009395133 1.001205355 0.729626197
2 1.009395133 1.001205355 0.806157921
2.5 1.009395133 1.001205355 0.875167884
3 1.009395133 1.001205355 0.938573309

1.5 1.009395133 1.296772664 0.938573309
2 1.009395133 1.547608045 0.938573309
2.5 1.009395133 1.769224802 0.938573309
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concentration profile. (e concentration decreases as the CR

of the chemical reaction rises.
(e local Nusselt number is listed in Table 2, and was

estimated using the SLM. In Table 3, the skin friction co-
efficient increases as k increases. As a result, as Γ increases,
the coefficient of friction on the skin lowers. According to
Mushtaq et al. [13], on an exponentially stretched surface,
the magnitude of the skin friction coefficient decreases
significantly as the velocity ratio grows. It has already been
noted that when k grows, the thermal boundary layer’s
thickness decreases. As a result, the heat transfer rate at the
stretching sheet is increased. Additionally, as Γ grows, the
size of the local Nusselt population decreases dramatically.
Additionally, it increases as the values of k and λ increase.

5. Concluding Remarks

In this article, the numerical solution for thermal transport
in the Powell–Eyring model via generalized heat flux over an
exponentially stretching sheet with a chemical reaction is
obtained. By resolving expressions for velocity, temperature,
and concentration distributions, the SLM approach is uti-
lized to numerically solve the flow equations. (e impact of
the Powell–Eyring fluid parameter K, magnetic parameter
M, Eckert number Ec radiation parameter Rd, thermal
relaxation time c, and chemical reaction was investigated
and presented in tables. (e validity of the current results
was tested, and they were contrasted with those that had
previously been published [13]. Table 2 shows a limited
example where there is strong agreement. (e study’s most
important features are listed as follows

(i) (e velocity increases as the fluid parameter K is
increased, while reverse behaviour is noticed for the
temperature profile.

(ii) For increasing values of the magnetic parameter M,
the velocity profile falls while the temperature rises.
In addition, as the resistance to flow increases, the
magnetic field intensity and K increase.

(iii) (e temperature and thickness of the thermal
boundary layer are inversely related to the thermal
relaxation time c, whereas the Eckert number Ec has
the opposite trend. With an increase in Ec, the
temperature within the channel rises.

(iv) Increasing values of the Rd (radiation parameter)
increase the heat fluxes from the surface, which will
cause an increase in the fluid’s temperature and
velocity.

(v) Simulations of local Nusselt number are verified
with published work.

Abbreviations

u, v, w: Velocity components, m/s
λ: Ratio of expansion rates
Uw: Stretching velocity, m/s
K, Γ: Dimensionless Powell Eyring fluid parameters
U∞: Velocity of external flow, m/s

Pr: Prandtl number
L: Characteristic length, m

Cf: Skin friction coefficient
Tw: Surface temperature, K

Nu: Local Nusselt number
T∞: Ambient temperature, K

τw: Wall sheer stress
τ: Stress tensor, N/m2

qw: Surface heat flux
]: Kinematic viscosity, m2/s
Re, Rex: Local Reynolds numbers
μ: Dynamic viscosity, Kg/m.s

B: Magnitude of magnetic field vector, Kg/s2.A
ρ: Density of the fluid, Kg/m3

qrad: Radiative heat flux
β: Powell–Eyring material parameter, Pa− 1

K∗: Mean absorption coefficient, m− 1

C: Powell–Eyring material parameter, s− 1

σ∗: Stefan Boltzmann constant, W/m2.K4

Cp: Specific heat, J/Kg.K

c∗: Dimensionless thermal relaxation time
T: Temperature of the/fluid, K

δt: (ermal relaxation time
k: (ermal conductivity of the fluid, W/m.K

Ec: Eckert number
Rd: Radiation parameter
M: Magnetic parameter
SC: Schmidt number
CR: Chemical reaction parameter.
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