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Fitting a time series model to the process data before applying a control chart to the residuals is essential to ful ll the basic
assumptions of statistical process control (SPC). Autoregressive integrated moving average (ARIMA) model has been one of the
well-established time series modeling approaches that is extensively used for this purpose and is widely recognized for its accuracy
and e�ciency. Nevertheless, the research community commented that its iterative stages are laborious and time-consuming. In
addressing this gap, a novel time series modeling technique with its conceptual assumptions of attributes that was derived from the
geometric Brownian motion (GBM) law was developed in this study. It was termed as the logarithmic return (LR) model. �en,
the model was employed and tested on a real-world autocorrelated data, whereby the results were assessed and benchmarked with
the ARIMA model. �e  ndings for LR model reported a mean average percentage error that ranged between 1.5851% and
3.3793% (less than 10%), which were as accurate as the ARIMAmodel.�e running time (in second of CPU time) taken by the LR
model was at least 96.2% faster than the ARIMA model. Interestingly, the corresponding multivariate control chart constructed
from the LR model also portrayed a similar general conclusion as that of its counterpart. �e LR model was obviously par-
simonious and easier to compute and took a shorter running time than the ARIMAmodel.�erefore, it possessed the potential as
an alternative time series modeling methodology for the ARIMA model in the procedures of SPC.

1. Introduction

Over the decades, statistical process control (SPC) tech-
niques were extensively implemented in industrial processes
to produce high quality products [1]. It is a simple and
e�ective technique to learn about the process history and
detect changes in the process. Among the SPC basic tools,
control charts are broadly utilized due to its simplicity. Ali
et al. [2] gave an overview of control charts to detect sig-
ni cant variations in the process to deliver high quality
products. Each type of control chart has its strength and
limitation in monitoring process target and process dis-
persion [3, 4].

Meaningful interpretation of the control charts is subject
to the basic assumption of SPC, observations within samples
are independent and identically normally distributed

(i.i.n.d.). Nevertheless, in many situations, it is di�cult to
achieve the independency assumption [5, 6]. �e control
chart implementation might be misleading if this assump-
tion is not ful lled. �e autocorrelation e�ect will thus
deteriorate the control chart performance [6–9].

�e standard practice in dealing with the autocorrelation
problem is  tting a time series model to the process data
before applying a control chart to the residuals [10–14]. In
general, the goal of time series modeling is to obtain accurate
forecast [15]. While in autocorrelated SPC, the goal of time
seriesmodeling is to obtain i.i.n.d. residuals [16].�ese are the
main di�erence between forecasting and autocorrelated SPC.
If the residuals are i.i.n.d., then classical control charts can be
applied directly to the residuals for detecting the process
changes. For the rest of this paper, time series modeling refers
to the one used to deal with autocorrelated SPC.
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One of the most widely used time series modeling
techniques is the Box and Jenkinsmethodology that works to
remove autocorrelation characteristics in process data and
thus accepted as standard manufacturing process control
practice [1, 17]. Autoregressive integrated moving average
model (ARIMA) which is based on the above methodology
has been employed extensively across various fields, such as
in production processes [18, 19] and market exchange rates
[12, 20, 21]. $e ARIMA model is stable and is doubtlessly
used as a benchmark for other time series methodologies.

In manufacturing industry practice, a good model of
autocorrelated process providing i.i.n.d. residuals is not
enough. It is unreliable if the process of time series modeling
is not as fast as expected. Since quality is a continuous
process [1], a fast decision-making process is always de-
sirable and put as the first consideration before the accuracy
of decision. A fast decision-making which requires fast time
series modeling process is the main concern. Moreover, the
model must be as simple as possible with fewer parameters,
less computational effort, and reasonable accuracy.

Unfortunately, even though the most adopted method such
as Box-Jenkins’s methodology, ARIMA modeling provided a
vigorous and structured approach in time seriesmodeling; it is in
general computationally time consuming [22]. Eni and Adeyeye
[23] commented that the ambiguous patterns of autocorrelation
function (ACF) and partial autocorrelation function (PACF)
complicate the modeling identification procedure. Sometimes,
the best fitted ARIMA model contains a large number of pa-
rameters estimated, which consequently leads to overfitting,
suggesting that a simpler parsimonious model should be con-
sidered [24–26].$e decision of which model is more reliable is
subjected to the analyst’s knowledge, skill, and experience [27].
Researchers apparently have indicated that Box-Jenkins’s
methodology, which comprises the three iterative stages of
model identification, parameter estimation, and model valida-
tion, is laborious, time-consuming, and expensive [28]. $ere is
no doubt that ARIMA model is powerful. However, it is not
suitable for those whose works require high-speed modeling
processes.

Since the most adopted methods are not suitable for
processes requiring short modeling time, the problem en-
countered in this study is to search for a method which is
able to provide the result from desired model as fast as
possible. To have an accurate model is not enough. $e goal
of this paper is to come out with a model that is faster and
easier to compute without compromising the model accu-
racy. Consequently, an alternative time series modeling
methodology for autocorrelated process data which over-
comes the difficulties and gaps occurred in ARIMA mod-
eling is proposed in this study and it is coined as the
logarithmic return (LR) model. $e proposed LR model is
easy to compute, parsimonious, and has a shorter running
time and the output is as accurate as ARIMA model. $ese
advantages suggest that LR model is a significant contri-
bution particularly to the body of time series methodology
and generally to the field of SPC. Its conceptual assumption
of attributes is derived from the geometric Brownian motion
(GBM) law. GBM law, which was named after Robert Brown

in 1827, is commonly used in stock price prediction, whereas
its application herein is exceptionally promising. $e pro-
posed LR model is used to fit the cocoa powder dataset. $e
produced residuals are assessed and benchmarked with the
standard ARIMA model for its accuracy in terms of mean
absolute percentage error (MAPE) and the processing speed
in terms of running time. In the subsequent section, a de-
tailed mathematical derivation proof of LR model is shown.
In Section 3, the results of exploratory study on the im-
portant role of LR modeling are reported. Later on, an
industrial application is presented in Section 4. Lastly, a
conclusion is discussed in Section 5.

2. Proposed LR Modeling for
Autocorrelated Process

To deal with autocorrelated process, an ARIMA model is
usually constructed to remove the effect of autocorrelation
before applying a classical control chart to the i.i.n.d. re-
siduals. $e standard methodology for developing an
ARIMA model can be found in [17].

Consider a time series process Xt which follows an
ARIMA (p, d, q) model,

Φp(B)(1 − B)
d
Xt � Θq(B)εt. (1)

In equation (1),

(i) Φp(B) � 1 − Φ1B − · · · − ΦpBp and Θq(B) �

1 − Θ1B− · · · − ΘqBq

where B is the back-shift operator such that
BjXt � Xt− j

(ii) εt’s are i.i.n.d. with zero mean and constant variance
σ2ε .

However, this standard methodology for developing an
ARIMA model is laborious and tedious. It needs sophisti-
cated statistical skills to identify the model, estimate the
parameter(s), and validate the model. $erefore, a far
simpler and more parsimony model is proposed.

According to [16], one of the main features of auto-
correlated process control is that the time series data are
positive. $is feature leads the current study to conduct a
meta-analysis and it is identified that one of the potential
mathematical laws which govern the positive time series is
the geometric Brownianmotion (GBM).$eGBMprocess is
the solution of the following stochastic differential equation
in the sense of Itô calculus,

dXt � μXtdt + σXtdWt, (2)

where Wt is a Wiener process, μ is the drift, and σ is the
volatility. To find the solutionXt of equation (2), Itô’s lemma
provides a good tool (see supplementary Appendix I). If X0
is the initial value, the general solution of that equation is
given by

Xt � X0 · e
μ− σ2/2( )t+σWt . (3)

From equation (3),
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Xt

Xt− 1
� e

μ− σ2/2( )t+σWt[ ]− μ− σ2/2( )(t− 1)+σWt− 1[ ]{ }

� e
μ− σ2/2( )+σZt{ },

(4)

where Zt � Wt − Wt− 1. Since Wt is a Wiener process, then
Zt is the standard normal random variable for all t.
Consequently,

ln
Xt

Xt− 1
  � μ −

σ2

2
  + σZt

ln Xt(  − ln Xt− 1(  � μ −
σ2

2
  + σZt

ln Xt(  � μ −
σ2

2
  + ln Xt− 1(  + σZt

ln Xt(  � a + ln Xt− 1(  + ηt,

(5)

where a � μ − σ2/2 and ηt � σZt, for t � 1, 2, . . ., is a se-
quence of i.i.n.d. random variables with mean zero
and constant variance σ2. Equation (5) can be considered
as a special case of a more general linear regression
equation

ln Xt(  � a + b ln Xt− 1(  + ηt, (6)

where the error terms ηt are i.i.n.d. random variables with a

and b which are the regression parameters. Interestingly, if
we consider the logarithmic returns

Rt � ln
Xt

Xt− 1
 , (7)

then Rt are i.i.n.d. More importantly, Rt is a first order
autoregressive process, AR(1),

Rt � C + ΘRt− 1 + εt, (8)

where constant C is the intercept, Θ is the slope in AR(1)
model, and the error terms εt are i.i.n.d. with zero mean and
constant variance. Equation (8) can be written as

ln
Xt

Xt− 1
  � ln e

C
  + ln

Xt− 1

Xt− 2
 

Θ

+ εt

ln Xt(  � ln e
C

  + ln Xt− 1(  + ln
Xt− 1

Xt− 2
 

Θ

+ εt

� ln e
C

· Xt− 1 ·
Xt− 1

Xt− 2
 

Θ
⎛⎝ ⎞⎠ + εt.

(9)

$is process leads to the following time series model,
which is coined as the LR model,

Xt � e
C

· Xt− 1 ·
Xt− 1

Xt− 2
 

Θ

+ εt. (10)

Accordingly, the fitted value of Xt is

Xt � e
C

· Xt− 1 ·
Xt− 1

Xt− 2
 

Θ

, (11)

where C and Θ are the ordinary least square estimates of C

and Θ, respectively. $erefore, the residuals at time t are
rt � Xt − Xt. In the rest of the paper, these residuals are used
in control chart construction to monitor the process.

$erefore, whether an autocorrelated process is gov-
erned by GBM law can be checked based on the above
properties. Specifically, if the logarithmic returns of a
continuous process are i.i.n.d., it is an indication that the
process is governed by GBM law. Consequently, to check
whether it is so or not, the following procedures are used.

(i) Transform the original time series data Xt into
logarithmic return, Rt.

(ii) Test whether Rt are i.i.n.d. If the result is significant,
then the process is a GBM.

If it is affirmative, then the LR model is given by the
properties of GBM. According to the preliminary explor-
atory study on various public time series datasets, LR
modeling is very promising. It might be as accurate as, or
even outperform, ARIMA. In the next section, the evidence
from an exploratory study is presented to support the
proposed LR model.

3. Exploratory Study on Applicability of
LR Model

Empirical study plays a key role in better understanding the
strengths and weakness of two different methods used in
time series modeling. For this purpose, 119 datasets of the
151 datasets from five references are explored. $e summary
and its results are given in Table 1.

According to the exploratory study that are conducted
on time series model building, 119 datasets are dominated by
positive data and the remaining are nonpositive data.
Further investigation reveals that, when dealing with posi-
tive time series data, GBM law can be considered as a po-
tential candidate for the law that governs the data. In other
words, the data can be accurately described by using a LR
model in equation (11). When LR modeling is experimented
to the 119 positive datasets, 85 datasets can be described by
using LRmodel.$is is an encouraging result indicating that
LR model is very promising. In order to compare the ac-
curacy of LR and ARIMA models, their MAPEs are cal-
culated where the model is considered as highly accurate if
MAPE ≤10% [33]. $ose resulted observations as presented
in Table 1 implied that if a time series dataset can accurately
be described by LRmodel, it can also be described accurately
using ARIMA model although the quality of the corre-
sponding residuals might be different.

Besides that, the running time of a time series modeling
process is vital. In our exploratory study on the 85 datasets
shown in Table 1, the average running time of LR model
(0.16 seconds of CPU time) and ARIMA model
(5.54 seconds of CPU time) are computed using R pro-
gramming. It is obvious that the running time of LRmodel is
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shorter than ARIMA model. Under GBM law, time series
modeling becomes very cost effectiveness and rewarding. It
is easy to compute, computationally efficient with short
running time, and acceptable accuracy. $erefore, it is
suitable for those who require speedy modeling process.

As mentioned earlier, a time series dataset that can
accurately be described by LR model can also be described
accurately by ARIMA model although the quality of the
corresponding residuals might be different as shown in
Table 1. Subsequently, the same control charting method
could literally be implemented regardless the type of model
used. Since the nonnormality and time dependence affect the
performance of control charts considerably, the robustness
of a model thus lies in terms of the independency and
normality levels of the residuals [16]. $is entails that the
robustness problem lies in terms of the quality of the re-
siduals as the main input in control charting. As a result, if
the data are governed by GBM law, it can be accurately
described by using either ARIMA or LR model. However, if
LR model works well as expected, it is more preferable than
ARIMA. To demonstrate the advantages of the LR model, an
industrial example is presented in the next section.

4. An Industrial Application

$e applicability of the proposed methodology was dem-
onstrated by using a dataset from a cocoa powder industry
(see supplementary Appendix II). $e name of the industry
was kept undeliverable due to its confidentiality. $e quality
of cocoa powder was determined by the color of the powder,
which was measured using the ColorFlex EZ Hunterlab.
$ese attributes consisted of X1, X2, and X3, which rep-
resent the color solid for the L∗a∗b∗ color space in Figure 1.
$e L∗ represents the lightness, which varies between +L∗

for white and − L∗ for black; the a∗ represents the red-green
direction, which varies between +a∗ for red and − a∗ for
green; the b∗ represents the yellow-blue direction, which
varies between +b∗ for yellow and − b∗ for blue.

In this study, 112 observations were collected in time
order (t) of the production process. To visualize the presence
of autocorrelation in the data, the Lag-1 scatter plots were
presented in Figure 2. From these figures, it indicated that
the processes were autocorrelated. $en, Durbin-Watson’s
test (DW) was used to confirm the presence of autocorre-
lation. Table 2 shows the affirmative autocorrelation in all
attributes.

$erefore, a time series model to remove the effect of
autocorrelation was required before a classical control chart
on i.i.n.d. residuals could be employed to monitor the
process. For the purpose of benchmarking, both ARIMA and
LR models were employed to handle the autocorrelation
effect. $en, the properties of the resulted residuals from
ARIMA model were discussed and compared with those
issued by LR models. Finally, the outputs of both model
building methods were used for the construction of T2

control chart.

4.1. ARIMAModel. $e normal practice in the industry is to
apply a fitted time series model and remove the autocor-
relation. In this study, R programming was used to construct
a best fitted ARIMA model for each of the attributes. $e
resulted fittedmodel forX1 is ARIMA (2, 1, 2),X2 is ARIMA
(0, 1, 2), and X3 is ARIMA (0, 1, 0), as follows:

X1,t � 2.6396X1,t− 1 − 2.4077X1,t− 2 + 0.7680X1,t− 3

− 1.9006r1,t− 1 + 0.9683r1,t− 2

X2,t � X2,t− 1 − 0.2489r2,t− 1 − 0.3550r2,t− 2

X3,t � X3,t− 1.

(12)

Figure 3 shows the scatter plots and Q-Q plots of the
residuals produced by the ARIMAmodels for each attribute.
$e residual scatter plots of the three attributes signified no

Table 1: Results of an exploratory study.

S. No. References
No. of datasets Model accuracy (MAPE

in %)
Running time (seconds

of CPU time)
Total Positive# GBM## LR ARIMA LR ARIMA

1 Box et al. [24] 20 16 13 0.42–9.17 0.42–8.21 0.08–0.26 4.80–5.96
2 Brockwell and Davis [29] 40 27 20 0.26–9.84 0.25–9.36 0.04–0.22 5.10–6.44
3 Cryer and Chan [30] 48 35 24 0.14–8.93 0.14–7.60 0.06–0.28 4.85–6.11
4 Harvey [31] 18 17 8 0.29–8.93 0.31–6.76 0.04–0.11 4.84–5.75
5 Montgomery et al. [32] 25 24 20 0.03–7.69 0.05–7.36 0.04–0.31 5.00–6.28

Total 151 119 85
Note: #number of datasets with positive data; ##number of positive datasets explored using GBM law.

+L*

+b*

+a*−a*

−L*

−b*

Figure 1: Representation of color solid for L∗a∗b∗ color space.
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Figure 2: Lag-1 scatter plot of (a) X1,t, (b) X2,t, and (c) X3,t.

Table 2: Durbin Watson test for X1,t, X2,t, and X3,t.

Quality characteristics X1,t X2,t X3,t

Durbin Watson, DW 0.0015 0.0004 0.0017
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Figure 3: Continued.
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autocorrelation and were subsequently confirmed by the
DW test. Furthermore, the residual Q-Q plots indicated that
normality was assumed, which was proven by the Anderson
Darling’s test (AD) with significant p value >0.05.$erefore,
the conditions of i.i.n.d. for all attributes were fulfilled.

4.2. LR Model. To employ the LR model, the attributes X1,
X2, and X3 were first transformed into their respective log-
arithmic returns of which their independency and normality
assumptions were checked.$e results are presented in Table 3.
It was noticed that the logarithmic returns for all attributes were
i.i.n.d., and thus the process was governed by GBM.

$ereafter, LR models were fitted to the attributes X1,
X2, and X3 by using R Programing and the corresponding
fitted LR models are given as follows:

X1,t � e
− 0.0014

· X1,t− 1 ·
X1,t− 1

X1,t− 2
 

− 0.0648

,

X2,t � e
− 0.0010

· X2,t− 1 ·
X2,t− 1

X2,t− 2
 

− 0.0938

,

X3,t � e
− 0.0008

· X3,t− 1 ·
X3,t− 1

X3,t− 2
 

− 0.0928

.

(13)

Figure 4 shows the scatter plots and Q-Q plots of the
residuals issued by the respective LR models. $e residual

scatter plots showed pattern of randomness, and it was
supported by the results of the DW test which signified no
autocorrelation. Furthermore, the residual Q-Q plots indi-
cated that normality was assumed, which was proven by the
AD test with significant p value >0.05. $erefore, i.i.n.d.
residuals were obtained in these LR models.

4.3. Comparison between the Performance of ARIMA and LR
Models. $e produced residuals from both ARIMA models
and LR models were evaluated for their accuracy and speed.
It was found that MAPE values were less than 10% (high
accuracy) for bothmodels, as shown in Table 4.$is signified
that the output from LR models was as accurate as ARIMA
models.

As for the processing speed, the running time (in second
of CPU time) from the LR models was comparatively much
shorter than those from the ARIMA models, as shown in
Table 5. For each attribute, it was observed that the running
time from the LR models was faster than ARIMAmodels, by
96.2%, 96.7%, and 96.5%, respectively.

Before constructing the multivariate control chart, the
randomness of T2 in both ARIMA and LR models were
checked (see in Figure 5). At a glance, both scatter plots were
random, and no significant trend was identified. Conse-
quently, the multivariate control chart was constructed for
ARIMA models (T2

ARIMA) and LR models (T2
LR). $e end

results are shown in Figure 6. Comparison of the T2 charts
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Figure 3: Scatter plot and Q-Q plot of residuals issued by ARIMA model for (a) X1, (b) X2, and (c) X3.
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Table 3: Statistical test results to determine i.i.n.d. of logarithmic return for data X1,t, X2,t, and X3,t.

Quality characteristics X1,t X2,t X3,t

Durbin Watson, DW 2.1230 2.1332 2.1728
Anderson Darling, AD (p value) 0.309 (0.553) 0.659 (0.083) 0.270 (0.671)
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Figure 4: Scatter plot and Q-Q plot of residuals issued by LR model for (a) X1, (b) X2, and (c) X3.

Table 4: Comparison of MAPE for ARIMA and LR models.

Attribute
MAPE (%)

ARIMA model LR model
X1 2.9295 3.1917
X2 1.4724 1.5851
X3 3.3750 3.3793

Table 5: Comparison of running time for ARIMA and LR models.

Attribute
Running time (in second of CPU time)
ARIMA model LR model

X1 6.09 0.23
X2 5.74 0.19
X3 5.48 0.19
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revealed a similar general conclusion; out-of-control signal
did not occur along the process. $erefore, the process was
considered in-control.

5. Conclusions

Researchers commented that the ARIMA model was labo-
rious, time-consuming, and expensive. LR model with its
conceptual basis drawn from the GBM law was derived in
this study as an alternative time series modeling method-
ology for the ARIMA model. It was then employed and
tested on a time dependent cocoa powder dataset from a
factory in Malaysia, which described the cocoa powder
production color. $e resulted residuals were assessed and
benchmarked with the typical ARIMA model for their ac-
curacy and CPU running time performances. $e standard
classical control chart on the i.i.n.d. residuals was subse-
quently applied. $e findings revealed that the output of LR
model was equally accurate as the powerful and yet com-
plicated ARIMA model. Moreover, the parsimonious LR
model was noticeably easier to compute and taking much
shorter running time than its counterpart. On top of these,
the multivariate control chart constructed from the LR
models portrayed a similar general conclusion that could be

drawn as the one obtained from the ARIMAmodels. $e LR
model derived was thus undoubtedly a promising alternative
time series modeling methodology for the ARIMA model
that should be considered in the procedures of SPC when
ensuring high quality products is of concern. Recommen-
dations for future research include the construction of a
model that is at least equally parsimonious as the LR model
and capable of accommodating data of real values nature.
Further studies may consider the applicability of LR model
in other fields, whereby GBM law is observed based on the
research objectives.
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Figure 5: Randomness of T2 statistics based on the residuals issued from (a) ARIMA and (b) LR models.
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Figure 6: T2 control chart based on residuals issued from (a) ARIMA and (b) LR models.
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Supplementary Materials

Appendix I contains the derivative and proof of Itô’s lemma.
It provides a framework to differentiate the stochastic dif-
ferential equations which results in a closed-form expression
of a GBM process. $en, the properties of the GBM process
were derived and exploited in time series modeling of
autocorrelated SPC in the study. Appendix II contains 112
cocoa powder data used in the study that were collected from
June 2011 until July 2011 at a Cocoa Powder Industry
(located in Johor Bahru, Malaysia). (Supplementary
Materials)
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[19] D. Tomić and S. Stjepanović, “Forecasting capacity of ARIMA
models: a study on Croatian industrial production and its sub-
sectors,” Zagreb International Review of Economics and
Business, vol. 20, no. 1, pp. 81–99, 2017.

[20] P. E. Omaku, O. J. Braimah, A. A. Adesupo, and S. B. Jaiyeola,
“On the comparison of some models for estimating auto-
correlated time series,” American Journal of Mathematics and
Statistics, vol. 6, no. 1, pp. 9–17, 2016.

[21] M. I. Rapoo and D. Xaba, “A comparative analysis of artificial
neural network and autoregressive integrated moving average
model on modeling and forecasting exchange rate,” World
Academy of Science, Engineering and Technology International
Journal of Economics and Management Engineering, vol. 11,
no. 11, pp. 2669–2672, 2017.

[22] X. Wang, Y. Kang, R. J. Hyndman, and F. Li, “Distributed
ARIMA Models for Ultra-long Time Series, Monash
Econometrics and Business Statistics Working Papers 29/
20,” 2020, https://www.monash.edu/business/ebs/research/
publications/ebs/wp29-2020.pdf.

[23] D. Eni and F. J. Adeyeye, “Seasonal ARIMA modeling and
forecasting of rainfall in Warri Town, Nigeria,” Journal of
Geoscience and Environment Protection, vol. 03, no. 06,
pp. 91–98, 2015.

[24] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series
Analysis: Forecasting and Control, John Wiley & Sons,
Hoboken, USA, 2008.

[25] R. Adhikari and R. K. Agrawal,An Introductory Study on Time
Series Modeling and Forecasting, LAP Lambert Academic
Publishing, Germany, 2013.

[26] A. Deka and N. G. Resatoglu, “Forecasting foreign exchange
rate and consumer price index with ARIMAmodel: the case of
Turkey,” International Journal of Scientific Research and
Management, vol. 7, no. 08, pp. 1254–1275, 2019.

[27] D. Nikolaos, A. Stergios, S. Tasos, and S. Ioannis, “Forecasting
unemployment rates in Greece,” International Journal of
Sciences: Basic and Applied Research, vol. 4531, pp. 43–55,
2016.

International Journal of Mathematics and Mathematical Sciences 9

https://downloads.hindawi.com/journals/ijmms/2022/4783090.f1.docx
https://downloads.hindawi.com/journals/ijmms/2022/4783090.f1.docx
https://www.monash.edu/business/ebs/research/publications/ebs/wp29-2020.pdf
https://www.monash.edu/business/ebs/research/publications/ebs/wp29-2020.pdf


[28] O. O. Jonathan, E. R. Uju, and A. D. Oghenebrume, “Fore-
casting of Nigeria manufacturing sector growth rates using
ARIMAmodel,” Lafia Journal of Economics and Management
Sciences, vol. 3, no. 2, p. 61, 2018.

[29] P. J. Brockwell and R. A. Davis, ITSM for Windows: A User’s
Guide To Time Series Modelling And Forecasting, Springer-
Verlag, New York, NY, USA, 1994.

[30] J. D. Cryer and K. S. Chan, Time Series Analysis: With Ap-
plications in R, Springer, New York, USA, 2008.

[31] A. C. Harvey, Forecasting, Structural Time Series Models And
the Kalman Filter, Cambridge University Press, New York,
USA, 1989.

[32] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Intro-
duction To Time Series Analysis And Forecasting, Wiley-
Interscience, Hoboken, USA, 2008.

[33] K. D. Lawrence, R. K. Klimberg, and S. M. Lawrence, Fun-
damental Of Forecasting Using Excel, Industrial Press, New
York, NY, USA, 2009.

10 International Journal of Mathematics and Mathematical Sciences


