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This paper deals with the existence of weak solutions to a Dirichlet problem for a semilinear elliptic equation involving the
difference of two main nonlinearities functions that depends on a real parameter A. According to the values of A, we give both
nonexistence and multiplicity results by using variational methods. In particular, we first exhibit a critical positive value such that
the problem admits at least a nontrivial non-negative weak solution if and only if A is greater than or equal to this critical value.
Furthermore, for A greater than a second critical positive value, we show the existence of two independent nontrivial non-negative

weak solutions to the problem.

1. Introduction

In the last years, most works studied the existence,
nonexistence, and multiplicity of nontrivial weak solu-
tions of a semilinear Dirichlet problem of the form as
follows:

x € Q),

{—Auzf,\(x,u), i
x € 0Q),

u=0,

where Q is a bounded domain in RY, A is a real parameter,
and f;: QxR — R is a nonlinear function taking dif-
ferent forms. According to the values of A, Ambrosetti et al.
studied in [1], the existence and multiplicity of non-negative
weak solutions of the problem (1) when f) (x, u) = Aud + uP
with 0 <g <1 < p. For example, by using variational method,
they show the existence of infinitely many solutions of the
problem as follows:

“Au=MulT u+ [uP u, xeQ,
x € 0Q),

(2)

u=0,

for >0 and small. Later, Alama and Tarantello in [2]
studied the semilinear Dirichlet problem (1) by searching
non-negative solutions with

firlou) =u+o(x)ul " =k, (3)

where 1 € R,Q c RYN(N>3) is a bounded domain with
smooth boundary, w and h are suitable functions, and
1 < g <r. In this case also, the authors show the influence of
values of A on the existence and multiplicity of weak so-
lutions of the problem. These different studies on nonex-
istence, existence, and multiplicity results for nontrivial
weak solutions depending on a parameter for a Dirichlet
problem for a semilinear elliptic equation were extensively
investigated in the literature (see, for e.g., [3-6] and the
references therein). Similar results, depending on a real
parameter, are obtained in the case of quasilinear elliptic
equations in bounded domains or in entire space RY. For
example, we can mention the papers [7-9], which are de-
voted to the unbounded case. In [7], the authors deal with
the nonexistence and existence of nontrivial weak solutions
of the quasilinear problem:
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{ fdiv(a(x)IVu|P72Vu) + 1l ?u = Ag ()|ul *uin Q, @

a(x)IVuIPizayu +b(x)|Vul? %u = 0,000,

where Q is a smooth exterior domain in RY, v is the unit vector
of the outward normal on 0Q, 1<p<N, (p<r<gq<p*=
(Np/(N - p))) or p<q<r<p* and a,b, and g are suitable
functions. They showed in different cases that the existence of
weak solutions of the problem depends on the values of A relative
to the value of some critical value.

In [8], Pucci and Radulescu studied the following
problem in whole space:

=div(|Vul?*Vu) + [ul” 1 = Mul® *u = h(0)lul *uinRY,
u>0,inR",

(5)

where h > 0 satisfies

0< J h(x) 4 < oo, (6)
RN

A>0 is a parameter and 2< p<q<min{r, p*} with p* =
(Np/(N - p))if N> pand p* = coif N < p. They obtained
that the nonexistence and multiplicity of nontrivial weak
solutions of this quasilinear elliptic equation are corre-
sponding to the smallness and the largeness of A, respec-
tively. In [10], Autuori and Pucci extended the results in [8]
by solving a more general quasilinear elliptic equation with
the same variational method. Motivated by these previous
results, we are concerned in this paper with the existence,
nonexistence, and multiplicity of nontrivial weak solutions
of the following Dirichlet problem for a semilinear elliptic
equation:

{ —Au+u = Aa(|lul)u — b(Ju))uin Q,

u =0o0no, (gl)’ @

where Q ¢ RY, N >3, is a bounded domain with smooth
boundary, a, b are suitable non-negative functions, and A is a
real parameter. By taking inspiration on the method de-
veloped in [8, 10], we use variational arguments to study the
existence and the multiplicity of nontrivial weak solutions of
problem (¢,) according to the values of the parameter A. To
obtain our results in this work, we require in(¢;) the fol-
lowing assumptions:

(#,)a is a function continuous on R, and of
C'((0, +00), R,) such that

a(t)>0, (a()t) >0forallt>0;, (8)

a(t)=0=1t=0, 9)

tirilooa(t) = 400. (10)

Let us set

t

A(t)=J sa(s)dsfort>0. (11)
0

(of,) There exist p,gel]2,N[ such that

p<q<2*=2N/(N-2)and

a (t)t

_ - . 12

p-2< 2 () <gq-2, forallt>0 (12)

(%,)b is a function continuous on R, and of
C'((0,+00), R,) such that

b(t)>0, (b()t) >0forallt>0, (13)
b(t) = 0=t =0, (14)
tirgoob(t) = +00. (15)
Let us set
t
B(t) = J sb(s)ds for £ > 0. (16)
0
(%B,) There exists r € ]2, N[ such that g<r and
b ()t
_ — . 17
q-2< 0 <r-2, forallt>0 (17)

Some examples of functions a and b in (¢, )satisfying the
previous assumptions (&), (&,)(%;), and (%,):
(1) For u>0, we can have a(u) = u?~2 and b(u) = u'~?
in (g) with 2< p<r<N <2*.
(2) Another example of functions a and b is the
following:

with3<a<a+1<f<N<2". (18)

ucx—z
1(1—+), fOI'u>0,
a(u) = 3 n u
| O, foru =0,
i foru >0
7) > bl
bw) = In(truy ¢
L 0, foru =0,
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In this case, for all t > 0, we have

a (Ht
27
at) =
(19)
(x—2<[3—3£bbigt£ﬁ—2.
(3) Let ¢ fixed in (1, +00). For all u >0,
utx—Z
a(u) In(o +u)
B-2
% (20)
b() In(o +u)
with 2 + <a<a+ <B<N<2,
+1, 0

where t, is the unique solution of the equationln (o +t) — t
= 00n(0,+00). Hence, for all t > 0, we have

!
t
o__a (1)

B _0+t0_ a(t) -2,
(21)
o b0t
a—2<ﬁ—2—a+toﬁmgﬁ—2

Thus, it is clear that the functions a and b of the Dirichlet
problem (¢;) of our present work generalize the functions
[ul7? and |u|"*(2<g<r) which appear in the main
equation studied in [7, 8] or [10].

The main goal of this paper is the proof of the following
two theorems:

Theorem 1. By the fulfillment of assumptions (),
(d,)(RB,), and (AB,), there exists a critical value A >0 such
that the Dirichlet problem (e,) admits at least a nontrivial
non-negative weak solution if and only if A >\

Theorem 2. Suppose that the assumptions (), (4,)(B,),
and (RB,) are fulfilled. Then, there exists a critical value A
satisfying A> A such that for all A >, the Dirichlet problem
(¢)) admits at least two nontrivial non-negative weak
solutions.

In Section 2, we talk about Orlicz spaces, which we will use
in our work. In Section 3, we give different imbeddings be-
tween the working spaces of this paper and prove the non-
existence of a nontrivial weak solution when A in (¢)) is least
than a positive number. The conditions for existence of weak
solutions of (¢,) are established in Section 4. Section 5 has
devoted to prove Theorem 1, and Section 6 deals with the
proof of Theorem 2.

2. Notions on Orlicz Spaces (See Chapter
8in [11])

Definition 1. (definition of a N-function). Let y be a real-
valued function defined on [0, co) and having the following
properties:
(a) (0) =0,
(b) v is nondecreasing, that is, s > ¢ implies y (s) >y (¢)

y(t)>0ift>0, lim,_,,, =+o0

(c) v is right continuous, that is, if >0, then
lim,_ .y (s) = y(t)
Then, the real-valued function ¥ defined on [0, +00) by

¥ (t) = J-o v (s)ds, (22)

is called an N-function.
Any such N-function ¥ has the following properties:
(i) ¥ is continuous on [0, co)
(ii) ¥ is strictly increasing
(iii) ¥ is convex
(iv) lim,__,, (¥ (#)/t) = 0 and lim,__,, (¥ (¢)/t) = +00
(iv) The function t— (W (¢)/t) is strictly increasing on
(0,00)

For any N-function ¥ = ¥ (¢) and an open set Q ¢ RY,
the Orlicz space Ly (Q) is defined. When ¥ satisfies A,
-condition, i.e.,

Y (2t)<k¥(t), forallt>0, (23)

for some constant k> 0, then

Ly (Q) = {u: Q — R measurable: jQ‘{’(|u(x)|)dx<oo]>. (24)

Endowed with the norm
lully = inf{k>0: I w('”f”)m 1}, (25)
Q

which is called the Luxembourg norm, the Orlicz space
Ly (Q) is a Banach space. It is known that if
[ Q¥ (Iu(x)I7ky)dx = 1, then [lully =k, with ko> 0.

The complement of ¥ is given by the Legendre trans-
formation as follows:

Y(s) = Irt1>%x(st — ¥ (¢t))fors=0. (26)

We say that ¥ and ¥ are complementary N-functions of
each other.

For all t >0, we have the inequality T (¥ (t)/t) <Y (t).

From Young’s inequality

st<W¥(£) + ¥ (s), (27)

a generalized version of Holder’s inequality is obtained as
follows:
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|| v o] < 2ulylvigforu € Ly (@), € L ()
Q

(28)

3. Preliminaries and Nonexistence of Nontrivial
Solution for A Small

By condition (&) and the definition of A and by condition
(%,) and the definition of B, the functions A and B are
N-functions, with y (s) = sa(s) or y(s) = sb(s), respectively.
Lemma 1. The N-function A satisfies the A,-condition.
Proof. In fact, by (12),

2
forallt>0, p< a;t()tt) <q. (29)

Thus, by Theorem 4.1 in [12], it follows that A satisfies
the A,-condition. O

Lemma 2. The N-function B satisfies the A,-condition.

Proof. In fact, by (17)

2
b (30)

forallt>0, g< B() <

and B satisfies the A,-condition by Theorem 4.1 in [12].
Let us consider the Sobolev space H} (), which is the
completion of Cg° () with the norm

5 (1/2)
Iy =( [ 7)< 19u, (3D

Let X denote the completion of Cg° (€2) with respect to
the norm
5 5\ (172)
[ (A A (32)

where

luall = inf{/1> 0: Lﬁ('“&”')dx < 1}, (33)

is the Luxembourg norm in the Orlicz space Ly (Q). The
space X is the space in which we will find our nontrivial weak
solutions. O

Lemma 3. The embeddings X — H} (Q) — L2 (Q) are
continuous  with ||M||H5(Q) <|lullx,forallu e X  and
lullye < Cyellullyy (), forallu € H} (Q).

Moreover, H}(Q) — — P (Q) and
X — — [P (Q) are compact for all p such that 1 <p <2*.

Proof. The first imbedding that i.e., X — H{(Q) is fol-
lowed from the definition of the norm in X. The second

imbedding is followed from Talenti’s work in [13]; C,. is the
Talenti constant. The imbedding compact
H}(Q) — — LP(Q) for pe[1,2%) is obtained by
Rellich’s Theorem. It follows that the mapping
X — — L (Q) is compact for p € [1,2%). O

Lemma 4. Let {,(t) = min (¢, ),
¢, (t) = min (¢4, t"),
Then,

(P A< A(pt) <, (p)A(t) forp, t=0, (34)

¢, (t) = max (t?,11),
and {5 (t) = max (¢9,¢") forallt > 0.

Co (lully) < jQA(Iu(x)Idx < (llully) foru € Ly (Q), (35)

(,(p)B(t) <B(pt) < {5 (p)B(t) forp, t=0, (36)

¢, (llullg) < JQB(lu(x)ldeQ (lullg) foru € Ly (Q). (37)

Proof. The proof is given in [14] (see Lemma 2.1 of [14]). In
fact by integrating the inequalities (29) and (30) respectively,
we get inequalities (34) and (35). From (34) and (35) and the
definition of Luxembourg norm we get respectively (35) and
(37). O

Lemma 5. The space Lg(Q) is imbedded continuously in
L, (Q) with lul 4, < Zllullg, where

x = 2kw, (38)
with k = max{1, (A(1)/B(1))"?} and
w = max{l, (A(1)/B(kA™" (1/2 mes(Q))))}.

Proof. This proof is based on the proof of Theorem 8.12 in
[11]. Fix k, with k>1, then

A(t) - A(1)

forallt>1,——>< , 39
oralt =L B k) “ k7B (1) (39)
by (34) and (36). Thus, by taking k=
max{l, (A(l)/B(l))(”q)}, we have
A(t)<B(kt), forallt>1. (40)
By the proof of (Theorem 8.12 [11]),
. 1
forallt> A <2mes(Q)>’ A(t) <wB(kt),
(41)

A1)
where w = max- 1, —~ .
B(kA™ (1/2mes (Q)))
Let ueLg(Q) such that u#0. Let us set
Q' (u) = {x € Q: (Ju(x)|2wk|lullg) < A~' (1/2mes(Q))} and
Q" (u) = Q- Q' (u). Bbeing convex, we have
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Ju ()| ) J ( |u (x)] ) I ( |u (x)] ) 1 J
A dx = A dx + A dx < dx
JQ (Zwkllullg Q'@ \2wkllulg 0" \2wkllulg 2mes (Q)J) o’ w)

L2 AT Y P
o' \20[lullg 2 2Jo \ lullg

It follows that |lull 4, < 2wk|lulz and consequently Ly ()
is imbedded continuously in L, (Q). O

Lemma 6. The N — functionA satisfies the following:

lim Alkt) Oforallk>0. (43)

t—+00 t2* B

Proof. The result is followed from property (34). In fact, by
(34), forallk >0, forallt>1, we have
AWK _GOAK) _ 4o

T

0 A(k). (44)

O

Lemma 7. The imbedding L* (Q) — L, (Q) is continuous
with

[u (x)]

(42)

lull , < Cillully., forallu € L* (Q), (45)

where, Ci, = 2max]1; (A~ (1/2mes())) > } (A (1)) V2.

Proof. The N-function A increases more slowly than
t——t2" near infinity and by (34) it follows that for all
t>1,A(t) < A(1)t*". By the proof of (Theorem 8.12 [11]),
o
2mes (Q)

_2*
WherewzmaX{ 1,(A_l<m)> }

Let uelL,.(Q) such that u#0. Let wus set
Q' () = {x € Q: (lu)20(A0)"ull,.) <A (1/2
mes(Q))} and Q" (1) = Q - Q' (u).

fora11t2A1< ) A(t) <wA()E,

(46)

[ (x)| [u ()]
A - dx = A - d A S d
Jo <2w(A<1>)‘”“||u||2*> * me <2w<A(1))“’“||u||z*) “Jo"«o (2w(A<1>)“’“||u||2*> *

1
<— X +
2mes (Q) Jg (w)

It follows that ||u||A£2w(A(1))(1/2*)||u||2* and conse-
quently L,. (Q) is imbedded continuously in L, (Q). O

Lemma 8. The imbedding H} () — L, (Q) is continuous
with

lull o < Cyllull g oy for all u € Hy (Q),
(48)
whereC, = C,.C},.

Moreover, the imbeddings Hj (2) — — L, (Q) and
X — —> L, (Q) are compacts.

Proof. The continuity of the imbedding H} (Q) — L, (Q)
is followed from Lemmas 3 and 7. By Lemma 6 and Theorem
836 in [11], it follows that the imbedding
H(l, (Q) — L,(Q) is compact. It follows also that
X — — L,(Q) is compact because X — H{(Q) is
continuous by Lemma 3. O

Lemma9. Ifuisan element of X~{0} and A is a real such that

(47)

2 2
wj wdxgl+lj’ ju ()l dx<1.
Q" () (

7 bR
20llull,. ) 2 2Jo ul.

J |Vu|2dx+J |u|2dx+J b(lul)uzdx:)tj a(jul)ldx, (49)
Q Q Q Q

then A >0 and there exists two positive constants k, and k,
independent of u such that

klfl (/\)S ”u"ASszz (/\): (50)

where f, and f, are two functions of A.

Proof. Let us take u € X~{0} and A € R such that (49) hold.
Thus, we have 0< ||u||%{1 @ SAJQa(IuI)uzdx. As a is a non-
negative function in 0(0, +00), it follows that A>0. Let
us show the second part of the Lemma. Firstly, by using
respectively (29), (35), (48), and (49), we get

el < gACSE, (llul ). (51)
Thus, this last inequality yields
lull, zmin{(ch)“”“’”A(”(Z‘P”,(ch)(”(2"’))A(1/(2‘P))}.
(52)
Secondly, by (29), (30), (48), and (49) we have
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Il < Al o < cj()\j a(Jul)utdx - J b(luudx) < ciqj AA (I ()]) = B(Ju (x)])dx. (53)
Q Q Q

Let us set Q, = {x € Q: [u(x)|<1} and Q,=Q-Q,.
Since A >0, (34) and (36) imply

A (D - Bl () < A D|u(x)P = B()|u(x)|", forxeQ,, (54)
e Hn= AA(D|u(x)|T-B(D)|u(x)|", forx e Q,.

where  a= (B()* ),  b=1A(1)(B(1) ",
Let s=p or s=gq. By applying Young’s inequality = a= (r/s)>1, and = (v/(r —s)) > 1. Inequality (55) yields
ab< (a%/a) + (bﬂ/ﬂ) fora,b>0and a>1and > 1, we have

/\A(l)lu(x)lsS;B(1)|u(x)|r

55
r—s( AA(1) )W(rs)) (59
+— DRRNAY bl
r \ @B
s , e r—s{ MAAQ1) (i {r=s)
MA@ - Bl ()" <BO)u ()] <71>+7(W) , (56)
rl(r-sHr — S A(l) =)
= (W) ) (57)

being s <r. Hence, (54) yields

(r/ ()
oy - AQl
=T P( (1) )  forxeq,

r (B(I))(P/r)
AA(Ju(x)]) = B(lu(x)]) < (58)
r/(r— r_q A(l) (+1r=-a) !
P q))T (W) , forxeQ,

As ((r—p)ir)> ((r —g)/r), it follows, from (58), that

r-p wom( AQ N7 A@) TP
AA([u(x)]) = B(lu(x)]) < . max{/l P(W) b q B  forallzeQ. (59)
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Thus, by (53) and (59), we get

_ (1/2) (r/2(r-p)) (r/2(r-q))
lull ,<C q(r—p) mes (Q) max4{ A2 P) _AM A2 r=a) _AM . (60)
Aazma r (B(1)) " (B(1))4"

Finally, the last inequality and (52) yield the result
(50). O

Definition 2. An element u of X is a weak solution of (¢;) if
| vuvvdx e | uvdx =] a(ubuvdx
Q Q Q

- J b(ju)uvdx forall v € X,
Q
(61)

Consequently, the weak solutions of (¢;) are exactly the
critical points of the energy functional ®,: X — R defined

by
1 1
O, (u) = EJQIVuIde +5J0|u|2dx
(62)
—AI A(Iul)dx+J- B (jul)dx.
Q Q

Lemma 10. If (¢)) has a nontrivial weak solution u € X,
then A > Ay, where

n 2(r-p) (p-2)/ (p(r-2)) n 2(r-q)(p-2)/ (rp-2q) " 2(r-p)(q-2)/(rq-2p) n 2(r-q)(q-2)/(q(r-2))
Ay = min <—> | — o e= | = >0, (63)
@ ko R o

with

_ —(1/2)
"= CX(Mmes(Q)) ,

‘= (qC2 )(ll(p—Z))

=(qC% ,

(1/(g-2))

£=(aci) " (64)
(r/2(r-p))
(B(l))(P/r)

A(l) (r/12(r-q)
Q=<(B<1)><q”>) '

Proof. If (¢)) admits a nontrivial weak solution u € X, then
equality (49) is satisfied and A >0 by Lemma 9. Let us now
show that A > A,,. By inequalities (50) and (60) of the proof of
Lemma 9, we get the result.

We claim that the set E= {A >0: (sM)
admits only the trivial solution for all y < A} is not empty and
bounded above. Indeed, by Lemma 9, for all A<, (&)
admit only trivial solution. Thus, A, € E. Now suppose that

for all M >0, there exists A,; such that A,, > M. Therefore,
there exists a sequence (A,),cn+ Of elements of E such that
0<Ay<A; <A<+ <A, <--- Forall neN, for all g such
that 0<u<A,, (¢,) admits only trivial solution. By hy-
pothesis, the sequence (A,),,y tends to +00. Hence, for all
u € (0,+00), (sﬂ) admits only trivial solution. This con-
tradicts the Lemma 9.
Let us define

A= sup{/l >0: (sy)admits only the trivial solution for all y < /\}.
(65)
It is clear that A > Ag > 0. In Section 5, we will prove that A
is the required critical value of the Theorem 1. O
4. Basic Results for Existence of
Nontrivial Solution
The results in the previous section require us to work from
now on with 1>0.

Lemma 11. The energy functional @, in coercive on X.

Proof. Let u € X.
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CDA(u)zéj |Vu| dx +— J |u| dx - /\J A(|u|)dx+JQB(|u|)dx,

2
25”””]—[5(0)

By using Young’s inequality, as we use it in (55), we have

AA (Ju(x)]) ——B(Iu(x)|)<2 (a/ (=)L pc forallx € Q,
(67)

(66)

- [AJQA(IuI)dx - % JQB(IuI)dx] " % JQB(IuI)dx.

where €, = max{)t(r/(’_P)) (A(1)/ (B(1)) @yl r=p)

A=) (A (1)/(B(1)) @) =D} Therefore, we have

1 1
@123l 0 +5 | Blludx =297 Loy mes )

2

> Ml oy +5 (Il -

T2

In conclusion, @, is coercive in X. O

Lemma 12. Let A and B respectively be the complements of
N-functions A and B. Then, we have

p A (s _ 9 groso (69)
p—l A(s) Tq-1
4 B (s)s r fors>0, (70)

q- = B(s) ~
where A’ (s) and B' (s) are respectively the derivatives ofﬁ (s)
and B(s).

Proof. The results are obtained by using (29) and (30) and
the proof of the point (2.7) of Lemma 2.5 in [14]. O

Proposition 1. The spaces L, (Q) and Ly (Q) are reflexives
and separables Banach spaces.

Proof. The N-functions A and B satisfy A,-condition re-
spectively by Lemmas 1 and 2. Moreover, the inequalities
(69) and (70) of Lemma 12 imply that the N-functions Aand
B satisty the A,-condition. Thus, by (Theorem 8.20 and
Remark 8.22 in [11]), the spaces L, (Q) and Ly (Q) are
reflexives and separables Banach spaces. O

Proposition 2. (X, |.|x) is a separable reflexive Banach
space.

1
2 _”u"f{é(g) + 5(2 ("u”B) -

1 o= 1
> ul3 - 2@ q))—pc,\mes(ﬂ) -5
r

2@ =)’ pclmes(Q)

(68)

) 2(‘1/(r ‘1)) pC meS(Q)
r

Proof. Let Y = Hy(Q) x Ly (Q), which we endow with the
norm |lully = ||u||H1 @ * lullp. Since Hy(Q) and Lg(Q) are
reflexives Banach spaces, then (Y,]. ||y) is a separable and
reflexive Banach space by Theorem 1.23 in [11]. Let us consider
the operator TI: (X,|.lx) — (Y,|.lly) defined by
I'(u) = (u,u).T is well defined, linear, and isometric. Therefore,
I'(X) is closed subspace of Y and so I'(X) is separable and
reflexive by Theorem 1.22 in [11]. Consequently, (X, |.lly) is a
separable reflexive Banach space, being isomorphic to a sepa-
rable, reflexive space. Finally, we conclude that (X, ||.||) is a
separable reflexive Banach space because reflexivity and sepa-
rability are preserved under equivalent norms. O

Lemma 13. Let (u,) be a sequence in X such that (O, (u,,)), is
bounded. Then, (u,) admits a weakly convergent subsequent in X

Proof. The proof comes from the coercivity of ®, in X and
the reflexivity of the space X. O

Lemma 14. The functional ®,(u) = (1/2)IQ|Vu| dx is
convex, of class C' and is particularly sequentially weakly
lower semicontinuous in X.

Proof. The convexity of functional @, (u) = (1/2)I [Vul?
dx is followed from the convexity of function tl—»tzom R.

Let us show the continuity of ®, (1) on X. Let (u,,), bea
sequence of which elements are in X and let u € X such that
u, — u in X. Let (u, ), be an arbitrary subsequence of
(u ),- The subsequence u, — u in X and hence, by
Lemma 3, Vu, — Vu in (L2 (Q)N. By Theorem 4.9 in
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[15], there exists a subsequence (u,, ) of u,, and a function
v € L1 (Q) such that Vu, — Vu aeanas] —> 00 and
[Vu, |<1//ae1anorall]€N So |Vu, > — |Vul? a.ein
Qas] —> ocoand [Vu, |2<1// € Ll(Q)aemeorall] eN
The dominated convergence theorem implies that
|Vu, | — |Vu? in L'(Q) as j — oo. The subsequence
(unk)k being arbitrary, we deduce that |Vu, > — |Vul?
L' (Q) as n —> oo. Then, we get the continuity of ®, on X
and also, @, is sequentially weakly lower semicontinuous in
X by Corollary 3.9 in [15]. Moreover, ®, is Gateaux-dif-
ferentiable in X and for all u, ¢ € X, we have

(D (), 9) = JQVqu)dx. (71)

Let us finish the proof by showing that ®, is continuous.
Let (u,), be a sequence of functions in X and u € X such that
u, — u in X when n — 00. By a simple calculus we have

[@4 () = @50 < o = gy oy < e =l (72)

This inequality yields the continuity of ®@,. O

Lemma 15. The functional ©,(u) = (1/2)j0|u| dx is con-
vex, of class C' and sequentially weakly lower semicontinuous
in X. Furthermore, if (u,)) is a sequence of elements of X and u
belongs to X such that u, converge weakly to u in X, then
O, (u,) — ®,(u) in X'

Proof. The convexity of the functional @, is obvious. The
continuity of @, in X follows from Lemma 3. Thus, @, is

u
.
kj

A(J(

By (13) and since A satisfy A,-condition, we have

Yt =l

A (y () +lu(0)])

sequentially weakly lower semicontinuous in X by Corollary
3.9 in [15]. To complete the proof of the theorem, it suffices to
show the last part of the theorem. Therefore, let us take
(u,) ¢ X and u € X such that u, —u weakly in X. Since
X — —> L*(Q) is compact by lemma 3, we have ||®, (u,,)-
@, (u)lly < llu, — ull, and then @, (u,) — @, (u) in X'. O

Proposition 3. (i) Ifu, converge strongly tou in L, (Q), then
a(lu,)u, converge to a(lul)u in LX(Q). (ii) If u, converge
strongly to u in Lg (Q), then b(|u,|)u,, converge to b(|u|)u in

Proof

(i) Suppose that u,, converge strongly to u in L, (€2). Let (v,, )
be a fixed subsequence of the sequence n—a (|u,,|)u,,. For all k
,wehavev, = a(|u,|)u, ,where (u, ) isa subsequence of the
sequence (u,), which converge to u in L, (Q). Thus,
IQA(Iu —u|)dx — 0, as k — oo. It follows that, there
exists a subsequence (u, ) of (u, )k and a positive function
v € L' (Q) such that A(Iu —u|) — 0 ae in Q and
0<A(|u —ul)<y(x) ae 1n Q, forall j e N. As A is con-
tinuous and strictly increasing in R, we have u,, — ua.e in
Q. Hence, v —v=a(lu)uae in  Q and

A(|a(|unk |)unk —a?|u|)u|) — Oa.e in Q. On other hand,
there exists h € L1 (Q) such thatA(Ia(Iu I)u —a(lu)ul) <
h(x)a.ein Q. Indeed, by the fact thatA(Iu - ul) <y (x)a.ein

Q and the function t——a ()t is contintious and increases
strictly in R,, we have

) <A[2a(A™" (v (%) +lu (0)]) (A (¥ (x)) +lu(x)])], forx € Qae. (73)

a(fit, | Jt, -~ a
<SA(A™!
< 6'A(max{
where 8 and & are constants. Thus, h(x)=
8’ A (max{A “H(y (%)), lu(x)[}). In consequence, it yields that

A(Iv -v) = A(Ia(lunk I)u,,k —a(luul) — 0in  L1(Q),
as j — co. Due to arbitrariness of (Vo we deduce that
A(lv, = vI) = A(la(Ju,Du, — a(luhul) — 0 in L'(Q), as
n — co. Hence, a(|u,|)u, — a(lul)u in LZ(Q)'

(ii) The proof is analogous to (i). O

Lemma 16. The functional @, (u) = IQA(IuI)dx is convex,
of class C' and sequentially weakly lower semicontinuous in X.

)sa}i[A

AT (y (%) +u ()]

(v(x)) +|u(x)|),forx € Qa.e,

,forx € Qa.e,

(74)

Al (v (x)), |u(x)|})forx € Qa.e,

Furthermore, if (u,), is a sequence of elements in X and u
belongs to X such that u, converge weakly to u € X, then
D, (u,) — Oy (u) in X'

Proof. The convexity of @, follows from the convexity of the
positive function t——A(|t|) defined on R. The function
t——A([t]) is also continuous and vanishes in zero. By
Lemma 3 in [16], for all k>1, for £>0, such that,
0<e< (1/k), we have

|[A(la+0bl) - A(lal)l <e@,(a) + v, (b),foralla,b e R, (75)
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where o, (t) = A(k|t]) — KA([t]),
forallt € R with (1/C,) = e(k - 1).

Let (u,), be a sequence of X and u an element of X such
that u, — u in X. u belongs to L, () by Lemma 8 and we
have jQA(IuI)dx< oo.u, — u in X implies u, — u in
H{ (Q). So, u,, —> u a.e in Q. By (35), properties of function
{, and Lemma 8, we have

0< J'Qq)£ (u, —u)dx = J-QA(k|un - u|) - kA(|un - u|)dx

<Gy (Kot =l ) < K76, (et = 1] ) <78, (o = ] )
(76)

v (1) = 2A(IC.t)),

As u, — u in X, there exists M >0 such that for all
integer n,

0< J ¢, (u, —u)dx <kiM. (77)
o

Since u belongs to L, (Q2), A(|6ul) € L' (Q) for all 6 € R
and thus,

0< J v, (w)dx < 0o, forall £ > 0, (78)
Q

Hence, by Theorem 2 in [16], it follows that
®, (u,) — D, (u), asn — oo. This assures the continuity
of the functional ®,. It then follows that @, is sequentially
weakly lower semicontinuous in X by Corollary 3.9 in [15].
Furthermore, ®, is Gateaux-differentiable in X and for all
u, ¢ € X,

(@4 (1), 9) = Jga(lu(x)l)u (%)¢ (x)dx. (79)
Let (u,) ¢ X and u € X such that u,—u in X as

n — oo. Let us show that @, (u,) — @, (u) in X'. By
Holder’s inequality, we have

[@4(,) - @@l = sup UQ [a(ju] )1, a(lul)u](pdx‘

lpllx=1

<2 sup
X

lpllx=1

Since u,—u in X, by Lemma 8 and Proposition 3, it
follows that [a (|u,|)u, — a (IuI)uIIX — 0 and consequently,
@, (u,) — @4 (u) in X'. In particular, this shows that ® ,
is class C! in X and the proof of the Lemma is finished. O

Lemma 17. The functional Oz (u) = IQB(IuI)dx is convex,
of class C' and sequentially weakly lower semicontinuous in X
. Moreover, if (u,), is a sequence of elements in X and u € X
such that u,—u € X asn — oo, then Oy, (u,)—@p (u) in X'

Proof. The convexity of @ follows from the convexity of the
positive function t——B(|t|) defined on R. The proof of
continuity of @ in X is analogous to the proof of continuity
of @, in X in the previous Lemma. In fact, by Lemma 3 in
[16], for all k> 1, for £ >0, such that, 0 < e< (1/k), we have

forallx, y € R,
(81)

v, (£) = 2B(|C.t]),

[B(lx + y|) = B(Ix])| < €@, (x) + v, (»),

where ¢, (t) = B(k|t]) — kB(|t]),

forallt € R with (1/C,) = e(k - 1).
Let (u,), ¢ X and u € X such that 4, — u in X. By the

definition of the space X, we have X — Lz(Q),

|5 (w,) - 5]y = sup ljn [b(|un|)un - b(IuI)u](p dx

lpllx=1

(80)

(e o1, — a sty SNl < 2] (o Yt — a G .

fQB(|u|)dx<oo, and u, — u in Lg(Q). u, — u in X
implies u,, — u in H} (Q). So, u, —> ua.e in Q. By (35)
and properties of function ({,, we have

0< JQ% (u, —u)dx < krfz(“un - u"X). (82)

As u, — u in X, there exists M >0 such that for all
integer n, 0< fﬂ(pe(un —u)dx <k"M. Since u belongs to
Ly (Q), B(|6ul) € L' (Q) for all 6 € R and thus,

OSJ v, (Wdx<oco, foralle>0, (83)
Q

Hence, by Theorem 2 in [16], it follows that
@y (u,) — D (u) as n — oo. This assures the continuity
of the functional ®5 in X. It then follows that @y is se-
quentially weakly lower semicontinuous in X by Corollary
3.9 of [15]. Furthermore, @y is Gateaux-differentiable in X
and for all u,¢ € X,

(Op(u), 9> = ng(lu(x)l)u(x)gv(x)dx- (84)

Let (u,) ¢ X and u € X such that u, — u in X as
n — 0o. Let us show that ®;(u,) — ®5z(u) in X'. By
Holder’s inequality, we have

< 2||b(|un|)un - b(|u|)u'|g. (85)



International Journal of Mathematics and Mathematical Sciences 11

According to Proposition 3 (ii), it follows that
16 (Ju,)u,, — b(IuI)uIIE —0 and consequently,
@y (u,) — Dp(u) in X'. Thus, @y is class C! in X.

Let us show the last part of this Lemma. Let (u,)) ¢ X and
ueX such that u,—u in X. We shall proof that
@y (u,) =Py (u) in X' as n — oo. Let ¢ € X. For any in-
teger n, let us set v, = b(|u,|)u,, and consider an arbitrary

= b(Im|)u,, , where (u,, ), is a subsequence of (u,). Then,
u —\u weakly in X when k —> co. By Lemma 3, it follows
that u, — u in L?(Q). Thus, there exists a subsequence
(u, ) of(u )ksuchthatu — uaeinQand |u k}_l <gae

in Q where g € L' (Q). In consequence, for all ¢ € X,
Vo @ — b(|ul)ug a.e in Q and there exists h € L' (Q) such
thét 1b(|u, |)u P b(lul)up|<h a.e in Q. In fact, by (30)
and (36) we have

subsequence (v, ), of the sequence (v,). We have
l[b( by, )unkj - b(lul)u]q) < (b( b, ) by |+ b(lul)lul)lgol,
- r—1
< rB(l)lgol{max( s |thn, > + max(lulq_ ! Iulr_l)}a.ein(), (86)
)
< rB(l)I(pI{max(gq_ Ly 1) + max(lulq_ Ul 1)}a.einQ.
Thus,

h=rB(1)|pl{max(g7-!, g~ ") + max (|ul?"", [u]"")} € L!
(Q). Hence,

J,

In conclusion, @ (u,)— @4 (1) in X', as n — 00, since
(v, ), is an arbitrary subsequence of the sequence (v,).
n/k ry q q n
For any (x,u) € Q xR, let us set

f(x,u) = Aa(lul)u - b(lul)u, (88)

Fx,u) = JO £ (xv(x)dx .
= AA(lul) = B([ul).

O

|7, ()] Sljﬂa(lul)lullﬂdx + Jﬂb(lul)luIIVIdx < 2Mla (fuDlel 5 11vl 4

(Vnk —b(lul)u go‘dx —J. Hb«”nkj))”nk b(IuI)u <p’dx — 0. (87)

Lemma 18. For any fixed ue X, the functional
FupX— R, w— | flxu(x)v(x)dx isin X' (X' is
the Banach dual space of X). In particular, if v,—vinX, then
F,(v,) — F, ().

Proof. Let us take u € X. It is easy to show that F, is linear.
Moreover, for all v € X, by using Holder inequality and
imbedding properties of X in L, (Q) and X in Ly (Q), we
have

(90)

+ 21l (luDlull5 IVl < 2(Cahlla (el + 216 (ub)lull5) IVl

Thus, we conclude that &%, is continuous on X. Then, it
follows that, v,—vinX yields &, (v,) — F,(v). O

Lemma 19. The functional ®, is of class C' and sequentially
weakly lower semicontinuous in X, that is if u,—u in X, then

@, (1) < liminf @) (u,,). (91)

Proof. Lemmas 14-17 imply @, € C' (X). Let (u,), ¢ X and
u € X such that u,—u in X. The definition of ®, and (89)
allow us to write
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O, (1) - D, (u,) = % (1t =l ) + % (1t} [, 2) + JQ [F (x, 4, (x)) = F (%, (x))]. (92)

2 . 2
u < liminf |u , 93
Since u,—u in X, Lemmas 14 and 15 yield respectively loalz o < limin " ”"Hé(ﬂ) (93)

that 2
lul; < Timinf fu, . (94)

Hence, by (92), we get

limsup [ @, (u) — D, (1,)] < limsup jQ [F (1, (%)) - F (x, 1(x))]. (95)

n—~aoo n—~oo

By (88) and (89), for all s € [0,1],

F,(x,u+s(u,—u)) :g—i (v +s(u, —u))

= f(x,u+s(u,—u)) (96)
= f(x,u) + (u, —u) J: fu(cu+t(u,—u))dt.

where f, (x,u) = (0f/0u) (x,u) = Alula’ (lul) +a (|lul)] - Multiplying (96) by (u,, — u) and integrating the result
[uld' (Jul) + b(Ju])], forallu € X. over [0,1] with respect to s, we obtain

1(10 Fouloe (o, - w))de )ds. (97)

0

F(x,u,) - F(x,u) =f(x,u)(un—u)+(un—u)zj

forallu € X~0}, f, (x,u) <q(q - DAA(Jul) - B(JuD]lul ™.
According to the assumptions (&/,) and (%,), we have

(99)
forall X, < (g-1)[A -b . 98
orallu € X, f, (x,u) < (g — D [Aa(lul) - b(Jul)] (98) By (24), for all 4 € X~{0}, we have
Afterwards, (29) and (30) imply
L [ MA@ =BT, forx e,
A (o)D) ~ B(lu (D]l < . . , (100)
A (D)|u(x)|T* = B(D)|u(x)" ", forxeQ,.
Let s=p—-2 or s=q—2. By applying Young’s in-
equality ab < (a®/a) + (bﬁ/ﬁ) fora,b>0and a>1and > 1,
we have
s S yoy T—=2-5 AA(1) ((r=2)/{r=2=s)
101
MO <= BOm ™+ <(B(1))<s/<r2>> , (101)
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where we take a=BL)YTDy(x),
b=AA()(B(1) WD, = ((r-2)/s)>1, and
B= ((r-2)/(r—-2-s))>1. Inequality (101) yields

13

s . raf S r—2-s AA(1) (=21 (r=2=9)
MOl - BOu@I ™ <BOu@I (5 -1)+ 2 <(B(1))<s/<rz») ’ (102)
((r=2)/(r-2-s))
< (-2 (-2-9) (r-2-5) A(1) ) (103)
r-=2 \(B)""?
being s <r — 2. Hence, (100) yields
((r=2)/(r-p))
A(-206-p)T P A T e
r =2\ (B(1)) P2/ 2) ’ v
A (Ju (x)]) = B(Ju(x)D]lu ()] < (104)
/\((r—z)/(rfq))r —9 ( A1) (=2t forx € Q.
r—2 (B(l))((q*Z)/(er)) ’ w
As > (r— plr =2)(r —q/r - 2), it follows, from (104), where
that
A (Ju (20)]) = B(Ju (x))]]u ()72 S;:IZ)C’{’ forallx € Q,
(105)
((r=2)/(r-p)) ((r=2)/(r-q))
! = maxd 100~ 2)/(rp))( A ) ? /\((rZ)/(rq))( oA ) L (106)
A (B(1))((P-2/(-2) ’ (B(1))((P-2/(-2)
From (104) and (105), we obtain Consequently, (97) yields
—D(r -
forallu € X,fu(x,u)SWCi. (107)
F(x,u,)— F(x,u)|dx < (x,u) (u, —u)dx +q(qg—1)(r — p)cy/2(r —2) un—uzdx
0 0 q\q p N
(108)
q(g-1)(-pe 2
< e%'u (un - u) + 2(r -2) Hun - M||2.

Since u,—u in X, Lemmas 3 and 18 yield respectively
F,(u,—u) —0 and llus,, — ull, — 0. Thus,
limsuanmJ'Q [F(x,u,(x)) — F(x,u(x))]dx<0 and then,
by (95), we get the claim (91). O

5. Existence of Weak Solutions of (¢,) for Large
Values of A

Let



14 International Journal of Mathematics and Mathematical Sciences

X=inf L3 JQ(W“IZ +ul) + | Bu(Ddxfwith @, )

ueX

We remark that A > 0. Indeed, by the fact that @, (u) =
1=lull, = 1, (48) implies that

D, (u)=1
:J A(Ju(x)])dx.
Q
(109)
1
J (1vuf? +|u|2)dxz||u||§p(mzc—2, forallu € X with @, () = 1. (110)
Q 0 "
By the property (37), Lemma 5 and the monotony of
function (,, we have
j B(|u(x)|)dx2(2(||u||3)2(2<%), forallu € X with ® , (u) = 1. (111)
Q
@) (¢) <0. (116)
Thus, Therefore,
7. 1 1 D, (m) =inf O, (v) <D <0.
A2ﬁ+(z<%)>0. (112) /1( ) vex /\( ) A(q)) (117)

Lemma 20. For all A >}, the functional ®, admits in X a
global nontrivial non-negative minimizer m with negative
energy, that is ®) (m) <0.

Proof. For each A >0, Lemmas 11 and 19 and Corollary 3.23
in [15] assure to @, the existence of a global minimizer
m € X, that is

@) (m) = inf & (v). (113)

So, m is a solution of (g)). Let us prove that m is
nontrivial as soon as A > A. For that we shall just prove that
inf . x®, (v) <0. Let A > A. By the definition of A, there exists
a function ¢ € X, with [ A(Ju(x)))dx = 1, such that

/\JQA(lu (x)))dx = A >% JQ(IstIZ o)
(114)

" J B(lp(x))dx 2 1.
Q
Hence,

1
2| (90P +pP) 2] Aduendx+ [ Blgpix<o
(115)

and then

Hence, it follows that, for 1>, equation (¢) has a
nontrivial weak solution m € X with @, (m)<0. To com-
plete the proof, we can assume m>0 a.e in Q because
|m| € X and @, (m) = O, (Im]).

Let us define

A =inf{1>0: (¢ )hasanon trivial weak solution}. ~ (118)

By Lemma 20, it is clear that this definition is mean-
ingful. Furthermore, it follows easily that A > A. O

Theorem 3. For any A>A, the problem (g)) admits a
nontrivial non-negative weak solution u) € X.

Proof. Fix A>X. By definition of X, there exists h € (1,1)
such that @, has a nontrivial critical point u;, € X. Without
loss of generality, we assume that 1, > 0a.e in €, since |1, is
also a solution of (g,). We can easily see that u, is a sub-
solution for (¢,). Let us consider the following minimization
problem:

iné @, (v)where € ={v € X: forallx € Q,v(x) >u, (x)}.
(119)

We remark easily that € is a closed and convex set. Thus,
€ is weakly closed. Moreover, being @, is coercive in X by
Lemma 11, it follows that it is coercive in €. Finally, @, is
sequentially weakly lower semicontinuous in X and so in 6.
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Hence, Corollary 3.23 of [15] implies that there exists ), € €
such that

@) (1) = inf B, (v). (120)

Now, we shall prove that u, is a solution of (¢,). Let
9 € CP(Q) and €>0. Let us set 9, = max{0,u;, — uy — €9}
and w, = uy + €9 + 9. It is clear that w, € € and

0< <CD/1’ (”A)’ W, —uy) = 5<‘DA' (“A)’9> +<q>i (”1)799-
(121)

Hence

() (1), 9y > — % (] (1), 9, (122)

<(D/{ (ul)’ 9£> < <(D/{ (u/\) - q)/{ (uh)’ 95>

Let us set

Q, ={x € Q: uy (x) + e9(x) <uy, (x) <uy (x)}. (123)

It is obvious that Q, c supp?. Since, u,, is a subsolution
of (&) and 9, >0, it turns out that (®, (1,),9.) <0. Con-
sequently, as

(D) (1)), 9> =D (), ) +{ Dy (1)) — D (), 9,
fu(x) =Aa(Ju(x)u(x) = b(lu(x)u(x),
(124)
We have

< J (Vuy = Vuy,) -V (u), — uy, — ed)dx + J (uy — uy) (u), — uy, — e9)dx
0, Q,

QE
SJ
Q

€

(i) For Q, = @, it is clear that (@, (1), 9, <0. Hence
by (122), we have (®, (u;),9) >0.

[ 17 )= £ 0] (= - e8)x

(125)

(Vuy — Vuy,) - V(—€9)dx + J (uy — uy) (uy, —uy, — €9)dx
Q,

€

[ 1) = 7] (o= - e0)ax.

(ii) Also, when Q, # &, we have 0<uy, —uy —ed =y, -
uy + €l9| < €9 in Q, because in this case 9<0 in Q..
Then, (125) yields

(@) (u)),9,) < s(jﬂ (Vuy, = Vuy) - V(9)dx + JQ (uy — uy,)191dx + L) |f (uy) - f(uh)| . |9|dx> < eJQ v (x)dx, (126)

€ €

where  y(x) = (Vu, — Vu).VO+ [(u), —up) + | f (u)) — f
(u)119]. We claim that v € L' (supp9). Indeed, Vu, and
Vu, are in [L*(Q)]N and u, and u, are in L}, (Q) since
X C H} (Q). Moreover, by (¢,) and (%,), the functions
t—a ()t and t——b(t)t are continuous in R,. Thus, the
functions a (|uty )ty ], @ [uay Dlskgly b (14 Dlsky ], and b (Ja |
are continuous in Q. Consequently, a (|uy|)|u, |, a (luy|)|uy,l,
b(luyDluyl, and b(luyl)lu,l belong to LIIOC(Q). Finally,
f () - fu)l € LL(Q)  since  |f (uy) — f ()| <A(a
oty Dty + @ aay Dlogy) + (bt lety| + b (1 Y] ). There-
fore, the claim is obtained. Thus,

lim J y(x)dx =0, (127)
e—0* Q,

since |Q,] — 0 as € — 0. Then, (126) implies that
(D (1)), 9,y <° (&) as € — 0*. So, by (122), it follows that
(D (1), 9y =°(1) as € —> 0%,

We deduce that, (®; (1), 9) >0 for all 9 ¢ Cy° (Q), that
is (D (1),9) =0 for all 9 € C(Q). Thus, u, is a weak
solution of (¢,) in X because X is the completion of C§° (Q2)
with respect to the norm |.||x. Finally, u, is nontrivial and
non-negative, since uy > uy,. O

Lemma 21. 1= A,
Proof. This proof is the same to that one did in the step 5 of

the proof of (Theorem 1.1 in [7]). In fact, by Theorem 3, we
have A > . Indeed, for all A such that () a weak nontrivial
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solution, we have A > 1and thus, 1> 1. Let us show that A < A.
Suppose that A > A. For A < A, the problem (¢,) cannot admit
a nontrivial solution u € X since this would contradict the
minimality of A. Thus, for all A € [A, 1) the unique solution of
(&y) is u = 0. This assertion is still again impossible because it
would contradict the maximality of A. Hence, A = A. O

Theorem 4. The problem (e~) admits a nontrivial non-
negative weak solution in X.

Proof. Let (A,),en- be a strictly decreasing sequence con-
verging to A and u,, € X be a nontrivial non-negative weak
solution of (¢ )foralln € N*. For all n, we have

J Vu,Vvdx = —J u,vdx + )Lnj a(]un|)unvdx
. ¢ ¢ (128)
- J b(|un|)unvdx, forallv € X.
Q

By (29), (30), (49), and Lemma 4 we have
"u”Hé Q) + qcz("un"B) < q/\ncl("un"A)'

Furthermore, by inequality (60) and the monotony of ;
there exists a constant K, such that

(129)

”un”H(l)(Q) + q(z(“un"B) <KAqC) foralln € N*,  (130)

where

r/2(r— r/2(r— /2 (r— /2 (r—
C, = max A1+pr/2(r—p) A(l) prizir=p) Al+qr/2(r—p) A(l) aep) Al+pr/2(r—q) A(l) priza) Al+qr/2(r—q) A(l) a2
b " (B(L)” " (B! o (BY* o (BT

foralln € N™.

Thus, by monotony of sequence (A,),,cn+> We get

||un||H(1)(Q) + q(z(“un“B) SKAqCAI, foralln e N*.  (132)

u,—uinX,u, — uinL, (Q),u,—uinLy (Q),u,, — ua.einQ, Vu,—Vu in[L2 (Q)]

for some u € X. We claim that u, which is clearly non-
negative by (133), is the solution we are looking for. In fact,
for all v € X,

J Vu, Vvdx —>J VuVvdx, (134)
Q Q

as n — 0o, since Vu,—Vuin[L?(Q)]N by (133). Since
u,—u in X, Lemma 15 yields in particular that for all v € X,

J u,vdx — J uvdx, (135)
Q Q

as n — 00. Moreover, Lemmas 16 and 17 imply that for all
veX

a(|un|)unvdx — | a(lu))uvdx,
I, I .

J b(|un|)unvdx —>I b (Jul)uvdx,
Q Q

(131)

Therefore, the sequences (””n”Hf,(Q))n and (||lu,,llp), are
bounded, and it yields that the sequence (||u,llx),, is bounded.
According to Theorem 3.18 in [15], Propositions 1 and 2 and
Lemma 8 allow to extract, from the sequence (u,,),, a sub-
sequence still relabeled (u,), and satisfying

N (133)

as 1 — 00. By passing to the limit in (128) as n — o0, we
get by (134)-(136)
I VuVvdx + J uvdx = X.[ a(Jul)uvdx — j b (lu|)uvdxQ,
o Q Q Q
(137)

for all v € X. Hence, u is a weak non-negative solution of
(&~). It remains to show that the solution u is nontrivial.
Since u,—u in X by (133), Lemma 8 yields in particular that
lull 4 = lim|lu,|l ,. Moreover, (52) applied to each u, =0,
implies that

e = min{(in)1/(2‘P))L’11/(2’p>, (qci)l/(Z—q)A;/(ziq)}.
(138)

Thus, by passing to the limit as # — o0, we get
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. /(2-p) = _ 1(2-q) ~ B
||u||A2m1n{(in)l TPqyve p),(in)l zaqe q)},
(139)

since A,, \Aand 1> 0. Consequently, u is nontrivial and non-
negative by (133).

Proof of Theorem 1. Section 3, Lemma 20, and Theorems

3 and 4 show the existence of A > 0 such that forallA > A, (¢))

admits at least a nontrivial non-negative weak solution in X

O

1 2 1 2
@3 0> Jfully o 2| AQudx >l o

1 _
> [5 - Amax{cgnuup 2

-2
£ Cll?

So, to find the result of the Lemma, it is enough to take
such that

% 0<p< min{(Zx\Cﬁ)ll(z* P), (ZACZ)I/(qu), ||m||H(1)(Q)},
(141)

a=a(p)= B - /\maX{CﬁQP_Z,ngq_z}]gz > 0. (142)

In Lemma 20, we have shown that for all 1>, the
problem (¢,) admits a nontrivial non-negative weak solution
m € X which is above all a global minimizer of ®, in X, with
®, (m) <0. In this section, we are looking for a second
nontrivial weak solution of (¢;) when A>A. O

Lemma 23. There exists € >0 such that

forall (x, y) € R?, (b(lx)x = b(Iy)y) (x = y) 2&B(lx - y|) 0.
(143)

Proof
(i) If x = y, the inequality is verified for all ¥ > 0.

(ii) If x#0and y = 0 (or x = 0and y #0), the inequality
is obtained by (30) and ¥ = g> 0.

(iii) Suppose now that x # y with x#0 and x#0. By
hypothesis (2,), the function t——b (|t|)t is strictly
increased in [0; +00) and consequently it is strictly
increased in (-00;+00) because it is an odd
function. Thus, for x#y with x#0 and x+0,
(b(IxDx = b(lyly) (x - y)>0 and

H}(Q)

6. Second Solution for Large Values of
the Parameter

By variational methods, we prove, in this section, that the
Dirichlet problem (¢,) admits at least two nontrivial weak
solutions if A is sufficiently large.

Lemma 22. For any m € X~{0} and A>0 there exist
o€ (0, ||m||H(1)(Q)) and a = a(Q) >0 such that ©) (u) >« for
all u € X, with IIuIIHé(Q) =0

Proof. Let m € X~{0} and A > 0. Let u be in X. By (35) and
(48) and monotony of the function (j,

1
=28 (1) 2 Sl oy = A6 (ol o)

(140)
2
H”u”Hé(Q)-
b i )
o (|x|)xB(|’Elf|;T)(x 250 (144)
Let
k= nf 9(%)>0. .

xty

In conclusion, taking ¥ = max{q, x}, we get the result of
this Lemma.

Theorem 5 (see Theorem A.3 in [10]). Let (X,|-|) and
(X, |Il.lg) be two Banach spaces such that X — E. Let
®: X — R be a C! functional with ® (0) = 0. Suppose that
there exist 0, a >0 and m € X such that |m|z > o, ® (m) <,
and O (u) >« for allu € X with |lully = o. Then, there exists a
sequence (u,,), € X such that for all n
CSCD(u,,)SC+i2and||CD' (u)] s%, (146)
n

where

¢ = inf max ® (y(1)),
yeT te[0,1] (147)
I ={y e C([0,1]; X): y(0) = 0,y(1) = m},

Proof. One can find the proof of this theorem in the section
(Appendix A in [10]).

Proof of Theorem 2. Let A be a strictly positive fixed
number such that 1>A. Then, let m € X be the global
minimizer of @, given by Lemma 20. Thanks to Lemma 22
and the fact that @, (m) <0, the assumptions of Theorem 5
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which is a variant of Ekeland’s variational principle are
fulfilled for the energy functional @, of (¢,). Hence, there
exists a sequence (u,), C X such that

@) (u,) —

148
' ()] — .

where

c= lyre‘f max D (y(1),

I ={y € C([0,1]; X): y(0) = 0,y(1) = m}.

(149)

u,—uin X,u, — uinL, (Q),u,—uin Lz (Q),u, — ua.einQ, Vu,—Vuin [L2 (Q)]N,

for some u € X. It remains to show that u is a nontrivial
solution of (), with u#m. We have

(D) (u,), vy = JQVu,,Vvdx - JQ [—un + la(|un|)un - b(]uni)un]vdx, foralln, forallv € X.

By the same argument used in the proof Theorem 4, we
have, for all v € X,

J Vu,Vv dx — J- Vqudx,J u,v dx — J- uvdx,I a(lun|)unvdx
o Q o o o

In the sequel, we shall prove that the sequence (u,,),
strongly converges to some ¢ in X and that u is a second
nontrivial non-negative weak solution of (¢,). O

Step 1. By Lemma 11 (coercivity of @, on X), the sequence
(u,), is bounded in X and consequently, (u,),,is bounded in
H} (Q). For the sequel, let us use the argument of the proof
of Theorem 4. Hence, by Propositions 1 and 2 and Lemma 8
we can extract from the sequence (u,),, a subsequence still
relabeled (u,), and satistying

(150)

(151)

(152)

— | atuburas, | bju Ju,vix — [ bluuva,

as n — 00. Hence, passing to the limit as # — oo in (151),
using and the fact that (®; (u,,),v) — 0as n — oo for all
v e X, we get

J Vu, Vvdx + J uvdx = )LJ a (Jul)uvdx
Q Q Q
- J b (lul)uvdx, forally € X,
Q

(153)

so u is a weak solution of (¢,).

Step 2. We claim that

0< JQ (a)(|un|)un —a(lul)u) (u, —u)dx < 2|'a(|un|)un - a(IuI)u”X“un - u"A — 0,

F,(n) = Jo(a(|un|)un - a(|u|)u) (u, —u)dx — 0,
(154)

as n — 00. By hypothesis (o/,), the function t——a (|t|)t is
strictly increased in [0; +00) and consequently, it is strictly
increased in (—00; +00) because it is an odd function. Thus,
we have

J,(n)=0. (155)

By (150), u, —u in L,(Q). Thus,

a(lu,u,, — a(lul)u) in LZ () by Proposition 3. There-
fore, by Holder inequality, we get

(156)
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as n — o00. This gives the proof of the claim.

Step 3. In this step, we show that [u,—ully — 0 as
n — 00. Let us set

I, (n) = jﬂ(b(|un|)un) ~b(|ul)u) (u, — u)dx. (157)

e, - ”HJZLI;(Q)

as n — 0o. Furthermore, we have

2
et - ”“H;(Q) —0, (160)
as n — 00. By (143) and (159), it follows that
1
I B(|u, - u])dx <=7, (n) — 0, (161)
Q K
as n — 00. Thus, by section 8.13 in [11],
||un—u||B — 0asn — 00, (162)

since the N-function B satisfied the A,-condition. Finally,

||un - u”X —> 0asn — 00, (163)

by (160) and (162).

Step 4. Since u, — u in X and ®, € C'(X), we get
D, (1) =c=1lim,_, D, (u,). So, u is a second independent
nontrivial weak solution of (¢, ), with @, (1) = ¢ > 0> @, (m)
. We can assume u > 0 a.e. in (), since || is also a solution of
(g)) due to @, (|u]) = ®, (u). This concludes the proof.

7. Conclusion

In this paper we studied the nonexistence, the existence, and
multiplicity results for nontrivial weak solutions of the
semilinear elliptic Dirichlet problem with (g,) involving a
positive parameter A. Our main results are obtained in the
Theorems 1 and 2 by using variational methods.
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