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Tis paper deals with the existence of weak solutions to a Dirichlet problem for a semilinear elliptic equation involving the
diference of two main nonlinearities functions that depends on a real parameter λ. According to the values of λ, we give both
nonexistence and multiplicity results by using variational methods. In particular, we frst exhibit a critical positive value such that
the problem admits at least a nontrivial non-negative weak solution if and only if λ is greater than or equal to this critical value.
Furthermore, for λ greater than a second critical positive value, we show the existence of two independent nontrivial non-negative
weak solutions to the problem.

1. Introduction

In the last years, most works studied the existence,
nonexistence, and multiplicity of nontrivial weak solu-
tions of a semilinear Dirichlet problem of the form as
follows:

− Δu � fλ(x, u), x ∈ Ω,

u � 0, x ∈ zΩ,
􏼨 (1)

where Ω is a bounded domain in RN, λ is a real parameter,
and fλ: Ω × R⟶ R is a nonlinear function taking dif-
ferent forms. According to the values of λ, Ambrosetti et al.
studied in [1], the existence and multiplicity of non-negative
weak solutions of the problem (1) when fλ(x, u) � λuq + up

with 0< q< 1<p. For example, by using variational method,
they show the existence of infnitely many solutions of the
problem as follows:

− Δu � λ|u|
q− 1

u + |u|
p− 1

u, x ∈ Ω,

u � 0, x ∈ zΩ,

⎧⎨

⎩ (2)

for λ> 0 and small. Later, Alama and Tarantello in [2]
studied the semilinear Dirichlet problem (1) by searching
non-negative solutions with

fλ(x, u) � λu + ω(x)u
q− 1

− h(x)u
r− 1

, (3)

where λ ∈ R,Ω ⊂ RN(N≥ 3) is a bounded domain with
smooth boundary, ω and h are suitable functions, and
1< q< r. In this case also, the authors show the infuence of
values of λ on the existence and multiplicity of weak so-
lutions of the problem. Tese diferent studies on nonex-
istence, existence, and multiplicity results for nontrivial
weak solutions depending on a parameter for a Dirichlet
problem for a semilinear elliptic equation were extensively
investigated in the literature (see, for e.g., [3–6] and the
references therein). Similar results, depending on a real
parameter, are obtained in the case of quasilinear elliptic
equations in bounded domains or in entire space RN. For
example, we can mention the papers [7–9], which are de-
voted to the unbounded case. In [7], the authors deal with
the nonexistence and existence of nontrivial weak solutions
of the quasilinear problem:
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− div a(x)|∇u|
p− 2∇u􏼐 􏼑 + |u|

q− 2
u � λg(x)|u|

r− 2
u inΩ,

a(x)|∇u|
p− 2

z]u + b(x)|∇u|
p− 2

u � 0, on zΩ,

⎧⎨

⎩ (4)

whereΩ is a smooth exterior domain inRN, ] is the unit vector
of the outward normal on zΩ, 1<p<N, (p< r< q<p∗ �

(Np/(N − p))) or p< q< r<p∗, and a, b, and g are suitable
functions. Tey showed in diferent cases that the existence of
weak solutions of the problemdepends on the values of λ relative
to the value of some critical value.

In [8], Pucci and Radulescu studied the following
problem in whole space:

− div |∇u|
p− 2∇u􏼐 􏼑 + |u|

p− 2
u � λ|u|

q− 2
u − h(x)|u|

r− 2
u inRN

,

u≥ 0, inRN
,

⎧⎪⎨

⎪⎩

(5)

where h> 0 satisfes

0<􏽚
RN

h(x)
(q/(q− r)) <∞, (6)

λ> 0 is a parameter and 2≤p< q<min r, p∗􏼈 􏼉 with p∗ �

(Np/(N − p)) if N>p and p∗ �∞ if N≤p. Tey obtained
that the nonexistence and multiplicity of nontrivial weak
solutions of this quasilinear elliptic equation are corre-
sponding to the smallness and the largeness of λ, respec-
tively. In [10], Autuori and Pucci extended the results in [8]
by solving a more general quasilinear elliptic equation with
the same variational method. Motivated by these previous
results, we are concerned in this paper with the existence,
nonexistence, and multiplicity of nontrivial weak solutions
of the following Dirichlet problem for a semilinear elliptic
equation:

− Δu + u � λa(|u|)u − b(|u|)u inΩ,

u � 0 on zΩ,
ελ( 􏼁,􏼨 (7)

where Ω ⊂ RN, N≥ 3, is a bounded domain with smooth
boundary, a, b are suitable non-negative functions, and λ is a
real parameter. By taking inspiration on the method de-
veloped in [8, 10], we use variational arguments to study the
existence and the multiplicity of nontrivial weak solutions of
problem (ελ) according to the values of the parameter λ. To
obtain our results in this work, we require in(ελ) the fol-
lowing assumptions:

(A1)a is a function continuous on R+ and of
C1((0, +∞),R+) such that

a(t)> 0, (a(t)t)′ > 0 for all t> 0; , (8)

a(t) � 0⟺ t � 0, (9)

lim
t⟶+∞

a(t) � +∞. (10)

Let us set

A(t) � 􏽚
t

0
sa(s)ds for t≥ 0. (11)

(A2) Tere exist p, q ∈ ]2, N[ such that
p≤ q< 2∗ � 2N/(N − 2) and

p − 2≤
a′(t)t

a(t)
≤ q − 2, for all t> 0. (12)

(B1)b is a function continuous on R+ and of
C1((0, +∞),R+) such that

b(t)> 0, (b(t)t)′ > 0 for all t> 0, (13)

b(t) � 0⟺t � 0, (14)

lim
t⟶+∞

b(t) � +∞. (15)

Let us set

B(t) � 􏽚
t

0
sb(s)ds for t≥ 0. (16)

(B2) Tere exists r ∈ ]2, N[ such that q< r and

q − 2<
b′(t)t

b(t)
≤ r − 2, for all t> 0. (17)

Some examples of functions a and b in (ελ)satisfying the
previous assumptions (A1), (A2)(B1), and (B2):

(1) For u≥ 0, we can have a(u) � up− 2 and b(u) � ur− 2

in (ελ) with 2<p< r<N< 2∗.
(2) Another example of functions a and b is the

following:

a(u) �

u
α− 2

ln(1 + u)
, for u> 0,

0, for u � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

b(u) �

u
β− 2

ln(1 + u)
, for u> 0,

0, for u � 0,

with 3< α< α + 1< β<N< 2∗.
⎧⎪⎪⎨

⎪⎪⎩
(18)
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In this case, for all t > 0, we have

α − 3≤
a′(t)t

a(t)
≤ α − 2,

α − 2< β − 3≤
b′(t)t

b(t)
≤ β − 2.

(19)

(3) Let σ fxed in (1, +∞). For all u≥ 0,

a(u) �
u
α− 2

ln(σ + u)
,

b(u) �
u
β− 2

ln(σ + u)
,

with 2 +
σ

σ + t0
< α< α +

σ
σ + t0
< β<N< 2∗,

(20)

where t0 is the unique solution of the equation σ ln(σ + t) − t

� 0 on(0, +∞). Hence, for all t > 0, we have

α − 2 −
σ

σ + t0
≤

a′(t)t

a(t)
≤ α − 2,

α − 2< β − 2 −
σ

σ + t0
≤

b′(t)t

b(t)
≤ β − 2.

(21)

Tus, it is clear that the functions a and b of the Dirichlet
problem (ελ) of our present work generalize the functions
|u|q− 2 and |u|r− 2(2< q< r) which appear in the main
equation studied in [7, 8] or [10].

Te main goal of this paper is the proof of the following
two theorems:

Theorem 1. By the fulfllment of assumptions (A1),
(A2)(B1), and (B2), there exists a critical value 􏽢λ> 0 such
that the Dirichlet problem (ελ) admits at least a nontrivial
non-negative weak solution if and only if λ≥ 􏽢λ.

Theorem 2. Suppose that the assumptions (A1), (A2)(B1),
and (B2) are fulflled. Ten, there exists a critical value λ
satisfying λ≥ 􏽢λ such that for all λ> λ, the Dirichlet problem
(ελ) admits at least two nontrivial non-negative weak
solutions.

In Section 2, we talk aboutOrlicz spaces, which wewill use
in our work. In Section 3, we give diferent imbeddings be-
tween the working spaces of this paper and prove the non-
existence of a nontrivial weak solution when λ in (ελ) is least
than a positive number. Te conditions for existence of weak
solutions of (ελ) are established in Section 4. Section 5 has
devoted to prove Teorem 1, and Section 6 deals with the
proof of Teorem 2.

2. Notions on Orlicz Spaces (See Chapter
8 in [11])

Defnition 1. (defnition of a N-function). Let ψ be a real-
valued function defned on [0,∞) and having the following
properties:

(a) ψ(0) � 0, ψ(t)> 0 if t> 0, limt⟶+∞ � +∞
(b) ψ is nondecreasing, that is, s> t implies ψ(s)≥ψ(t)

(c) ψ is right continuous, that is, if t≥ 0, then
lims⟶t+ψ(s) � ψ(t)

Ten, the real-valued function Ψ defned on [0, +∞) by

Ψ(t) � 􏽚
t

0
ψ(s)ds, (22)

is called an N-function.
Any such N-function Ψ has the following properties:

(i) Ψ is continuous on [0,∞)

(ii) Ψ is strictly increasing
(iii) Ψ is convex
(iv) limt⟶0(Ψ(t)/t) � 0 and limt⟶+∞(Ψ(t)/t) � +∞
(iv) Te function t⟼(Ψ(t)/t) is strictly increasing on

(0,∞)

For any N-function Ψ � Ψ(t) and an open set Ω ⊂ RN,
the Orlicz space LΨ(Ω) is defned. When Ψ satisfes Δ2
-condition, i.e.,

Ψ(2t)≤ kΨ(t), for all t≥ 0, (23)

for some constant k> 0, then

LΨ(Ω) � u: Ω⟶ Rmeasurable: 􏽚
Ω
Ψ(|u(x)|)dx <∞􏼚 􏼛. (24)

Endowed with the norm

‖u‖Ψ � inf k> 0: 􏽚
Ω
Ψ

|u(x)|

k
􏼠 􏼡dx≤ 1􏼨 􏼩, (25)

which is called the Luxembourg norm, the Orlicz space
LΨ(Ω) is a Banach space. It is known that if
􏽒ΩΨ(|u(x)|/k0)dx � 1, then ‖u‖Ψ � k0 with k0 > 0.

Te complement of Ψ is given by the Legendre trans-
formation as follows:

􏽥Ψ(s) � max
t≥0

(st − Ψ(t))for s≥ 0. (26)

We say that Ψ and 􏽥Ψ are complementary N-functions of
each other.

For all t> 0, we have the inequality 􏽥Ψ(Ψ(t)/t)≤Ψ(t).
From Young’s inequality

st≤Ψ(t) + 􏽥Ψ(s), (27)

a generalized version of Hölder’s inequality is obtained as
follows:
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􏽚
Ω

u(x)v(x)dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 2‖u‖Ψ‖v‖􏽥Ψfor u ∈ LΨ(Ω), v ∈ L􏽥Ψ(Ω).

(28)

3. Preliminaries andNonexistence ofNontrivial
Solution for λ Small

By condition (A1) and the defnition of A and by condition
(B1) and the defnition of B, the functions A and B are
N-functions, with ψ(s) � sa(s) or ψ(s) � sb(s), respectively.

Lemma 1. Te N-function A satisfes the Δ2-condition.

Proof. In fact, by (12),

for all t> 0, p≤
a(t)t

2

A(t)
≤ q. (29)

Tus, by Teorem 4.1 in [12], it follows that A satisfes
the Δ2-condition. □

Lemma 2. Te N-function B satisfes the Δ2-condition.

Proof. In fact, by (17)

for all t> 0, q<
b(t)t

2

B(t)
≤ r, (30)

and B satisfes the Δ2-condition by Teorem 4.1 in [12].
Let us consider the Sobolev space H1

0(Ω), which is the
completion of C∞0 (Ω) with the norm

‖u‖H1
0(Ω) � 􏽚

Ω
|∇u|

2
􏼒 􏼓

(1/2)

� ‖∇u‖2. (31)

Let X denote the completion of C∞0 (Ω) with respect to
the norm

‖u‖X � ‖u‖
2
H1

0(Ω) +‖u‖
2
B􏼒 􏼓

(1/2)

, (32)

where

‖u‖B � inf λ> 0: 􏽚
Ω

B
|u(x)|

λ
􏼠 􏼡dx ≤ 1􏼨 􏼩, (33)

is the Luxembourg norm in the Orlicz space LB(Ω). Te
spaceX is the space in which we will fnd our nontrivial weak
solutions. □

Lemma 3. Te embeddings X⟶ H1
0(Ω)⟶ L2∗(Ω) are

continuous with ‖u‖H1
0(Ω) ≤ ‖u‖X, for all u ∈ X and

‖u‖2∗ ≤C2∗‖u‖H1
0(Ω), for all u ∈ H1

0(Ω).

Moreover, H1
0(Ω)⟶ ⟶ Lρ(Ω) and

X⟶ ⟶ Lρ(Ω) are compact for all ρ such that 1≤ ρ< 2∗.

Proof. Te frst imbedding that i.e., X⟶ H1
0(Ω) is fol-

lowed from the defnition of the norm in X. Te second

imbedding is followed from Talenti’s work in [13]; C2∗ is the
Talenti constant. Te imbedding compact
H1

0(Ω)⟶ ⟶ Lρ(Ω) for ρ ∈ [1, 2∗) is obtained by
Rellich’s Teorem. It follows that the mapping
X⟶ ⟶ Lρ(Ω) is compact for ρ ∈ [1, 2∗). □

Lemma 4. Let ζ0(t) � min(tp, tq), ζ1(t) � max(tp, tq),
ζ2(t) � min(tq, tr), and ζ3(t) � max(tq, tr) for all t≥ 0.
Ten,

ζ0(ρ)A(t)≤A(ρt)≤ ζ1(ρ)A(t) for ρ, t≥ 0, (34)

ζ0 ‖u‖A( 􏼁≤􏽚
Ω

A(|u(x)|dx ≤ ζ1 ‖u‖A( 􏼁 for u ∈ LA(Ω), (35)

ζ2(ρ)B(t)≤B(ρt)≤ ζ3(ρ)B(t) for ρ, t≥ 0, (36)

ζ2 ‖u‖B( 􏼁≤􏽚
Ω

B |u(x)|dx ≤ ζ3 ‖u‖B( 􏼁 for u ∈ LB(Ω)( . (37)

Proof. Te proof is given in [14] (see Lemma 2.1 of [14]). In
fact by integrating the inequalities (29) and (30) respectively,
we get inequalities (34) and (35). From (34) and (35) and the
defnition of Luxembourg norm we get respectively (35) and
(37). □

Lemma 5. Te space LB(Ω) is imbedded continuously in
LA(Ω) with ‖u‖A ≤H‖u‖B, where

H � 2kω, (38)

with k � max 1, (A(1)/B(1))(1/q)
􏽮 􏽯 and

ω � max 1, (A(1)/B(kA− 1(1/2mes(Ω))))􏼈 􏼉.

Proof. Tis proof is based on the proof of Teorem 8.12 in
[11]. Fix k, with k≥ 1, then

for all t≥ 1,
A(t)

B(kt)
≤

A(1)

k
q
B(1)

, (39)

by (34) and (36). Tus, by taking k �

max 1, (A(1)/B(1))(1/q)
􏽮 􏽯, we have

A(t)≤B(kt), for all t≥ 1. (40)

By the proof of (Teorem 8.12 [11]),

for all t≥A
− 1 1

2mes(Ω)
􏼠 􏼡, A(t)≤ωB(kt),

whereω � max 1,
A(1)

B kA
− 1

(1/2mes(Ω))􏼐 􏼑

⎧⎨

⎩

⎫⎬

⎭.

(41)

Let u ∈ LB(Ω) such that u≠ 0. Let us set
Ω′(u) � x ∈ Ω: (|u(x)|/2ωk‖u‖B)≤A− 1(1/2mes(Ω))􏼈 􏼉 and
Ω″(u) � Ω − Ω′(u).B being convex, we have
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􏽚
Ω

A
|u(x)|

2ωk‖u‖B

􏼠 􏼡dx � 􏽚
Ω′(u)

A
|u(x)|

2ωk‖u‖B

􏼠 􏼡dx + 􏽚
Ω″(u)

A
|u(x)|

2ωk‖u‖B

􏼠 􏼡dx≤
1

2mes(Ω)
􏽚
Ω′(u)

dx

+ ω􏽚
Ω″(u)

B
|u(x)|

2ω‖u‖B

􏼠 􏼡dx≤
1
2

+
1
2

􏽚
Ω

B
|u(x)|

‖u‖B

􏼠 􏼡dx≤ 1.

(42)

It follows that ‖u‖A ≤ 2ωk‖u‖B and consequently LB(Ω)

is imbedded continuously in LA(Ω). □

Lemma 6. Te N − functionA satisfes the following:

lim
t⟶+∞

A(kt)

t
2∗ � 0 for all k≥ 0. (43)

Proof. Te result is followed from property (34). In fact, by
(34), for all k≥ 0, for all t≥ 1, we have

0≤
A(kt)

t
2∗ ≤

ζ1(t)A(k)

t
2∗ � t

q− 2∗
A(k). (44)

□

Lemma 7. Te imbedding L2∗(Ω)⟶ LA(Ω) is continuous
with

‖u‖A ≤C
∗
A‖u‖2∗ , for all u ∈ L

2∗
(Ω), (45)

where, C∗A � 2max 1; (A− 1(1/2mes(Ω)))− 2∗
􏽮 􏽯(A(1))(1/2∗).

Proof. Te N-function A increases more slowly than
t⟼ t2

∗ near infnity and by (34) it follows that for all
t≥ 1, A(t)≤A(1)t2

∗ . By the proof of (Teorem 8.12 [11]),

for all t≥A
− 1 1

2mes(Ω)
􏼠 􏼡, A(t) ≤ωA(1)t

2∗
,

whereω � max 1, A
− 1 1

2mes(Ω)
􏼠 􏼡􏼠 􏼡

− 2∗⎧⎨

⎩

⎫⎬

⎭.

(46)

Let u ∈ L2∗(Ω) such that u≠ 0. Let us set
Ω′(u) � x ∈ Ω: (|u(x)|/2ω(A(1))(1/2∗)‖u‖2∗)≤A− 1(1/2􏽮

mes(Ω))} and Ω′′(u) � Ω − Ω′(u).

􏽚
Ω

A
|u(x)|

2ω(A(1))
1/2∗( )

‖u‖2∗
􏼠 􏼡dx � 􏽚

Ω′(u)
A

|u(x)|

2ω(A(1))
1/2∗( )

‖u‖2∗
􏼠 􏼡dx + 􏽚

Ω″(u)
A

|u(x)|

2ω(A(1))
1/2∗( )

‖u‖2∗
􏼠 􏼡dx

≤
1

2mes(Ω)
􏽚
Ω′(u)

dx + ω􏽚
Ω″(u)

|u(x)|
2∗

2ω‖u‖2∗( 􏼁
2∗ dx≤

1
2

+
1
2

􏽚
Ω

|u(x)|
2∗

‖u‖
2∗
2∗

dx≤ 1.

(47)

It follows that ‖u‖A ≤ 2ω(A(1))(1/2∗)‖u‖2∗ and conse-
quently L2∗(Ω) is imbedded continuously in LA(Ω). □

Lemma 8. Te imbedding H1
0(Ω)⟶ LA(Ω) is continuous

with
‖u‖A ≤CA‖u‖H1

0(Ω)for all u ∈ H
1
0(Ω),

whereCA � C2∗C
∗
A.

(48)

Moreover, the imbeddings H1
0(Ω)⟶ ⟶ LA(Ω) and

X⟶ ⟶ LA(Ω) are compacts.

Proof. Te continuity of the imbedding H1
0(Ω)⟶ LA(Ω)

is followed from Lemmas 3 and 7. By Lemma 6 andTeorem
8.36 in [11], it follows that the imbedding
H1

0(Ω)⟶ LA(Ω) is compact. It follows also that
X⟶ ⟶ LA(Ω) is compact because X⟶ H1

0(Ω) is
continuous by Lemma 3. □

Lemma 9. If u is an element ofX∖ 0{ } and λ is a real such that

􏽚
Ω

|∇u|
2dx + 􏽚

Ω
|u|

2dx + 􏽚
Ω

b(|u|)u
2dx � λ􏽚

Ω
a(|u|)u

2dx, (49)

then λ> 0 and there exists two positive constants k1 and k2
independent of u such that

k1f1(λ)≤ ‖u‖A ≤ k2f2(λ), (50)

where f1 and f2 are two functions of λ.

Proof. Let us take u ∈ X∖ 0{ } and λ ∈ R such that (49) hold.
Tus, we have 0< ‖u‖2H1

0(Ω) ≤ λ􏽒Ωa(|u|)u2dx. As a is a non-
negative function in (0, +∞), it follows that λ> 0. Let
us show the second part of the Lemma. Firstly, by using
respectively (29), (35), (48), and (49), we get

‖u‖
2
A ≤ qλC

2
Aζ1 ‖u‖A( 􏼁. (51)

Tus, this last inequality yields

‖u‖A ≥min qC
2
A􏼐 􏼑

(1/(2− p))
λ(1/(2− p))

, qC
2
A􏼐 􏼑

(1/(2− p))
λ(1/(2− p))

􏼚 􏼛.

(52)

Secondly, by (29), (30), (48), and (49) we have
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‖u‖
2
A ≤C

2
A‖u‖

2
H1

0(Ω) ≤C
2
A λ􏽚

Ω
a(|u|)u

2dx − 􏽚
Ω

b(|u|)u
2dx􏼒 􏼓≤C

2
Aq􏽚
Ω
λA(|u(x)|) − B(|u(x)|)dx. (53)

Let us set Ωu � x ∈ Ω: |u(x)|≤ 1{ } and Ωu
′ � Ω − Ωu.

Since λ> 0, (34) and (36) imply

λA(|u(x)|) − B(|u(x)|) ≤
λA(1)|u(x)|

p
− B(1)|u(x)|

r
, forx ∈ Ωu,

λA(1)|u(x)|
q

− B(1)|u(x)|
r
, forx ∈ Ωu

′.

⎧⎨

⎩ (54)

Let s � p or s � q. By applying Young’s inequality
ab≤ (aα/α) + (bβ/β) for a, b> 0 and α> 1 and β> 1, we have

λA(1)|u(x)|
s ≤

s

r
B(1)|u(x)|

r

+
r − s

r

λA(1)

(B(1))(s/r)
􏼠 􏼡

(r/(r− s))

,

(55)

where a � (B(1))(s/r)|u(x)|s, b � λA(1)(B(1))− (s/r),
α � (r/s)> 1, and β � (r/(r − s))> 1. Inequality (55) yields

λA(1)|u(x)|
s

− B(1)|u(x)|
r ≤B(1)|u(x)|

r s

r
− 1􏼒 􏼓 +

r − s

r

λA(1)

(B(1))(s/r)
􏼠 􏼡

(r/(r− s))

, (56)

≤ λ(r/(r− s))r − s

r

A(1)

(B(1))(s/r)
􏼠 􏼡

(r/(r− s))

, (57)

being s< r. Hence, (54) yields

λA(|u(x)|) − B(|u(x)|) ≤

λ(r/(r− p))r − p

r

A(1)

(B(1))(p/r)
􏼠 􏼡

(r/(r− p))

, forx ∈ Ωu,

λ(r/(r− q))r − q

r

A(1)

(B(1))(q/r)
􏼠 􏼡

(r/(r− q))

, forx ∈ Ωu
′.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(58)

As ((r − p)/r)> ((r − q)/r), it follows, from (58), that

λA(|u(x)|) − B(|u(x)|) ≤
r − p

r
max λ(r/(r− p)) A(1)

(B(1))(p/r)
􏼠 􏼡

(r/(r− p))

, λ(r/(r− q)) A(1)

(B(1))(q/r)
􏼠 􏼡

(r/(r− q))⎧⎨

⎩

⎫⎬

⎭, for allx ∈ Ω. (59)
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Tus, by (53) and (59), we get

‖u‖A ≤CA

q(r − p)

r
mes(Ω)􏼨 􏼩

(1/2)

max λ(r/2(r− p)) A(1)

(B(1))(p/r)
􏼠 􏼡

(r/2(r− p))

, λ(r/2(r− q)) A(1)

(B(1))(q/r)
􏼠 􏼡

(r/2(r− q))⎧⎨

⎩

⎫⎬

⎭. (60)

Finally, the last inequality and (52) yield the result
(50). □

Defnition 2. An element u of X is a weak solution of (ελ) if

􏽚
Ω
∇u∇vdx + 􏽚

Ω
uvdx � λ􏽚

Ω
a(|u|)uvdx

− 􏽚
Ω

b(|u|)uvdx for all v ∈ X.

(61)

Consequently, the weak solutions of (ελ) are exactly the
critical points of the energy functionalΦλ: X⟶ R defned
by

Φλ(u) �
1
2

􏽚
Ω

|∇u|
2dx +

1
2

􏽚
Ω

|u|
2dx

− λ􏽚
Ω

A(|u|)dx + 􏽚
Ω

B(|u|)dx.

(62)

Lemma 10. If (ελ) has a nontrivial weak solution u ∈ X,
then λ≥ λ0, where

λ0 � min
η
κϖ

􏼒 􏼓
2(r− p)(p− 2)/(p(r− 2))

,
η
κϱ

􏼠 􏼡

2(r− q)(p− 2)/(rp− 2q)

,
η
ξϖ

􏼠 􏼡

2(r− p)(q− 2)/(rq− 2p)

,
η
ξϱ

􏼠 􏼡

2(r− q)(q− 2)/(q(r− 2))⎧⎨

⎩

⎫⎬

⎭ > 0, (63)

with

η � C
− 1
A

q(r − p)

r
mes(Ω)􏼠 􏼡

− (1/2)

,

κ � qC
2
A􏼐 􏼑

(1/(p− 2))
,

ξ � qC
2
A􏼐 􏼑

(1/(q− 2))
,

ϖ �
A(1)

(B(1))(p/r)
􏼠 􏼡

(r/2(r− p))

,

ϱ �
A(1)

(B(1))(q/r)
􏼠 􏼡

(r/2(r− q))

.

(64)

Proof. If (ελ) admits a nontrivial weak solution u ∈ X, then
equality (49) is satisfed and λ> 0 by Lemma 9. Let us now
show that λ≥ λ0. By inequalities (50) and (60) of the proof of
Lemma 9, we get the result.

We claim that the set E � λ> 0: (εμ)􏽮

admits only the trivial solution for all μ< λ} is not empty and
bounded above. Indeed, by Lemma 9, for all λ< λ0, (ελ)
admit only trivial solution. Tus, λ0 ∈ E. Now suppose that

for all M> 0, there exists λM such that λM >M. Terefore,
there exists a sequence (λn)n∈N∗ of elements of E such that
0< λ0 < λ1 < λ2 < · · · < λn < · · · For all n ∈ N, for all μ such
that 0< μ< λn, (εμ) admits only trivial solution. By hy-
pothesis, the sequence (λn)n∈N tends to +∞. Hence, for all
μ ∈ (0, +∞), (εμ) admits only trivial solution. Tis con-
tradicts the Lemma 9.

Let us defne

􏽢λ � sup λ> 0: εμ􏼐 􏼑admits only the trivial solution for all μ< λ􏽮 􏽯.

(65)

It is clear that 􏽢λ≥ λ0 > 0. In Section 5, we will prove that 􏽢λ
is the required critical value of the Teorem 1. □

4. Basic Results for Existence of
Nontrivial Solution

Te results in the previous section require us to work from
now on with λ> 0.

Lemma 11. Te energy functional Φλ in coercive on X.

Proof. Let u ∈ X.
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Φλ(u) �
1
2

􏽚
Ω

|∇u|
2dx +

1
2

􏽚
Ω

|u|
2dx − λ􏽚

Ω
A(|u|)dx + 􏽚

Ω
B(|u|)dx,

≥
1
2
‖u‖

2
H1

0(Ω) − λ􏽚
Ω

A(|u|)dx −
1
2

􏽚
Ω

B(|u|)dx􏼔 􏼕 +
1
2

􏽚
Ω

B(|u|)dx.

(66)

By using Young’s inequality, as we use it in (55), we have

λA(|u(x)|) −
1
2

B(|u(x)|) ≤ 2(q/(r− q))r − p

r
cλ, for allx ∈ Ω,

(67)

where cλ � max λ(r/(r− p))(A(1)/(B(1))(p/r))(r/(r− p)),􏽮

λ(r/(r− q))(A(1)/(B(1))(q/r))(r/(r− q))}. Terefore, we have

Φλ(u)≥
1
2
‖u‖

2
H1

0(Ω) +
1
2

􏽚
Ω

B(|u|)dx − 2(q/(r− q))r − p

r
cλmes(Ω),

≥
1
2
‖u‖

2
H1

0(Ω) +
1
2
ζ2 ‖u‖B( 􏼁 − 2(q/(r− q))r − p

r
cλmes(Ω),

≥
1
2
‖u‖

2
H1

0(Ω) +
1
2

‖u‖
2
B − 1􏼐 􏼑 − 2(q/(r− q))r − p

r
cλmes(Ω),

≥
1
2
‖u‖

2
X − 2(q/(r− q))r − p

r
cλmes(Ω) −

1
2
.

(68)

In conclusion, Φλ is coercive in X. □

Lemma 12. Let 􏽥A and 􏽥B respectively be the complements of
N-functions A and B. Ten, we have

p

p − 1
≤

􏽥A′(s)s

􏽥A(s)
≤

q

q − 1
fors> 0, (69)

q

q − 1
≤

􏽥B′(s)s

􏽥B(s)
≤

r

r − 1
for s> 0, (70)

where 􏽥A′(s) and 􏽥B′(s) are respectively the derivatives of 􏽥A(s)

and 􏽥B(s).

Proof. Te results are obtained by using (29) and (30) and
the proof of the point (2.7) of Lemma 2.5 in [14]. □

Proposition 1. Te spaces LA(Ω) and LB(Ω) are refexives
and separables Banach spaces.

Proof. Te N-functions A and B satisfy Δ2-condition re-
spectively by Lemmas 1 and 2. Moreover, the inequalities
(69) and (70) of Lemma 12 imply that the N-functions 􏽥A and
􏽥B satisfy the Δ2-condition. Tus, by (Teorem 8.20 and
Remark 8.22 in [11]), the spaces LA(Ω) and LB(Ω) are
refexives and separables Banach spaces. □

Proposition 2. (X, ‖.‖X) is a separable refexive Banach
space.

Proof. Let Y � H1
0(Ω) × LB(Ω), which we endow with the

norm ‖u‖Y � ‖u‖H1
0(Ω) + ‖u‖B. Since H1

0(Ω) and LB(Ω) are
refexives Banach spaces, then (Y, ‖.‖Y) is a separable and
refexive Banach space byTeorem 1.23 in [11]. Let us consider
the operator Γ: (X, ‖.‖X)⟶ (Y, ‖.‖Y) defned by
Γ(u) � (u, u). Γ is well defned, linear, and isometric.Terefore,
Γ(X) is closed subspace of Y and so Γ(X) is separable and
refexive by Teorem 1.22 in [11]. Consequently, (X, ‖.‖Y) is a
separable refexive Banach space, being isomorphic to a sepa-
rable, refexive space. Finally, we conclude that (X, ‖.‖X) is a
separable refexive Banach space because refexivity and sepa-
rability are preserved under equivalent norms. □

Lemma 13. Let (un) be a sequence inX such that (Φλ(un))n is
bounded.Ten, (un) admits aweakly convergent subsequent inX

.

Proof. Te proof comes from the coercivity of Φλ in X and
the refexivity of the space X. □

Lemma 14. Te functional ΦΔ(u) � (1/2)􏽒Ω|∇u|2dx is
convex, of class C1 and is particularly sequentially weakly
lower semicontinuous in X.

Proof. Te convexity of functional ΦΔ(u) � (1/2)􏽒Ω|∇u|2

dx is followed from the convexity of function t⟼t2 in R.
Let us show the continuity ofΦΔ(u) on X. Let (un)n be a

sequence of which elements are in X and let u ∈ X such that
un⟶ u in X. Let (unk

)k be an arbitrary subsequence of
(un)n. Te subsequence unk

⟶ u in X and hence, by
Lemma 3, ∇unk

⟶∇u in (L2(Ω))N. By Teorem 4.9 in
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[15], there exists a subsequence (unkj
)j of unk

and a function
ψ ∈ L1(Ω) such that ∇unkj

⟶∇u a.e in Ω as j⟶∞ and
|∇unkj

|≤ψ a.e in Ω for all j ∈ N. So |∇unkj
|2⟶ |∇u|2 a.e in

Ω as j⟶∞ and |∇unkj
|2 ≤ψ2 ∈ L1(Ω) a.e inΩ for all j ∈ N

. Te dominated convergence theorem implies that
|∇unkj

|2⟶ |∇u|2 in L1(Ω) as j⟶∞. Te subsequence
(unk

)k being arbitrary, we deduce that |∇un|2⟶ |∇u|2 in
L1(Ω) as n⟶∞. Ten, we get the continuity of ΦΔ on X

and also, ΦΔ is sequentially weakly lower semicontinuous in
X by Corollary 3.9 in [15]. Moreover, ΦΔ is Gateaux-dif-
ferentiable in X and for all u,φ ∈ X, we have

〈ΦΔ′(u),φ〉 � 􏽚
Ω
∇u∇φdx. (71)

Let us fnish the proof by showing that ΦΔ′ is continuous.
Let (un)n be a sequence of functions in X and u ∈ X such that
un⟶ u in X when n⟶∞. By a simple calculus we have
ΦΔ′ un( 􏼁 − ΦΔ′(u)

����
����X′ ≤ un − u

����
����H1

0(Ω)
≤ un − u

����
����X

. (72)

Tis inequality yields the continuity of ΦΔ′. □

Lemma 15. Te functional Φ2(u) � (1/2)􏽒Ω|u|2dx is con-
vex, of class C1 and sequentially weakly lower semicontinuous
inX. Furthermore, if (un) is a sequence of elements ofX and u

belongs to X such that un converge weakly to u in X, then
Φ2′(un)⟶Φ2′(u) in X′.

Proof. Te convexity of the functional Φ2 is obvious. Te
continuity of Φ2 in X follows from Lemma 3. Tus, Φ2 is

sequentially weakly lower semicontinuous in X by Corollary
3.9 in [15]. To complete the proof of the theorem, it sufces to
show the last part of the theorem. Terefore, let us take
(un) ⊂ X and u ∈ X such that un⇀ u weakly in X. Since
X⟶ ⟶ L2(Ω) is compact by lemma 3, we have ‖Φ2′(un)−

Φ2′(u)‖X′ ≤ ‖un − u‖2 and then Φ2′(un)⟶Φ2′(u) in X′. □

Proposition 3. (i) If un converge strongly to u in LA(Ω), then
a(|un|)un converge to a(|u|)u in L􏽥A

(Ω). (ii) If un converge
strongly to u in LB(Ω), then b(|un|)un converge to b(|u|)u in
L􏽥B(Ω).

Proof
(i) Suppose that un converge strongly to u in LA(Ω). Let (vnk

)k

be a fxed subsequence of the sequence n⟼a(|un|)un. For all k
, we have vnk

� a(|unk
|)unk

, where (unk
)k is a subsequence of the

sequence (un), which converge to u in LA(Ω). Tus,
􏽒ΩA(|unk

− u|)dx⟶ 0, as k⟶∞. It follows that, there
exists a subsequence (unkj

)j of (unk
)k and a positive function

ψ ∈ L1(Ω) such that A(|unkj
− u|)⟶ 0 a.e in Ω and

0≤A(|unkj
− u|)≤ψ(x) a.e in Ω, for all j ∈ N. As A is con-

tinuous and strictly increasing in R+, we have unkj
⟶ ua.e in

Ω. Hence, vnkj
⟶ v � a(|u|)ua.e in Ω and

􏽥A(|a(|unkj
|)unkj

− a(|u|)u|)⟶ 0a.e in Ω. On other hand,

there exists h ∈ L1(Ω) such that􏽥A(|a(|unkj
|)unkj

− a(|u|)u|) ≤
h(x)a.e inΩ. Indeed, by the fact thatA(|unkj

− u|)<ψ(x)a.e in
Ω and the function t⟼a(t)t is continuous and increases
strictly in R+, we have

􏽥A a unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓unkj
− a(|u|)u

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼒 􏼓≤ 􏽥A 2a A

− 1
(ψ(x)) +|u(x)|􏼐 􏼑 A

− 1
(ψ(x)) +|u(x)|􏼐 􏼑􏽨 􏽩, forx ∈ Ωa.e. (73)

By (13) and since 􏽥A satisfy Δ2-condition, we have

􏽥A a unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓unkj
− a(|u|)u

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓≤ δ􏽥A
A A

− 1
(ψ(x)) +|u(x)|􏼐 􏼑

A
− 1

(ψ(x)) +|u(x)|
⎡⎣ ⎤⎦, forx ∈ Ωa.e,

≤ δA A
− 1

(ψ(x)) +|u(x)|􏼐 􏼑, forx ∈ Ωa.e,

≤ δ′A max A
− 1

(ψ(x)), |u(x)|􏽮 􏽯􏼐 􏼑forx ∈ Ωa.e,

(74)

where δ and δ′ are constants. Tus, h(x) �

δ′A(max A− 1(ψ(x)), |u(x)|􏼈 􏼉). In consequence, it yields that
􏽥A(|vnkj

− v|) � 􏽥A(|a(|unkj

|)unkj

− a(|u|)u|)⟶ 0in L1(Ω),
as j⟶∞. Due to arbitrariness of (vnk

)k, we deduce that
􏽥A(|vn − v|) � 􏽥A(|a(|un|)un − a(|u|)u|)⟶ 0 in L1(Ω), as
n⟶∞. Hence, a(|un|)un⟶ a(|u|)u in L􏽥A

(Ω).
(ii) Te proof is analogous to (i). □

Lemma 16. Te functional ΦA(u) � 􏽒ΩA(|u|)dx is convex,
of class C1 and sequentially weakly lower semicontinuous in X.

Furthermore, if (un)n is a sequence of elements in X and u

belongs to X such that un converge weakly to u ∈ X, then
ΦA
′(un)⟶ΦA

′(u) in X′.

Proof. Te convexity ofΦA follows from the convexity of the
positive function t⟼A(|t|) defned on R. Te function
t⟼A(|t|) is also continuous and vanishes in zero. By
Lemma 3 in [16], for all k> 1, for ε> 0, such that,
0< ε< (1/k), we have
|A(|a + b|) − A(|a|)|≤ εφε(a) + ψε(b), for all a, b ∈ R, (75)
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where φε(t) � A(k|t|) − kA(|t|), ψε(t) � 2A(|Cεt|),
for all t ∈ R with (1/Cε) � ε(k − 1).

Let (un)n be a sequence of X and u an element of X such
that un⟶ u in X. u belongs to LA(Ω) by Lemma 8 and we
have 􏽒ΩA(|u|)dx<∞.un⟶ u in X implies un⟶ u in
H1

0(Ω). So, un⟶ u a.e inΩ. By (35), properties of function
ζ1 and Lemma 8, we have

0≤􏽚
Ω
φε un − u( 􏼁dx � 􏽚

Ω
A k un − u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑 − kA un − u

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑dx

≤ ζ1 k un − u
����

����A
􏼐 􏼑≤ k

qζ1 un − u
����

����A
􏼐 􏼑≤ k

qζ1 un − u
����

����X
􏼐 􏼑.

(76)

As un⟶ u in X, there exists M> 0 such that for all
integer n,

0≤􏽚
Ω
φε un − u( 􏼁dx ≤ k

q
M. (77)

Since u belongs to LA(Ω), A(|θu|) ∈ L1(Ω) for all θ ∈ R
and thus,

0≤􏽚
Ω
ψε(u)dx<∞, for all ε> 0. (78)

Hence, by Teorem 2 in [16], it follows that
ΦA(un)⟶ΦA(u), as n⟶∞. Tis assures the continuity
of the functional ΦA. It then follows that ΦA is sequentially
weakly lower semicontinuous in X by Corollary 3.9 in [15].
Furthermore, ΦA is Gateaux-diferentiable in X and for all
u,φ ∈ X,

〈ΦA
′(u),φ〉 � 􏽚

Ω
a(|u(x)|)u(x)φ(x)dx. (79)

Let (un) ⊂ X and u ∈ X such that un⇀u in X as
n⟶∞. Let us show that ΦA

′(un)⟶ΦA
′(u) in X′. By

Hölder’s inequality, we have

ΦA
′ un( 􏼁 − ΦA

′(u)
����

����X′ � sup
‖φ‖X�1

φ∈X
􏽚
Ω

a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u􏽨 􏽩φdx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 2 sup
‖φ‖X�1

φ∈X
a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u

�����

�����􏽥A
‖φ‖A ≤ 2 a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u

�����

�����􏽥A
.

(80)

Since un⇀u in X, by Lemma 8 and Proposition 3, it
follows that ‖a(|un|)un − a(|u|)u‖􏽥A

⟶ 0 and consequently,
ΦA
′(un)⟶ΦA

′(u) in X′. In particular, this shows that ΦA

is class C1 in X and the proof of the Lemma is fnished. □

Lemma 17. Te functional ΦB(u) � 􏽒ΩB(|u|)dx is convex,
of classC1 and sequentially weakly lower semicontinuous inX

. Moreover, if (un)n is a sequence of elements in X and u ∈ X

such that un⇀u ∈ X as n⟶∞, thenΦB
′(un)⇀⇀ΦB

′(u) in X′
.

Proof. Te convexity ofΦB follows from the convexity of the
positive function t⟼B(|t|) defned on R. Te proof of
continuity ofΦB in X is analogous to the proof of continuity
of ΦA in X in the previous Lemma. In fact, by Lemma 3 in
[16], for all k> 1, for ε> 0, such that, 0< ε< (1/k), we have

|B(|x + y|) − B(|x|)|≤ εφε(x) + ψε(y), for allx, y ∈ R,

(81)

where φε(t) � B(k|t|) − kB(|t|), ψε(t) � 2B(|Cεt|),
forallt ∈ R with (1/Cε) � ε(k − 1).

Let (un)n ⊂ X and u ∈ X such that un⟶ u in X. By the
defnition of the space X, we have X⟶ LB(Ω),

􏽒ΩB(|u|)dx<∞, and un⟶ u in LB(Ω). un⟶ u in X

implies un⟶ u in H1
0(Ω). So, un⟶ ua.e in Ω. By (35)

and properties of function ζ2, we have

0≤􏽚
Ω
φε un − u( 􏼁dx ≤ k

rζ2 un − u
����

����X
􏼐 􏼑. (82)

As un⟶ u in X, there exists M> 0 such that for all
integer n, 0≤􏽒Ωφε(un − u)dx ≤ krM. Since u belongs to
LB(Ω), B(|θu|) ∈ L1(Ω) for all θ ∈ R and thus,

0≤􏽚
Ω
ψε(u)dx <∞, for all ε> 0. (83)

Hence, by Teorem 2 in [16], it follows that
ΦB(un)⟶ΦB(u) as n⟶∞. Tis assures the continuity
of the functional ΦB in X. It then follows that ΦB is se-
quentially weakly lower semicontinuous in X by Corollary
3.9 of [15]. Furthermore, ΦB is Gateaux-diferentiable in X

and for all u,φ ∈ X,

〈ΦB
′(u),φ〉 � 􏽚

Ω
b(|u(x)|)u(x)φ(x)dx. (84)

Let (un) ⊂ X and u ∈ X such that un⟶ u in X as
n⟶∞. Let us show that ΦB

′(un)⟶ΦB
′(u) in X′. By

Hölder’s inequality, we have

ΦB
′ un( 􏼁 − ΦB

′(u)
����

����X′ � sup
‖φ‖X�1
φ∈X

􏽚
Ω

b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − b(|u|)u􏽨 􏽩φ dx

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ 2 b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − b(|u|)u

�����

�����􏽥B
.

(85)
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According to Proposition 3 (ii), it follows that
‖b(|un|)un − b(|u|)u‖􏽥B⟶ 0 and consequently,
ΦB
′(un)⟶ΦB

′(u) in X′. Tus, ΦB is class C1 in X.
Let us show the last part of this Lemma. Let (un) ⊂ X and

u ∈ X such that un⇀u in X. We shall proof that
ΦB
′(un)⇀⇀ΦB

′(u) in X′ as n⟶∞. Let φ ∈ X. For any in-
teger n, let us set vn � b(|un|)un and consider an arbitrary
subsequence (vnk

)k of the sequence (vn). We have

vnk
� b(|nk|)unk

, where (unk
)k is a subsequence of (un). Ten,

unk
⇀u weakly in X when k⟶∞. By Lemma 3, it follows

that unk
⟶ u in L2(Ω). Tus, there exists a subsequence

(unkj
)j of (unk

)k such that unkj
⟶ u a.e inΩ and |unkj

|≤g a.e

in Ω, where g ∈ L1(Ω). In consequence, for all φ ∈ X,
vnkj

φ⟶ b(|u|)uφ a.e in Ω and there exists h ∈ L1(Ω) such
that |b(|unkj

|)unkj
φ − b(|u|)uφ| ≤ h a.e in Ω. In fact, by (30)

and (36) we have

b unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓unkj
− b(|u|)u􏼔 􏼕φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ b unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 + b(|u|)|u|􏼒 􏼓|φ|,

≤ rB(1)|φ| max unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

q− 1
, unkj

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌

r− 1
􏼒 􏼓 + max |u|

q− 1
, |u|

r− 1
􏼐 􏼑􏼚 􏼛a.einΩ,

≤ rB(1)|φ| max g
q− 1

, g
r− 1

􏼐 􏼑 + max |u|
q− 1

, |u|
r− 1

􏼐 􏼑􏽮 􏽯a.einΩ.

(86)

Tus,
h � rB(1)|φ| max(gq− 1, gr− 1) + max(|u|q− 1, |u|r− 1)􏽮 􏽯 ∈ L1

(Ω). Hence,

􏽚
Ω

vnkj
− b(|u|)u􏼒 􏼓φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx � 􏽚

Ω
b unkj

􏼒 􏼓􏼒 􏼓unkj
− b(|u|)u􏼔 􏼕φ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
dx⟶ 0. (87)

In conclusion,ΦB
′(un)⇀∗ ΦB

′(u) in X′, as n⟶∞, since
(vnk

)k is an arbitrary subsequence of the sequence (vn).
For any (x, u) ∈ Ω × R, let us set

f(x, u) � λa(|u|)u − b(|u|)u, (88)

F(x, u) � 􏽚
u

0
f(x, v(x))dx

� λA(|u|) − B(|u|).

(89)

□

Lemma 18. For any fxed u ∈ X, the functional
Fu: X⟶ R, v⟼􏽒Ωf(x, u(x))v(x)dx is in X′ (X′ is
the Banach dual space of X). In particular, if vn⇀vinX, then
Fu(vn)⟶ Fu(v).

Proof. Let us take u ∈ X. It is easy to show thatFu is linear.
Moreover, for all v ∈ X, by using Hölder inequality and
imbedding properties of X in LA(Ω) and X in LB(Ω), we
have

Fu(v)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ λ􏽚
Ω

a(|u|)|u||v|dx + 􏽚
Ω

b(|u|)|u||v|dx ≤ 2λ‖a(|u|)|u|‖􏽥A
‖v‖A

+ 2‖b(|u|)|u|‖􏽥B‖v‖B ≤ 2 CAλ‖a(|u|)|u|‖􏽥A
+ 2‖b(|u|)|u|‖􏽥B􏼐 􏼑‖v‖X.

(90)

Tus, we conclude that Fu is continuous on X. Ten, it
follows that, vn⇀vinX yields Fu(vn)⟶ Fu(v). □

Lemma 19. Te functional Φλ is of class C1 and sequentially
weakly lower semicontinuous in X, that is if un⇀u in X, then

Φλ(u)≤ lim inf
n⟶∞
Φλ un( 􏼁. (91)

Proof. Lemmas 14–17 implyΦλ ∈ C1(X). Let (un)n ⊂ X and
u ∈ X such that un⇀u in X. Te defnition of Φλ and (89)
allow us to write
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Φλ(u) − Φλ un( 􏼁 �
1
2

‖u‖
2
H1

0(Ω) − un

����
����
2
H1

0(Ω)
􏼒 􏼓 +

1
2

‖u‖
2
2 − un

����
����
2
2􏼒 􏼓 + 􏽚

Ω
F x, un(x)( 􏼁 − F(x, u(x))􏼂 􏼃. (92)

Since un⇀u in X, Lemmas 14 and 15 yield respectively
that

‖u‖
2
H1

0(Ω) ≤ liminf
n⟶∞

un

����
����
2
H1

0(Ω)
, (93)

‖u‖
2
2 ≤ liminf

n⟶∞
un

����
����
2
2. (94)

Hence, by (92), we get

limsup
n⟶∞
Φλ(u) − Φλ un( 􏼁􏼂 􏼃≤ limsup

n⟶∞
􏽚
Ω

F x, un(x)( 􏼁 − F(x, u(x))􏼂 􏼃. (95)

By (88) and (89), for all s ∈ [0, 1],

Fu x, u + s un − u( 􏼁( 􏼁 �
zF

zu
x, u + s un − u( 􏼁( 􏼁

� f x, u + s un − u( 􏼁( 􏼁

� f(x, u) + un − u( 􏼁 􏽚
s

0
fu x, u + t un − u( 􏼁( 􏼁dt.

(96)

where fu(x, u) � (zf/zu)(x, u) � λ[|u|a′(|u|) + a (|u|)] −

[|u|b′(|u|) + b(|u|)], forallu ∈ X.
Multiplying (96) by (un − u) and integrating the result

over [0,1] with respect to s, we obtain

F x, un( 􏼁 − F(x, u) � f(x, u) un − u( 􏼁 + un − u( 􏼁
2

􏽚
1

0
􏽚

s

0
fu x, u + t un − u( 􏼁( 􏼁dt􏼒 􏼓ds. (97)

According to the assumptions (A2) and (B2), we have

for all u ∈ X, fu(x, u)≤ (q − 1)[λa(|u|) − b(|u|)]. (98)

Afterwards, (29) and (30) imply

for all u ∈ X∖ 0{ }, fu(x, u)≤ q(q − 1)[λA(|u|) − B(|u|)]|u|
− 2

.

(99)

By (24), for all u ∈ X∖ 0{ }, we have

[λA(|u(x)|) − B(|u(x)|)]|u|
− 2 ≤

λA(1)|u(x)|
p− 2

− B(1)|u(x)|
r− 2

, forx ∈ Ωu,

λA(1)|u(x)|
q− 2

− B(1)|u(x)|
r− 2

, forx ∈ Ωu
′.

⎧⎨

⎩ (100)

Let s � p − 2 or s � q − 2. By applying Young’s in-
equality ab≤ (aα/α) + (bβ/β) for a, b> 0 and α> 1 and β> 1,
we have

λA(1)|u(x)|
s ≤

s

r − 2
B(1)|u(x)|

r− 2
+

r − 2 − s

r − 2
λA(1)

(B(1))(s/(r− 2))
􏼠 􏼡

((r− 2)/(r− 2− s))

, (101)
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where we take a � (B(1))(s/(r− 2))|u(x)|s,
b � λA(1)(B(1))− (s/(r− 2)), α � ((r − 2)/s)> 1, and
β � ((r − 2)/(r − 2 − s))> 1. Inequality (101) yields

λA(1)|u(x)|
s

− B(1)|u(x)|
r− 2 ≤B(1)|u(x)|

r− 2 s

r − 2
− 1􏼒 􏼓 +

r − 2 − s

r − 2
λA(1)

(B(1))(s/(r− 2))
􏼠 􏼡

((r− 2)/(r− 2− s))

, (102)

≤ λ((r− 2)/(r− 2− s))(r − 2 − s)

r − 2
A(1)

(B(1))s/(r− 2)
􏼠 􏼡

((r− 2)/(r− 2− s))

, (103)

being s< r − 2. Hence, (100) yields

[λA(|u(x)|) − B(|u(x)|)]|u(x)|
− 2 ≤

λ((r− 2)/(r− p))r − p

r − 2
A(1)

(B(1))((p− 2)/(r− 2))
􏼠 􏼡

((r− 2)/(r− p))

, forx ∈ Ωu,

λ((r− 2)/(r− q))r − q

r − 2
A(1)

(B(1))((q− 2)/(r− 2))
􏼠 􏼡

((r− 2)/(r− q))

, forx ∈ Ωu
′.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(104)

As > (r − p/r − 2)(r − q/r − 2), it follows, from (104),
that

[λA(|u(x)|) − B(|u(x)|)]|u(x)|
− 2 ≤

r − p

r − 2
cλ′, for allx ∈ Ω,

(105)

where

cλ′ � max λ((r− 2)/(r− p)) A(1)

(B(1))((p− 2)/(r− 2))
􏼠 􏼡

((r− 2)/(r− p))

, λ((r− 2)/(r− q)) A(1)

(B(1))((p− 2)/(r− 2))
􏼠 􏼡

((r− 2)/(r− q))⎧⎨

⎩

⎫⎬

⎭. (106)

From (104) and (105), we obtain

for all u ∈ X, fu(x, u)≤
q(q − 1)(r − p)

r − 2
cλ′. (107)

Consequently, (97) yields

􏽚
Ω

F x, un( 􏼁 − F(x, u)􏼂 􏼃dx ≤􏽚
Ω

f(x, u) un − u( 􏼁dx + q(q − 1)(r − p)cλ′/2(r − 2)􏽚
Ω

un − u( 􏼁
2dx

≤Fu un − u( 􏼁 +
q(q − 1)(r − p)cλ′

2(r − 2)
un − u

����
����
2
2.

(108)

Since un⇀u in X, Lemmas 3 and 18 yield respectively
Fu(un − u)⟶ 0 and ‖un − u‖2⟶ 0. Tus,
limsupn⟶∞􏽒Ω[F(x, un(x)) − F(x, u(x))]dx ≤ 0 and then,
by (95), we get the claim (91). □

5. Existence of Weak Solutions of (ελ) for Large
Values of λ

Let
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λ � inf

ΦA(u)�1
u∈X

1
2

􏽚
Ω

|∇u|
2

+|u|
2

􏼐 􏼑 + 􏽚
Ω

B(|u(x)|)dx􏼚 􏼛withΦA(u)

� 􏽚
Ω

A(|u(x)|)dx.

(109)

We remark that λ> 0. Indeed, by the fact that ΦA(u) �

1⇒‖u‖A � 1, (48) implies that

􏽚
Ω

|∇u|
2

+|u|
2

􏼐 􏼑dx≥ ‖u‖
2
H1

0(Ω) ≥
1

C
2
A

, for all u ∈ XwithΦA(u) � 1. (110)

By the property (37), Lemma 5 and the monotony of
function ζ2, we have

􏽚
Ω

B(|u(x)|)dx ≥ ζ2 ‖u‖B( 􏼁≥ ζ2
1
H

􏼒 􏼓, for all u ∈ XwithΦA(u) � 1. (111)

Tus,

λ≥
1

2C
2
A

+ ζ2
1
H

􏼒 􏼓> 0. (112)

Lemma 20. For all λ> λ, the functional Φλ admits in X a
global nontrivial non-negative minimizer m with negative
energy, that is Φλ(m)< 0.

Proof. For each λ> 0, Lemmas 11 and 19 and Corollary 3.23
in [15] assure to Φλ the existence of a global minimizer
m ∈ X, that is

Φλ(m) � inf
v∈X
Φλ(v). (113)

So, m is a solution of (ελ). Let us prove that m is
nontrivial as soon as λ> λ. For that we shall just prove that
infv∈XΦλ(v)< 0. Let λ> λ. By the defnition of λ, there exists
a function φ ∈ X, with 􏽒ΩA(|u(x)|)dx � 1, such that

λ􏽚
Ω

A(|u(x)|)dx � λ>
1
2

􏽚
Ω

|∇φ|
2

+|φ(x)|
2

􏼐 􏼑

+ 􏽚
Ω

B(|φ(x)|)dx ≥ λ.

(114)

Hence,
1
2

􏽚
Ω

|∇φ|
2

+|φ(x)|
2

􏼐 􏼑 − λ􏽚
Ω

A(|u(x)|)dx + 􏽚
Ω

B(|φ(x)|)dx< 0

(115)

and then

Φλ(φ)< 0. (116)

Terefore,

Φλ(m) � inf
v∈X
Φλ(v)≤Φλ(φ)< 0. (117)

Hence, it follows that, for λ> λ, equation (ελ) has a
nontrivial weak solution m ∈ X with Φλ(m)< 0. To com-
plete the proof, we can assume m≥ 0 a.e in Ω because
|m| ∈ X and Φλ(m) � Φλ(|m|).

Let us defne
􏽥λ � inf λ> 0: ελ( 􏼁has an on trivial weak solution􏼈 􏼉. (118)

By Lemma 20, it is clear that this defnition is mean-
ingful. Furthermore, it follows easily that λ> 􏽥λ. □

Theorem 3. For any λ> 􏽥λ, the problem (ελ) admits a
nontrivial non-negative weak solution uλ ∈ X.

Proof. Fix λ> 􏽥λ. By defnition of 􏽥λ, there exists h ∈ (􏽥λ, λ)

such that Φh has a nontrivial critical point uh ∈ X. Without
loss of generality, we assume that uh ≥ 0a.e in Ω, since |uh| is
also a solution of (εh). We can easily see that uh is a sub-
solution for (ελ). Let us consider the following minimization
problem:

inf
v∈C
Φλ(v)whereC � v ∈ X: forallx ∈ Ω, v(x)≥ uh(x)􏼈 􏼉.

(119)

We remark easily thatC is a closed and convex set.Tus,
C is weakly closed. Moreover, being Φλ is coercive in X by
Lemma 11, it follows that it is coercive in C. Finally, Φλ is
sequentially weakly lower semicontinuous in X and so inC.
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Hence, Corollary 3.23 of [15] implies that there exists uλ ∈ C
such that

Φλ uλ( 􏼁 � inf
v∈C
Φλ(v). (120)

Now, we shall prove that uλ is a solution of (ελ). Let
ϑ ∈ C∞0 (Ω) and ϵ> 0. Let us set ϑϵ � max 0, uh − uλ − ϵϑ􏼈 􏼉

and ωϵ � uλ + ϵϑ + ϑϵ. It is clear that ωϵ ∈ C and

0≤ 〈Φλ′ uλ( 􏼁,ωε − uλ〉 � ε〈Φλ′ uλ( 􏼁, ϑ〉 +〈Φλ′ uλ( 􏼁, ϑε〉.
(121)

Hence

〈Φλ′ uλ( 􏼁, ϑ〉 ≥ −
1
ε
〈Φλ′ uλ( 􏼁, ϑε〉. (122)

Let us set

Ωε � x ∈ Ω: uλ(x) + εϑ(x)≤ uh(x)< uλ(x)􏼈 􏼉. (123)

It is obvious that Ωϵ ⊂ suppϑ. Since, uh is a subsolution
of (ελ) and ϑϵ ≥ 0, it turns out that 〈Φλ′(uλ), ϑϵ〉≤ 0. Con-
sequently, as

〈Φλ′ uλ( 􏼁, ϑε〉 �〈Φλ′ uh( 􏼁, ϑε〉 +〈Φλ′ uλ( 􏼁 − Φλ′ uh( 􏼁, ϑε〉,

f(u(x)) � λa(|u(x)|)u(x) − b(|u(x)|)u(x),

(124)

We have

〈Φλ′ uλ( 􏼁, ϑε〉≤ 〈Φλ′ uλ( 􏼁 − Φλ′ uh( 􏼁, ϑε〉

≤􏽚
Ωε
∇uλ − ∇uh( 􏼁 · ∇ uh − uλ − εϑ( 􏼁dx + 􏽚

Ωε
uλ − uh( 􏼁 uh − uλ − εϑ( 􏼁dx

− 􏽚
Ωε

f uλ( 􏼁 − f uh( 􏼁􏼂 􏼃 · uh − uλ − εϑ( 􏼁dx

≤􏽚
Ωε
∇uλ − ∇uh( 􏼁 · ∇(− εϑ)dx + 􏽚

Ωε
uλ − uh( 􏼁 uh − uλ − εϑ( 􏼁dx

− 􏽚
Ωε

f uλ( 􏼁 − f uh( 􏼁􏼂 􏼃 · uh − uλ − εϑ( 􏼁dx.

(125)

(i) For Ωε � ∅, it is clear that 〈Φλ′(uλ), ϑϵ〉≤ 0. Hence
by (122), we have 〈Φλ′(uλ), ϑ〉≥ 0.

(ii) Also, when Ωε ≠∅, we have 0≤ uh − uλ − εϑ � uh −

uλ + ε|ϑ|< ε|ϑ| in Ωε because in this case ϑ≤ 0 in Ωϵ.
Ten, (125) yields

〈Φλ′ uλ( 􏼁, ϑε〉 ≤ ε 􏽚
Ωε
∇uh − ∇uλ( 􏼁 · ∇(ϑ)dx + 􏽚

Ωε
uλ − uh( 􏼁|ϑ|dx + 􏽚

Ωε
f uλ( 􏼁 − f uh( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 · |ϑ|dx􏼠 􏼡≤ ε􏽚

Ωε
ψ(x)dx, (126)

where ψ(x) � (∇uh − ∇uλ).∇ϑ + [(uλ − uh) + |f(uλ) − f

(uh)|]|ϑ|. We claim that ψ ∈ L1(suppϑ). Indeed, ∇uh and
∇uλ are in [L2(Ω)]N and uλ and uh are in L1

loc(Ω) since
X ⊂ H1

0(Ω). Moreover, by (A1) and (B1), the functions
t⟼a(t)t and t⟼b(t)t are continuous in R+. Tus, the
functions a(|uλ|)|uλ|, a(|uh|)|uh|, b(|uλ|)|uλ|, and b(|uh|)|uh|

are continuous in Ω. Consequently, a(|uλ|)|uλ|, a(|uh|)|uh|,
b(|uλ|)|uλ|, and b(|uh|)|uh| belong to L1

loc(Ω). Finally,
|f(uλ) − f(uh)| ∈ L1

loc(Ω) since |f(uλ) − f(uh)|≤ λ(a

(|uλ|)|uλ| + a(|uh|)|uh|) + (b(|uλ|)|uλ| + b(|uh|)|uh|). Tere-
fore, the claim is obtained. Tus,

lim
ε⟶0+

􏽚
Ωε
ψ(x)dx � 0, (127)

since |Ωϵ|⟶ 0 as ϵ⟶ 0+. Ten, (126) implies that
〈Φλ′(uλ), ϑε〉≤ °(ε) as ϵ⟶ 0+. So, by (122), it follows that
〈Φλ′(uλ), ϑ〉≥ °(1) as ϵ⟶ 0+.

We deduce that, 〈Φλ′(uλ), ϑ〉≥ 0 for all ϑ ∈ C∞0 (Ω), that
is 〈Φλ′(uλ), ϑ〉 � 0 for all ϑ ∈ C∞0 (Ω). Tus, uλ is a weak
solution of (ελ) in X because X is the completion of C∞0 (Ω)

with respect to the norm ‖.‖X. Finally, uλ is nontrivial and
non-negative, since uλ > uh. □

Lemma 21. 􏽥λ � 􏽢λ.

Proof. Tis proof is the same to that one did in the step 5 of
the proof of (Teorem 1.1 in [7]). In fact, by Teorem 3, we
have 􏽥λ≥ 􏽢λ. Indeed, for all λ such that (ελ) a weak nontrivial
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solution, we have λ> 􏽢λ and thus, 􏽥λ≥ 􏽢λ. Let us show that 􏽥λ≤ 􏽢λ.
Suppose that 􏽥λ> 􏽢λ. For λ< 􏽥λ, the problem (ελ) cannot admit
a nontrivial solution u ∈ X since this would contradict the
minimality of 􏽥λ.Tus, for all λ ∈ [􏽢λ, 􏽥λ) the unique solution of
(ελ) is u ≡ 0.Tis assertion is still again impossible because it
would contradict the maximality of 􏽢λ. Hence, 􏽥λ � 􏽢λ. □

Theorem 4. Te problem (ε􏽢λ) admits a nontrivial non-
negative weak solution in X.

Proof. Let (λn)n∈N∗ be a strictly decreasing sequence con-
verging to 􏽢λ and un ∈ X be a nontrivial non-negative weak
solution of (ελn

)foralln ∈ N∗. For all n, we have

􏽚
Ω
∇un∇vdx � − 􏽚

Ω
unvdx + λn􏽚

Ω
a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx

− 􏽚
Ω

b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx, for all v ∈ X.

(128)

By (29), (30), (49), and Lemma 4 we have

‖u‖H1
0(Ω) + qζ2 un

����
����B

􏼐 􏼑≤ qλnζ1 un

����
����A

􏼐 􏼑. (129)

Furthermore, by inequality (60) and the monotony of ζ1
there exists a constant KA such that

un

����
����H1

0(Ω)
+ qζ2 un

����
����B

􏼐 􏼑≤KAqCλn
, for all n ∈ N∗, (130)

where

Cλn
� max λ1+pr/2(r− p)

n

A(1)

(B(1))p/r􏼠 􏼡

pr/2(r− p)

, λ1+qr/2(r− p)
n

A(1)

(B(1))p/r􏼠 􏼡

qr/2(r− p)

, λ1+pr/2(r− q)
n

A(1)

(B(1))q/r􏼠 􏼡

pr/2(r− q)

, λ1+qr/2(r− q)
n

A(1)

(B(1))q/r􏼠 􏼡

qr/2(r− q)⎧⎨

⎩

⎫⎬

⎭,

for all n ∈ N∗.

(131)

Tus, by monotony of sequence (λn)n∈N∗, we get

un

����
����H1

0(Ω)
+ qζ2 un

����
����B

􏼐 􏼑≤KAqCλ1, for all n ∈ N∗. (132)

Terefore, the sequences (‖un‖H1
0(Ω))n and (‖un‖B)n are

bounded, and it yields that the sequence (‖un‖X)n is bounded.
According to Teorem 3.18 in [15], Propositions 1 and 2 and
Lemma 8 allow to extract, from the sequence (un)n, a sub-
sequence still relabeled (un)n and satisfying

un⇀u inX, un⟶ uinLA(Ω), un⇀u inLB(Ω), un⟶ u a.e inΩ,∇un⇀∇u in L
2
(Ω)􏽨 􏽩

N
, (133)

for some u ∈ X. We claim that u, which is clearly non-
negative by (133), is the solution we are looking for. In fact,
for all v ∈ X,

􏽚
Ω
∇un∇vdx⟶ 􏽚

Ω
∇u∇vdx, (134)

as n⟶∞, since ∇un⇀∇u in[L2(Ω)]N by (133). Since
un⇀u in X, Lemma 15 yields in particular that for all v ∈ X,

􏽚
Ω

unvdx⟶ 􏽚
Ω

uvdx, (135)

as n⟶∞. Moreover, Lemmas 16 and 17 imply that for all
v ∈ X

􏽚
Ω

a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx⟶ 􏽚

Ω
a(|u|)uvdx,

􏽚
Ω

b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx⟶ 􏽚

Ω
b(|u|)uvdx,

(136)

as n⟶∞. By passing to the limit in (128) as n⟶∞, we
get by (134)–(136)

􏽚
Ω
∇u∇vdx + 􏽚

Ω
uvdx � 􏽢λ􏽚

Ω
a(|u|)uvdx − 􏽚

Ω
b(|u|)uvdxΩ,

(137)

for all v ∈ X. Hence, u is a weak non-negative solution of
(ε􏽢λ). It remains to show that the solution u is nontrivial.
Since un⇀u in X by (133), Lemma 8 yields in particular that
‖u‖A � lim‖un‖A. Moreover, (52) applied to each un ≡ 0,
implies that

un

����
����A
≥min qC

2
A􏼐 􏼑

1/(2− p)
λ1/(2− p)

n , qC
2
A􏼐 􏼑

1/(2− q)
λ1/(2− q)

n􏼚 􏼛.

(138)

Tus, by passing to the limit as n⟶∞, we get
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‖u‖A ≥min qC
2
A􏼐 􏼑

1/(2− p)
(􏽢λ)

1/(2− p)
, qC

2
A􏼐 􏼑

1/(2− q)
(􏽢λ)

1/(2− q)
􏼚 􏼛,

(139)

since λn↘􏽢λ and 􏽢λ> 0. Consequently, u is nontrivial and non-
negative by (133).

Proof ofTeorem 1. Section 3, Lemma 20, andTeorems
3 and 4 show the existence of 􏽢λ> 0 such that for all λ≥ 􏽢λ, (ελ)
admits at least a nontrivial non-negative weak solution in X

. □

 . Second Solution for Large Values of
the Parameter

By variational methods, we prove, in this section, that the
Dirichlet problem (ελ) admits at least two nontrivial weak
solutions if λ is sufciently large.

Lemma 22. For any m ∈ X∖ 0{ } and λ> 0 there exist
ϱ ∈ (0, ‖m‖H1

0(Ω)) and α � α(ϱ)> 0 such that Φλ(u)≥ α for
all u ∈ X, with ‖u‖H1

0(Ω) � ϱ.

Proof. Let m ∈ X∖ 0{ } and λ> 0. Let u be in X. By (35) and
(48) and monotony of the function ζ1,

Φλ(u)≥
1
2
‖u‖

2
H1

0(Ω) − λ􏽚
Ω

A(|u|)dx ≥
1
2
‖u‖

2
H1

0(Ω) − λζ1 ‖u‖A( 􏼁≥
1
2
‖u‖

2
H1

0(Ω) − λζ1 CA‖u‖H1
0(Ω)􏼒 􏼓

≥
1
2

− λmax C
p

A‖u‖
p− 2
H1

0(Ω)
, C

q

A‖u‖
q− 2
H1

0(Ω)
􏼚 􏼛􏼔 􏼕‖u‖

2
H1

0(Ω).

(140)

So, to fnd the result of the Lemma, it is enough to take ϱ
such that

% 0< ϱ<min 2λC
p

A􏼐 􏼑
1/(2− p)

, 2λC
q

A( 􏼁
1/(2− q)

, ‖m‖H1
0(Ω)􏼚 􏼛,

(141)

α � α(ϱ) �
1
2

− λmax C
p

Aϱ
p− 2

, C
q

Aϱ
q− 2

􏽮 􏽯􏼔 􏼕ϱ2 > 0. (142)

In Lemma 20, we have shown that for all λ> λ, the
problem (ελ) admits a nontrivial non-negative weak solution
m ∈ X which is above all a global minimizer ofΦλ in X, with
Φλ(m)< 0. In this section, we are looking for a second
nontrivial weak solution of (ελ) when λ> λ. □

Lemma 23. Tere exists 􏽢κ> 0 such that

for all(x, y) ∈ R2
, (b(|x|)x − b(|y|)y)(x − y)≥ 􏽢κB(|x − y|)≥ 0.

(143)

Proof
(i) If x � y, the inequality is verifed for all 􏽢κ> 0.
(ii) If x≠ 0 and y � 0 (or x � 0 and y≠ 0), the inequality

is obtained by (30) and 􏽢κ � q> 0.
(iii) Suppose now that x≠y with x≠ 0 and x≠ 0. By

hypothesis (B1), the function t⟼b(|t|)t is strictly
increased in [0; +∞) and consequently it is strictly
increased in (− ∞; +∞) because it is an odd
function. Tus, for x≠y with x≠ 0 and x≠ 0,
(b(|x|)x − b(|y|)y)(x − y)> 0 and

φ(x, y) �
(b(|x|)x − b(|y|)y)(x − y)

B(|x − y|
> 0. (144)

Let

κ � inf
x≠y

(x,y)∈(R∗ )2
φ(x, y)> 0.

(145)

In conclusion, taking 􏽢κ � max q, κ􏼈 􏼉, we get the result of
this Lemma. □

Theorem 5 (see Theorem A.3 in [10]). Let (X, ‖ · ‖) and
(X, ‖.‖E) be two Banach spaces such that X⟶ E. Let
Φ: X⟶ R be a C1 functional with Φ(0) � 0. Suppose that
there exist ϱ, α> 0 and m ∈ X such that ‖m‖E > ϱ, Φ(m)< α,
andΦ(u)≥ α for all u ∈ X with ‖u‖E � ϱ. Ten, there exists a
sequence (un)n ∈ X such that for all n

c≤Φ un( 􏼁≤ c +
1
n
2 and Φ′ un( 􏼁

����
����X′ ≤

2
n

, (146)

where

c � inf
c∈Γ

max
t∈[0,1]
Φ(c(t)),

Γ � c ∈ C([0, 1]; X): c(0) � 0, c(1) � m􏼈 􏼉,

(147)

Proof. One can fnd the proof of this theorem in the section
(Appendix A in [10]).

Proof of Teorem 2. Let λ be a strictly positive fxed
number such that λ> λ. Ten, let m ∈ X be the global
minimizer of Φλ given by Lemma 20. Tanks to Lemma 22
and the fact that Φλ(m)< 0, the assumptions of Teorem 5
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which is a variant of Ekeland’s variational principle are
fulflled for the energy functional Φλ of (ελ). Hence, there
exists a sequence (un)n ⊂ X such that

Φλ un( 􏼁⟶ c,

Φ′ un( 􏼁
����

����X′ ⟶ 0,
(148)

where

c � inf
c∈Γ

max
t∈[0,1]
Φ(c(t)),

Γ � c ∈ C([0, 1]; X): c(0) � 0, c(1) � m􏼈 􏼉.

(149)

In the sequel, we shall prove that the sequence (un)n

strongly converges to some u in X and that u is a second
nontrivial non-negative weak solution of (ελ). □

Step 1. By Lemma 11 (coercivity of Φλ on X), the sequence
(un)n is bounded in X and consequently, (un)n is bounded in
H1

0(Ω). For the sequel, let us use the argument of the proof
of Teorem 4. Hence, by Propositions 1 and 2 and Lemma 8
we can extract from the sequence (un)n, a subsequence still
relabeled (un)n and satisfying

un⇀u inX, un⟶ u in LA(Ω), un⇀u in LB(Ω), un⟶ u a.e inΩ,∇un⇀∇u in L
2
(Ω)􏽨 􏽩

N
, (150)

for some u ∈ X. It remains to show that u is a nontrivial
solution of (ελ), with u≠m. We have

〈Φλ′ un( 􏼁, v〉 � 􏽚
Ω
∇un∇vdx − 􏽚

Ω
− un + λa un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un􏽨 􏽩vdx, for all n, for all v ∈ X. (151)

By the same argument used in the proof Teorem 4, we
have, for all v ∈ X,

􏽚
Ω
∇un∇v dx⟶ 􏽚

Ω
∇u∇vdx, 􏽚

Ω
unv dx⟶ 􏽚

Ω
uvdx, 􏽚

Ω
a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx

⟶ 􏽚
Ω

a(|u|)uvdx, 􏽚
Ω

b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑unvdx⟶ 􏽚

Ω
b(|u|)uvdx,

(152)

as n⟶∞. Hence, passing to the limit as n⟶∞ in (151),
using and the fact that 〈Φλ′(un), v〉⟶ 0 as n⟶∞ for all
v ∈ X, we get

􏽚
Ω
∇un∇vdx + 􏽚

Ω
uvdx � λ􏽚

Ω
a(|u|)uvdx

− 􏽚
Ω

b(|u|)uvdx, forallv ∈ X,

(153)

so u is a weak solution of (ελ).

Step 2. We claim that

Ia(n) � 􏽚
Ω

a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u􏼐 􏼑 un − u( 􏼁dx⟶ 0,

(154)

as n⟶∞. By hypothesis (A1), the function t⟼a(|t|)t is
strictly increased in [0; +∞) and consequently, it is strictly
increased in (− ∞; +∞) because it is an odd function. Tus,
we have

Ia(n)≥ 0. (155)

By (150), un⟶ u in LA(Ω). Tus,
a(|un|)un⟶ a(|u|)u) in L􏽥A

(Ω) by Proposition 3. Tere-
fore, by Hölder inequality, we get

0≤􏽚
Ω

(a) un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u) un − u( 􏼁dx≤ 2 a un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un − a(|u|)u

�����

�����􏽥A
un − u

����
����A
⟶ 0, (156)
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as n⟶∞. Tis gives the proof of the claim.

Step 3. In this step, we show that ‖un − u‖X⟶ 0 as
n⟶∞. Let us set

Ib(n) � 􏽚
Ω

b un

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏼐 􏼑un􏼐 􏼑 − b(|u|)u) un − u( 􏼁dx. (157)

For the same arguments, as for Ia(n), we have

Ib(n)≥ 0. (158)

Note that 〈Φλ′(un) − Φλ′(u), un − u〉⟶ 0 as n⟶∞,
since un⟶ u in X and Φλ′(un)⟶ 0 in X′ as n⟶∞.
Hence, by (154)

un − u
����

����
2
H1

0(Ω)
+ un − u

����
����
2
2 + Ib(n) �〈Φλ′ un( 􏼁 − Φλ′(u), un − u〉 + λIa(n)⟶ 0, (159)

as n⟶∞. Furthermore, we have

un − u
����

����
2
H1

0(Ω)
⟶ 0, (160)

as n⟶∞. By (143) and (159), it follows that

􏽚
Ω

B un − u
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑dx≤
1
􏽢κ
Ib(n)⟶ 0, (161)

as n⟶∞. Tus, by section 8.13 in [11],

un − u
����

����B
⟶ 0 as n⟶∞, (162)

since the N-function B satisfed the Δ2-condition. Finally,

un − u
����

����X
⟶ 0 as n⟶∞, (163)

by (160) and (162).

Step 4. Since un⟶ u in X and Φλ ∈ C1(X), we get
Φλ(u) � c � limn⟶∞Φλ(un). So, u is a second independent
nontrivial weak solution of (ελ), withΦλ(u) � c> 0>Φλ(m)

. We can assume u≥ 0 a.e. in Ω, since |u| is also a solution of
(ελ) due to Φλ(|u|) � Φλ(u). Tis concludes the proof.

7. Conclusion

In this paper we studied the nonexistence, the existence, and
multiplicity results for nontrivial weak solutions of the
semilinear elliptic Dirichlet problem with (ελ) involving a
positive parameter λ. Our main results are obtained in the
Teorems 1 and 2 by using variational methods.
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