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�e concept of state has been considered in commutative and noncommutative logical systems, and their properties are at the
center for the development of an algebraic investigation of probabilistic models for those algebras. �is article mainly focuses on
the study of the lattice of state ideals in De Morgan state residuated lattices (DMSRLs). First, we prove that the lattice of all state
ideals SI(L) of a DMSRL (L, τ) is a coherent frame. �en, we characterize the DMSRL for which the latticeSI(L) is a Boolean
algebra. In addition, we bring in the concept of state relative annihilator of a given nonempty subset with respect to a state ideal in
DMSRL and investigate various properties.We prove that state relative annihilators are a particular kind of state ideals. Finally, we
investigate the notion of prime state ideal in DMSRL and establish the prime state ideal theorem.

1. Introduction

It is known to all that the algebraic research on logical
systems has considerable applications. In particular, it plays
a meaningful role in arti�cial intelligence, which make
computer simulate human being in dealing with fuzzy and
uncertain information. In a large number of multivalued
logic and fuzzy logic of algebraic systems, the residuated
lattice is an important class, which was brought in by Ward
and Dilworth in Ref. [1] as a generalization of ideal lattices of
rings. �en, in 2018, Liviu-Constantin Holdon introduced
an important variety of this structure called De Morgan
residuated lattice, which comprises salient subclasses of
residuated lattices such as Boolean algebras, BL-algebras,
MTL-algebras, Stonean residuated lattices, and regular
residuated lattices (MV-algebras, IMTL-algebras) (see Ref.
[2]). Furthermore, he considered ideals and annihilators in
this new structure.

�e concept of internal state also called state operator
was introduced by Flaminio and Montagna ([3, 4]) by
adding a unary operation τ, which preserves the usual

properties of states to the language of MV-algebras. Since
then, several authors deeply investigated this topic in other
algebraic structures (see [5–8]). State residuated lattices
were initiated by He et al. [9]. �ey introduced the concept
of state operators on residuated lattices and investigated
some related properties. Moreover, they inserted the notion
of state �lter in state residuated lattices. Following this
study, Kondo and Kawaguchi recently studied generalized
state operators on state residuated lattices (see [10, 11]). In
2017, Dehghani and Forouzesh [12] made a deep investi-
gation on state �lters in state residuated lattices and
inducted the concept of prime state �lters in state resid-
uated lattices and proved the prime state �lter theorem.
Woumfo et al. [13] introduced the notion of state ideal in
state residuated lattices and established that the lattice of
state ideals is a complete lattice. In this article, stimulated
by the previous research on the structure of De Morgan
residuated lattices and by the importance of the theory of
ideals and annihilators in MV-algebras, BL-algebra, and
Stonean residuated lattices (see [14–17]), we analyze the
notions of state ideal and state relative annihilator in a new
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class of state residuated lattices called De Morgan state
residuated lattices.

(is article is divided into four sections: in the first one,
we describe some preliminaries comprising the basic defi-
nitions, some rules of calculus and theorems that are needed
in the sequel. Section 2 is the part in which we consider the
algebraic structure of the set SI(L) of all state ideals in a
DMSRL (L, τ). It is shown that (SI(L),⊆) is a coherent
frame. Also, we characterize the DMSRL for which the lattice
SI(L) is a Boolean algebra. In Section 3, we bring in the
notion of state annihilator of a nonempty set X with respect
to a state ideal I in a DMSRL and analyze some of its
properties. We demonstrate that state relative annihilators
are a particular kind of state ideals. In the last section, we put
emphasis on the notion of prime state ideals in a DMSRL.
We prove the prime state ideal theorem and investigate some
allied properties.

2. Preliminaries

We summarize here some fundamental definitions and
results about residuated lattices. Readers can obtain more
details in Refs. [1, 18–21].

A nonempty set L with four binary operations
∧,∨, ⊙ ,⟶ and two constants 0, 1 is called a bounded
integral commutative residuated lattice or shortly residuated
lattice if the following axioms are verified:

(C1) (L,∧,∨, 0, 1) is a bounded lattice;
(C2) (L, ⊙ , 1) is a commutative monoid (with the unit
element 1);
(C3) For all x, y ∈ L, x⊙y≤ z⇔x≤y⟶ z.

(e following notations of residuated lattices will be
used:

L will stand for (L,∧,∨, ⊙ ,⟶ , 0, 1), a residuated
lattice and for any x ∈ L and n ∈ N∗, x′: � x⟶ 0,
x″: � (x′)′, x0: � 1 and xn: � xn− 1 ⊙ x.

In Refs. [2,9,14,21], we have the following definitions and
examples:

(1) A residuated lattice satisfying the divisibility con-
dition (div): x∧y � x⊙ (x⟶ y) is called a R
ℓ-monoid.

(2) A residuated lattice satisfying the prelinearity con-
dition (pre): (x⟶ y)∨(y⟶ x) � 1 is called a
MTL-algebra.

(3) A residuated lattice satisfying prelinearity and di-
visibility conditions is called a BL-algebra.

(4) A residuated lattice satisfying the double negation
condition (dn): x″ � x is called a regular residuated
lattice.

(5) A BL-algebra satisfying the double negation condi-
tion is called an MV-algebra.

(6) A MTL-algebra satisfying the double negation
condition is called an IMTL-algebra.

(7) A residuated lattice satisfying the Boolean properties
x∨x′ � 1 and x∧x′ � 0 is called a Boolean algebra;

(8) A residuated lattice satisfying the Stone property
x′∨x″ � 1 is called a Stonean residuated lattice;

(9) A residuated lattice satisfying the De Morgan
property (x∧y)′ � x′∨y′ is called a De Morgan
residuated lattice.

We shall notice from (see [2]) that Boolean algebras, BL-
algebras, MTL-algebras, Stonean residuated lattices, and
regular residuated lattices (MV-algebras, IMTL-algebras)
are particular important subclasses of DeMorgan residuated
lattices.

Example 1. Let L � 0, a, b, c, d, e, f, g, 1􏼈 􏼉 endowed with the
Hasse diagram and Caley tables (Figure 1):

(en, L � (L,∧,∨, ⊙ ,⟶ , 0, 1) is a nonregular resid-
uated lattice. One can easily check that L is a De Morgan
residuated lattice, which is Stonean.

Example 2. Let L � 0, p, a, b, c, d, e, f, q, 1􏼈 􏼉 with his Hasse
diagram and Cayley tables of ⊙ and ⟶ be the following
(Figure 2):

(en, L � (L,∧,∨, ⊙ ,⟶ , 0, 1) is a residuated lattice.
One can readily verify that L is a De Morgan residuated,

which is regular. But L is not a BL-algebra, L is not a MV-
algebra, L is not a Boolean algebra, L is not a Stonean
residuated lattice, L is not a MTL-algebra, and L is not a
IMTL-algebra.

(e following basic arithmetic of residuated lattices will
be used for any x, y, z ∈ L (see [19,22]):

(RL1): 1⟶ x � x, x⟶ x � 1, x⟶ 1 � 1,
0⟶ x � 1;
(RL2): x≤y⇔x⟶ y � 1;
(RL3): x⟶ y � y⟶ x � 1⇔x � y;
(RL4): if x≤y , then y⟶ z≤ x⟶ z ,
z⟶ x≤ z⟶ y , x⊙ z≤y⊙ z and y′ ≤ x′;
(RL5): x⊙ (x⟶ y)≤y; x⊙ (x⟶ y)≤ x∧y;
(RL6): x⊙y≤x∧y≤ x, y≤x∨y; x≤y⟶ x ;
x⊙y≤ x⟶ y, y⟶ x;
(RL7): (x⊙y)″ � x″⊙y″, (x∨y)′ � x′∧y′ and
(x∧y)′ ≥x′∨y′;
(RL8): 0′ � 1, 1′ � 0;
(RL9): x≤x″≤ x′⟶ x;
(RL10): x⟶ y≤y′⟶ x′;
(RL11): x′′′ � x′,
(x⊙y)′ � x⟶ y′ � y⟶ x′ � x″⟶ y′;
(RL12): x⊙ x′ � 0 , x⊙y � 0⇔x≤y′ ; x⊙ 0 � 0;
(RL13): x′⟶ y≤ (x′ ⊙y′)′;
(RL14): x⟶ (x∧y) � x⟶ y;
(RL15): x⊙y � x⊙ (x⟶ x⊙y).

Let L be a residuated lattice, and we set x⊘y � x′⟶ y,
for every x, y ∈ L.

Definition 1 (see [19]). An ideal of L is a nonempty subset I of
L, which satisfies the following conditions for every x, y ∈ L:

2 International Journal of Mathematics and Mathematical Sciences



0 a b c d e f g 1
0 1 1 1 1 1 1 1 1 1
a f 1 1 f 1 1 f 1 1
b f g 1 f g 1 f g 1
c b b b 1 1 1 1 1 1
d 0 b b f 1 1 f 1 1
e 0 a b f g 1 f g 1
f b b b e e e 1 1 1
g 0 b b c e e f 1 1
1 0 a b c d e f g 1

0 a b c d e f g 1
0 0 0 0 0 0 0 0 0 0
a 0 a a 0 a a 0 a a
b 0 a b 0 a b 0 a b
c 0 0 0 c c c c c c
d 0 a a c d d c d d
e 0 a b c d e c d e
f 0 0 0 c c c f f f
g 0 a a c d d f g g
1 0 a b c d e f g 1

1

e g

b d f

a c

0

Figure 1: A De Morgan residuated lattice which is Stonean.
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q
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c d

a b

p

0

0 p a b c d e f q 1
0 0 0 0 0 0 0 0 0 0 0
p 0 0 0 0 0 0 0 0 0 p
a 0 0 a 0 a 0 a 0 a a
b 0 0 0 0 0 0 0 b b b
c 0 0 a 0 a 0 a b c c
d 0 0 0 0 0 b b d d d
e 0 0 a 0 a b c d e e
f 0 0 0 b b d d f f f
q 0 0 a b c d e f q q
1 0 p a b c d e f q 1

0 p a b c d e f q 1
0 1 1 1 1 1 1 1 1 1 1
p q 1 1 1 1 1 1 1 1 1
a f f 1 f 1 f 1 f 1 1
b e e e 1 1 1 1 1 1 1
c d d e f 1 f 1 f 1 1
d c c c e e 1 1 1 1 1
e b b c d e f 1 f 1 1
f a a a c c e e 1 1 1
q p p a b c d e f 1 1
1 0 p a b c d e f q 1

Figure 2: A De Morgan residuated lattice which is not Stonean.
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(I1) If y ∈ I and x≤y, then x ∈ I;
(I2) If x, y ∈ I, then x⊘y ∈ I.

By the fact that ⊘ is neither commutative nor associative
in residuated lattices and in order to get an operation with
properties closed to addition properties, Buşneag et al.
defined a commutative and associative operation ⊕ in
residuated lattices as follows: x⊕y � (x′ ⊙y′)′, for every
x, y ∈ L.

Note that in Ref. [2], it was shown that a nonempty
subset I of a residuated lattice L is an ideal of L if and only if
the following conditions hold for any x, y ∈ L:

(I3) If y ∈ I and x≤y, then x ∈ I;
(I4) If x, y ∈ I, then x⊕y ∈ I.

(e set of all ideals of a residuated lattice L will be
denoted by I(L).

For a nonempty subset X of a residuated lattice L, the
ideal generated by X is 〈X〉: � a ∈ L: a≤ x1⊕x2⊕,􏼈

. . . .,⊕xn, for some n ∈ N∗, xi ∈ X, for1≤ i≤ n} [14].
Here are some properties of the operation ⊕ (see [13,14]).

Let L be a residuated lattice. For any x, y, z, t ∈ L, we have

(P1): x⊕y � x′⟶ y″ � y′⟶ x″;
(P2): x⊕x′ � 1, x⊕0 � x″, x⊕1 � 1;
(P3): x⊕y � y⊕x, x, y≤x⊕y;
(P4): x⊕(y⊕z) � (x⊕y)⊕z;
(P5): If x≤y, then x⊕z≤y⊕z;
(P6): If x≤y and z≤ t, then x⊕z≤y⊕t.

Let L be a residuated lattice. For any x ∈ L and n ∈ N, we
define 0x � 0, 1x � x, and nx � (n − 1)x⊕x, for n≥ 2.

(en, the following relations hold for any x, y ∈ L and
m, n≥ 2:

(P7): m≤ n⇒mx≤ nx. In particular, x≤ nx;
(P8): x≤y⇒mx≤my;
(P9): n(x⊕y) � nx⊕ny;
(P10): x⊕ny≤ n(x⊕y);
(P11): x⊘y≤ x⊕y.

Lemma 1. In any De Morgan residuated lattice L, the fol-
lowing relations hold for any x, y, z ∈ L AND m, n≥ 2[2]:

(P12): (x∧y)″ � x″∧y″;
(P13): x⊕(y∧z) � (x⊕y)∧(x⊕z);
(P14): x∧(ny)≤ n(x∧y);
(P15): (mx)∧(ny) ≤mn(x⊙y)≤mn(x∧y);
(P16): x∧(y⊕z)≤ (x∧y)⊕(x∧z).

Now, we give some necessary results for the sequel about
lattices and frames. It is worth noting that the main references
for frames theory are the following books [23, 24].

A lattice (L,∧,∨) is called Brouwerian if it satisfies the
equality x∧( ∨

k∈K
yk) � ∨

k∈K
(x∧yk) (whenever the arbitrary

joins exist), for any x, yk ∈ L, k ∈ K.

Definition 2. We call frame a complete lattice L that satisfies
the infinite distributive law x∧∨A � ∨ x∧a: a ∈ A{ }, for all
x ∈ L and A⊆L[25].

Remark 1
(1) Every Brouwerian lattice (L,∧,∨) is distributive;
(2) A frame is a complete Brouwerian lattice.

An element x of a complete lattice L is called compact if
for all A⊆L, a≤∨A implies that a≤∨H for some finite H⊆A
(see [9,26]). We will denote by C(L) the set of all compact
elements of a complete lattice L.

Proposition 1. Let L be a frame and x ∈ L [27]. >en,
x ∈ C(L) if for all A⊆L, x � ∨A implies that x � ∨H for some
finite H⊆A.

Definition 3. A frame L is called coherent if the following
conditions hold [27]:

(i) C(L) is a sublattice of L; that is, for all x, y ∈ L, if
x, y ∈ C(L), then x∧y, x∨y ∈ C(L);

(ii) For all x ∈ L, x � ∨
k∈K

xk,withxk ∈ C(L).

Recall that if L is a lattice with 0 its bottom element, and
x ∈ L, then y ∈ L is said to be a pseudocomplement of x if
x∧y � 0 and for every z ∈ L, x∧z � 0 implies z≤y. L is
called pseudocomplemented if every element has a pseu-
docomplement. Every frame is pseudocomplemented (see
[28]).

For every x, y ∈ L, we call a relative pseudocomplement
of x with respect to y, the greatest element (if it exists) z ∈ L

such that x∧z≤y.
In what follows, we recall some results about state

residuated lattices, which will be used in the sequel.

Definition 4 (see [9]). A map τ: L⟶ L is said to be a state
operator on L if the following conditions hold for any
x, y ∈ L [25]:

(SO1): τ(0) � 0;
(SO2): x⟶ y � 1 implies τ(x)⟶ τ(y) � 1;
(SO3): τ(x⟶ y) � τ(x)⟶ τ(x∧y);
(SO4): τ(x⊙y) � τ(x)⊙ τ(x⟶ (x⊙y));
(SO5): τ(τ(x)⊙ τ(y)) � τ(x)⊙ τ(y);
(SO6): τ(τ(x)⟶ τ(y)) � τ(x)⟶ τ(y);
(SO7): τ(τ(x)∨τ(y)) � τ(x)∨τ(y);
(SO8): τ(τ(x)∧τ(y)) � τ(x)∧τ(y).

(e pair (L, τ) is called a state residuated lattice.
We shall notice that for any residuated lattice L, the

identity map idL is a state operator on L, which is an en-
domorphism, but in general, a state operator τ is not an
endomorphism.

Definition 5. Let (L, τ) be a state residuated lattice [9, 13].
An ideal I of L is said to be a state ideal of (L, τ) if τ(I)⊆I
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(i.e., for all x ∈ L, x ∈ I⇒τ(x) ∈ I). Similarly, a filter F of L is
called a state filter if τ(F)⊆F.

SI(L) will stand for the set of all state ideals of (L, τ). It
is obvious that 0{ }, L ∈ SI(L)⊆I(L).

For computational issues, we will use the following
properties (see [9, 13]).

Let (L, τ) be a state residuated lattice. (en, for any
x, y ∈ L, for all n≥ 1, we have

(SO9): τ(1) � 1;
(SO10): x≤y implies τ(x)≤ τ(y);
(SO11): τ(x′) � (τ(x))′;
(SO12): τ(x⊙y)≥ τ(x)⊙ τ(y) and if x⊙y � 0, then
τ(x⊙y) � τ(x)⊙ τ(y);
(SO13): τ(x⊙y′)≥ τ(x)⊙ (τ(y))′ and if x≤y, then
τ(x⊙y′) � τ(x)⊙ (τ(y))′;
(SO14): τ(x⟶ y)≤ τ(x)⟶ τ(y). Particularly, if
x, y are comparable, then
τ(x⟶ y) � τ(x)⟶ τ(y);
(SO15): If τ is faithful, then x<y implies τ(x)< τ(y);
(SO16): τ2(x) � τ(τ(x)) � τ(x);
(SO17): τ(L) � Fix(τ), where
Fix(τ) � x ∈ L: τ(x) � x{ };
(SO18): τ(L) is a subalgebra of L;
(SO19): ker(τ) � x ∈ L: τ(x) � 1{ } is a state filter of
(L, τ);
(SO20): coker(τ) � x ∈ L: τ(x) � 0{ } is a state ideal of
(L, τ);
(SO21): (τ(x))″ � τ(x″);
(SO22): τ(x⊕y)≤ τ(x)⊕τ(y);
(SO23): If x, y ∈ τ(L), then x⊕y ∈ τ(L).
(SO24): τ(nx)≤ nτ(x).

For any nonempty subset X of L, we denote by 〈X〉τ the
state ideal of (L, τ) generated by X,�; that is, 〈X〉τ is the
smallest state ideal of (L, τ) containingX, and for an element
a ∈ L, 〈a〉τ : � 〈 a{ }〉τ is called the principal state ideal of
(L, τ). If I ∈ SI(L) and a ∉ I, we denote by
〈I, a〉τ : � 〈I∪ a{ }〉τ .

(e next theorem gives the concrete description of the
state ideal generated by a nonempty subset of a state
residuated lattice.

Theorem 1 (see [13]). Let X be a nonempty subset of L,
I, I1, I2 ∈ SI(L) and a ∈ L\I. >en,

(1) 〈X〉τ � x ∈ L: x≤ n1(x1⊕τ(x1))⊕ . . .􏼈

⊕nk(xk⊕τ(xk)), for some k ∈ N∗, xi ∈ X, ni ∈ N∗,
for1≤ i≤ k};

(2) 〈a〉τ � x ∈ L: x≤ n(a⊕τ(a)), for some n ∈ N∗􏼈 􏼉;
(3) 〈I, a〉τ � x ∈ L: x≤ i⊕n(a⊕τ(a)),{

for some i ∈ I and ∈ N∗};
(4) I1∨I2: � 〈I1 ∪ I2〉τ � x ∈ L: x≤ i1⊕i2,with i1 ∈􏼈

I1 and i2 ∈ I2}.

Lemma 2 (see [13]). Let (L, τ) be a state residuated lattice.
For all a, b ∈ L, we have

(5) a≤ b⇒〈a〉τ⊆〈b〉τ;
(6) 〈τ(a)〉τ⊆〈a〉τ;
(7) 〈a⊕τ(a)〉τ � 〈a〉τ;
(8) 〈(a⊕τ(a))∧(b⊕τ(b))〉τ⊆〈a〉τ ∩ 〈b〉τ;
(9) 〈a〉τ∨〈b〉τ � 〈a∨b〉τ � 〈a⊕b〉τ.

Proposition 2. Let (L, τ) be a state residuated lattice [13].
>en,

(SI(L),⊆) is a bounded complete lattice with the bottom
element 0{ } and the top element L.

Now, we introduce the concept of De Morgan state
residuated lattice.

Definition 6. A state residuated lattice (L, τ) is called De
Morgan if L is a De Morgan residuated lattice. More pre-
cisely, a De Morgan state residuated lattice is a De Morgan
residuated lattice endowed with a state operator.

(e following remarks give the relationship between the
above definition and the notion of state-morphism operator
studied on universal algebras in Ref. [29], also with the
notion of generalized state in Ref. [18].

Remark 2. Let L be a De Morgan residuated lattice.

(1) If a map τ: L⟶ L is an idempotent De Morgan-
endomorphism (i.e., τ is an endomorphism of L such
that τ2 � τ), then τ is a state operator on L and it is
said to be a state-morphism operator. (erefore, the
couple (L, τ) is called a De Morgan state-morphism
residuated lattice. So, by taking a state-morphism
operator τ (which is a particular type of state op-
erator), our theorems can be extended to the general
setting of universal algebras as in Ref. [29].

(2) Let τ be a state operator on L. From Definition 1.9,
we have
(SO1) τ(0) � 0;
(SO3) τ(x⟶ y) � τ(x)⟶ τ(x∧y), for any
x, y ∈ L.

(us, from Ref. [18], Proposition 8.1 (iii) and Definition
8.1 (1), τ is a generalized Bosbach state of type 1. Moreover,
from (SO10), we have x≤y implies τ(x)≤ τ(y), for any
x, y ∈ L. (erefore, any state operator τ on a De Morgan
residuated lattice L can be seen as an ordering-preserving
generalized Bosbach state of type 1.

A state operator τ is called cofaithful if coker(τ) � 0{ }

and uncofaithful otherwise.

Example 3. Set L � 0; a; b; 1{ } with 0< a< b< 1. (en, L is
De Morgan residuated lattice that is a BL-algebra but not an
MV-algebra with the operations (Figure 3):

Let define the unary operator τ on L by
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τ(x) �

0, if x � 0,

a, if x � a;

1, if x ∈ b, 1{ }.

⎧⎪⎪⎨

⎪⎪⎩
(1)

One can easily check that τ is a state operator on L.
Hence, the couple (L, τ) is a DMSRL. In addition,
coker(τ) � 0{ } and τ verified the following properties:
τ(x⟶ y) � τ(x)⟶ τ(y) and τ(x⊙y) � τ(x)⊙ τ(y),
for any x, y ∈ L.(erefore, τ is a cofaithful DeMorgan state-
morphism operator. Furthermore, the state ideals of (L, τ)

are 0{ } and L.

Example 4. Let L1 and L2 be two nontrivial De Morgan
residuated lattices and h: L1⟶ L2 a homomorphism. We

define the map τh: L1 × L2L1 × L2
(x, y)↦τh(x, y) � (x, h(x)).

(en, one can

check that τh is an idempotent endomorphism on L1 × L2.
So, τh is a state-morphism operator and the couple (L1 ×

L2, τh) is a De Morgan state-morphism residuated lattice. In
addition, coker(τh) � 0{ } × L2. Hence, τh is a uncofaithful
state operator.

Remark 3.
(1) For every De Morgan residuated lattice L, (L, idL) is

a De Morgan state residuated lattice. (at is, a De
Morgan residuated lattice L can be seen as a De
Morgan state residuated lattice. One can see that all
ideals of L is a state ideal of (L, idL).

(2) Let L be a De Morgan residuated lattice, S a sub-De
Morgan residuated lattice of L and τ: L⟶ L be a
state operator on L such that τ(S)⊆S. (en, the
restriction of τ on S is a state operator on S. We can
see that coker(τ/S) � S∩ coker(τ) is a state ideal of S.
(is means that if a state operator preserves a
substructure, then its restriction to this substructure
is a state operator.

(3) Let Li: i ∈ I􏼈 􏼉 be a nonempty family of De Morgan
residuated lattices and τi: i ∈ I􏼈 􏼉 a family of state
operators such that τi is a state operator on Li for

each i ∈ I. We define the map
τ: 􏽙

i∈I
Li⟶􏽙

i∈I
Li

(xi)i∈I↦(τi(xi))i∈I.
.

(en, τ is a state operator on 􏽑i∈ILi. We can check that
coker(τ) � 􏽑i∈Icoker(τi).

So, if we have state operators on structures, then we can
define a state operator on the product and compute its
cokernel easily.

Lemma 3. If (L, τ) is a De Morgan state residuated lattice,
then for all a, b ∈ L, we have 〈(a⊕τ(a))∧(b⊕τ(b))〉τ �

〈a〉τ ∩ 〈b〉τ.

Proof. Let a, b ∈ L. (en, from Lemma 2 (8), we have
〈(a⊕τ(a))∧(b⊕τ(b))〉τ⊆〈a〉τ ∩ 〈b〉τ . Now, let
x ∈ 〈a〉τ ∩ 〈b〉τ . (en, x ∈ 〈a〉τ and x ∈ 〈b〉τ . Hence, from
(eorem 1 (2), there exists m, n≥ 1 such that, x≤m(a⊕τ(a))

and x≤ n(b⊕τ(b)). (erefore,

x≤m(a⊕τ(a))∧n(b⊕τ(b))

(P15) ≤mn(a⊕τ(a))∧(b⊕τ(b)))

(P3) ≤mn((a⊕τ(a))∧(b⊕τ(b)))⊕τ((a⊕τ(a))∧(b⊕τ(b)))

(2)

(at is, x ∈ 〈(a⊕τ(a))∧(b⊕τ(b))〉τ . Hence,
〈a〉τ ∩ 〈b〉τ⊆〈(a⊕τ(a))∧(b⊕τ(b))〉τ . (us, 〈(a⊕τ(a))∧
(b⊕τ(b))〉τ � 〈a〉τ ∩ 〈b〉τ . □

3. The Lattice of All State Ideals of a DMSRL

In this section, we focus on the study of the algebraic
structure of the set SI(L) of all state ideals of a De Morgan
state residuated lattice (L, τ).

From now on, unless otherwise specified, (L, τ) will
always denote a De Morgan state residuated lattice
(L,∨,∧, ⊙ ,⟶ , 0, 1); that is, L is a De Morgan residuated
lattice and τ is a state operator on L.

Proposition 3. (SI(L),⊆) is a Brouwerian lattice.

Proof. Let K be an index set, I ∈ SI(L), and Ik􏼈 􏼉k∈K be a
family of state ideals of (L, τ). We will show that
I∧( ∨

k∈K
Ik) � ∨

k∈K
(I∧Ik). (at is,

I∩ 〈 ∪
k ∈ K

Ik〉τ � 〈 ∪
k ∈ K

(I∩ Ik)〉τ. Clearly, 〈 ∪
k ∈ K

(I∩ Ik)〉τ
⊆I∩ 〈 ∪

k ∈ K
Ik〉τ.

Let x ∈ I∩ 〈 ∪
k ∈ K

Ik〉τ. (en, x ∈ I and x ∈ 〈 ∪
k ∈ K

Ik〉τ. It
follows that there exist k1, k2, . . . , km ∈ K, xkj

∈ Ikj
, 1≤ j≤ ,

such that x≤ xk1
⊕xk2
⊕ . . . .⊕xkm

. (en,
x � x∧(xk1

⊕xk2
⊕ . . . .⊕xkm

) (P16) ≤ (x∧xk1
)⊕(x∧xk2

)⊕
. . . .⊕(x∧xkm

). Since I, Ikj
∈ SI(L), we have x∧xkj

∈ I∩ Ikj
,

for every 1≤ j≤m. We deduce that x ∈ 〈 ∪
k ∈ K

(I∩ Ik)〉τ.

Hence, I∩ 〈 ∪
k ∈ K

Ik〉τ⊆〈 ∪
k ∈ K

(I∩ Ik)〉τ, that is,

I∧( ∨
k∈K

Ik) � ∨
k∈K

(I∧Ik). (erefore, (SI(L),⊆) is a Brou-

werian lattice. □

Theorem 2. >e lattice (SI(L),⊆) is a frame.

Proof. From Proposition 2, (SI(L),⊆) is a complete lat-
tice. From Proposition 3, (SI(L),⊆) is a Brouwerian

0 a b 1

0 0 0 0 0

a 0 0 a a

b 0 a b b

1 0 a b 1

0 a b 1

0 1 1 1 1

a a 1 1 1

b 0 a 1 1

1 0 a b 1

Figure 3: Operations of the De Morgan residuated lattice of
exemple 3.
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lattice. Combining them, we have by Remark 1 (2) that
(SI(L),⊆) is a frame.

In the following result, we establish a concrete de-
scription of the right adjoint of the map:

I1 ∩ −: SI(L)⟶ SI(L)

I↦ I1 ∩ −( 􏼁(I) � I1 ∩ I
(3)

Now, for any I1, I2 ∈ SI(L), we put
I1⟶ I2 � x ∈ L: I1 ∩ 〈x〉τ⊆I2􏼈 􏼉. □

Proposition 4. In the frame (SI(L),⊆), for any
I1, I2, I ∈ SI(L), we have

(1) I1⟶ I2 ∈ SI(L)

(2) I1 ∩ I⊆I2⇔I⊆I1⟶ I2, that is, I1⟶ I2 �

sup I ∈ SI(L): I1 ∩ I⊆I2􏼈 􏼉 and
I1⟶ −: SI(L)⟶ SI(L)

I↦(I1⟶ −)(I) � I1⟶ I
is the right adjoint of

I1 ∩ −: SI(L)⟶ SI(L);
(3) I1⟶ I2 � x ∈ L: i∧n(x⊕τ(x)) ∈ I2,􏼈

for all i ∈ I1 and n ∈ N∗}.

Proof
(1) We will show that I1⟶ I2 is a state ideal of (L, τ).

We have I1⟶ I2 ≠∅. Indeed, 〈0〉τ � 0{ } and
I1 ∩ 〈0〉τ � 0{ }⊆I2. Hence, 0 ∈ I1⟶ I2.
Now, let x, y ∈ I1⟶ I2, then I1 ∩ 〈x〉τ⊆I2 and
I1 ∩ 〈y〉τ⊆I2. We obtain (I1 ∩ 〈x〉τ)∨(I1 ∩ 〈y〉τ)

⊆I2. From (eorem 2, it follows that
(I1 ∩ 〈x〉τ)∨(〈y〉τ)⊆I2, which implies (by Lemma 3
(9)) that I1 ∩ 〈x⊕y〉τ⊆I2. (us, x⊕y ∈ I1⟶ I2.
Assume x ∈ I1⟶ I2 and y≤ x. (en, I1 ∩ 〈x〉τ⊆I2
and 〈y〉τ ⊆

Lemma1.12(9)
〈x〉τ . It follows that

I1 ∩ 〈y〉τ⊆I1 ∩ 〈x〉τ⊆I2. Hence, y ∈ I1⟶ I2. Fi-
nally, let x ∈ I1⟶ I2; then, I1 ∩ 〈x〉τ⊆I2. Since
I1 ∩ 〈τ(x)〉τ⊆I1 ∩ 〈x〉τ⊆I2, we obtain that
τ(x) ∈ I1⟶ I2. (erefore, I1⟶ I2 is a state ideal
of (L, τ). (at is, I1⟶ I2 ∈ SI(L).

(2) Now, we show that I1 ∩ I⊆I2⇔I⊆I1⟶ I2, for any
I, I1, I2 ∈ SI(L). Assume I1 ∩ I⊆I2 and x ∈ I, we
obtain I1 ∩ 〈x〉τ⊆I1 ∩ I⊆I2 (since τ(x) ∈ I)). It fol-
lows that x ∈ I1⟶ I2. (at is, I⊆I1⟶ I2. Con-
versely, let I⊆I1⟶ I2 and x ∈ I1 ∩ I. (en, we have
x ∈ I⊆I1⟶ I2. (at is, I1 ∩ 〈x〉τ⊆I2. Since
x ∈ I1 ∩ 〈x〉τ⊆I2, we deduce that x ∈ I2, which
implies I1 ∩ I⊆I2. (erefore, I1⟶ I2 �

sup I ∈ SI(L): I1 ∩ I⊆I2􏼈 􏼉 and I1⟶ −:

SI(L)⟶ SI(L)I↦(I1⟶ −)(I) � I1⟶ I is
the right adjoint of I1 ∩ −: SI(L)⟶ SI(L).

(3) Set A � x ∈ L: i∧n(x⊕τ(x)) ∈ I2, for all i ∈ I1􏼈

and n ∈ N∗}. First, let x ∈ I1⟶ I2. (en,
I1 ∩ 〈x〉τ⊆I2. For n≥ 1, and i ∈ I1, we have
n(x⊕τ(x)) ∈ 〈x〉τ (since x, τ(x) ∈ 〈x〉τ)). It follows
that i∧n(x⊕τ(x)) ∈ I1 ∩ 〈x〉τ , which implies that
i∧n(x⊕τ(x)) ∈ I2. Hence, x ∈ A.

Conversely, let x ∈ A and t ∈ I1 ∩ 〈x〉τ . (en, there
exists n ∈ N∗ such that t≤ n(x⊕τ(x)). Hence,
t � t∧n(x⊕τ(x)) ∈ I2. (at is, I1 ∩ 〈x〉τ⊆I2. Hence,
x ∈ I1⟶ I2. (erefore, I1⟶ I2 � x ∈ L:{

i∧n(x⊕τ(x)) ∈ I2, for all i ∈ I1 and n ∈ N∗}.
For every I ∈ SI(L), we put

I′ � I⟶ 0{ } � x ∈ L: 〈x〉τ ∩ I � 0{ }􏼈 􏼉. (en, from Prop-
osition 1 (3), we have the following corollary. □

Corollary 1. For all I ∈ SI(L), we have
I′ � x ∈ L: i∧n(x⊕τ(x)) � 0, for all i ∈ I and n ∈ N∗􏼈 􏼉.

Theorem 3. Let I ∈ SI(L). >en,
C(SI(L)) � 〈x〉τ: x ∈ L􏼈 􏼉.

Proof. ⇒). Assume I ∈ C(SI(L)). Set H � 〈x〉τ: x ∈ L􏼈 􏼉.
Since I � ∨

x∈I
〈x〉τ , there are xi􏼈 􏼉1≤ i≤ n such that

I � 〈x1〉τ∨〈x2〉τ∨ . . .∨〈xn〉τ (Proposition 1). By Lemma 2
(9), we have I � 〈x1⊕x2⊕ . . .⊕xn〉τ. (us, I ∈ H, that is,
C(SI(L))⊆H.
⇐). Let I ∈ H. (en, there exists x ∈ L such that

I � 〈x〉τ . Assume Ik􏼈 􏼉k∈K⊆SI(L) and I � 〈x〉τ⊆ ∨
k∈K

Ik􏼈 􏼉.
(en, x ∈ ∨

k∈K
Ik􏼈 􏼉 � 〈 ∪

k ∈ K
Ik〉τ. It follows that there exist

kj ∈ K, xkj
∈ Ikj

, for all 1≤ k≤m such that
x≤xk1
⊕xk2
⊕ . . .⊕xkm

. (at is, x ∈ 〈Ik1
∪ Ik2
∪ . . . ∪ Ikm

〉τ �

Ik1
∨Ik2
∨ . . .∨Ikm

. Hence, I � 〈x〉τ⊆Ik1
∨Ik2
∨ . . .∨Ikm

. Hence,
I ∈ C(SI(L)), that is, H⊆C(SI(L)). (erefore,
C(SI(L)) � 〈x〉τ: x ∈ L􏼈 􏼉. □

Remark 4. (eorem 3 means that a state ideal I is a compact
element of the frame SI(L) if and only if it is principal.

Theorem 4. >e lattice (SI(L),⊆) is a coherent frame.

Proof.
(i) From (eorem 2, we have that (SI(L),⊆) is a

frame.
(ii) From (eorem 3, we obtain that

C(SI(L)) � 〈x〉τ: x ∈ L􏼈 􏼉. By Lemma 3, we have
〈x〉τ∧〈y〉τ � 〈(x⊕τ(x))∧(y⊕τ(y))〉τ , and by
Lemma 2 (9), we have 〈x〉τ∨〈y〉τ � 〈x⊕y〉τ for all
x, y ∈ L. (erefore, (C(SI(L)), ⊆) is a sublattice
of (SI(L),⊆).

(iii) For any I ∈ SI(L), we have I � ∨
x∈I

〈x〉τ .

(i), (ii), and (iii) combined with Definition 3 imply
(SI(L),⊆) is a coherent frame.

We have immediately the following results. □

Corollary 2. >e lattice (SI(L),⊆) is pseudocomple-
mented. Clearly, for all I ∈ SI(L), we have that
I′ � I⟶ 0{ } � x ∈ L: I∩ 〈x〉τ � 0{ }􏼈 􏼉 is the pseudo-
complement of I.

According to Definition 3 and Corollary 2, we have the
following result in a De Morgan residuated lattice L.

Corollary 3. (1) (I(L),⊆) is a coherent frame;
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(2) (I(L), ⊆) is a pseudocomplemented lattice.

We recall that a Heyting algebra ([30]) is a lattice
(L,∨,∧) with 0 such that for every x, y ∈ L, there exists an
element x⟶ y ∈ L (call the pseudocomplement of x with
respect to y) such that for every z ∈ L, x∧z≤y⇔z≤x⟶ y

(i.e., x⟶ y � sup z ∈ L: x∧z≤y􏼈 􏼉).

Remark 5. From Proposition 4, (SI(L),∨,∧, ′, 0{ }) is a
Heyting algebra, where for I ∈ SI(L),
I′ � I⟶ 0{ } � x ∈ L: 〈x〉τ ∩ I � 0{ }􏼈 􏼉.

Proposition 5. For any a, b ∈ L, we have

(1) (〈a〉τ)′ � x ∈ L: (a⊕τ(a))∧(x⊕τ(x)) � 0{ };
(2) (〈a〉τ)′ ∩ (〈b〉τ)′ � (〈a⊕b〉τ)′.

Proof.
(1) We have (〈a〉τ)′ � 〈a〉τ⟶ 0{ } � x ∈ L: 〈a〉τ ∩􏼈

〈x〉τ � 0{ }} �
Lemma1.19

x ∈ L: 〈(a⊕τ(a))∧{

(x⊕τ(x))〉τ � 0{ }} � x ∈ L: (a⊕τ(a))∧(x⊕τ(x)) �{

0}.
(2) Let x ∈ (〈a〉τ)′ ∩ (〈b〉τ)′. (en, by (1), we have

(a⊕τ(a))∧(x⊕τ(x)) � 0 and (b⊕τ(b))∧
(x⊕τ(x)) � 0. In addition, by Lemma 1 (P16), we
have ((a⊕τ(a))⊕(b⊕τ(b)))∧(x⊕τ(x))≤
((a⊕τ(a))∧(x⊕τ(x)))⊕((b⊕τ(b))∧(x⊕τ(x))) � 0;
hence, ((a⊕τ(a))⊕(b⊕τ(b)))∧(x⊕τ(x)) � 0. (en,
by Lemma 1 (P16), (2((a⊕τ(a))⊕(b⊕τ(b))))∧
(x⊕τ(x))≤ 2((a⊕τ(a))⊕(b⊕τ(b)))∧(x⊕τ(x))) � 0.
Moreover, by (RL6) and (SO22),
( 2((a⊕τ(a))⊕(b⊕τ(b))) � ((a⊕τ(a))⊕(b⊕τ(b)))⊕((a⊕τ(a))⊕(b⊕τ(b)))

≥ a⊕b⊕τ(a)⊕τ(b)≥ a⊕b⊕τ(a⊕b)
.

Hence, (a⊕b⊕τ(a⊕b))∧(x⊕τ(x)) � 0. (en, by (1), we
have x ∈ (〈a⊕b〉τ)′. (erefore, (〈a〉τ)′ ∩ (〈b〉τ)′⊆
(〈a⊕b〉τ)′.

Conversely, let x ∈ (〈a⊕b〉τ)′. (en, by (1),
((a⊕b)⊕τ(a⊕b)))∧(x⊕τ(x)) � 0, we have a≤ a⊕b, so
τ(a)≤ τ(a⊕b). It follows that a⊕τ(a)≤ (a⊕b)⊕τ(a⊕b). We
obtain (a⊕τ(a))∧(x⊕τ(x))≤ ((a⊕b)⊕τ(a⊕b))∧ (x⊕τ(x)) �

0 and thus, (a⊕τ(a))∧(x⊕τ(x)) � 0. Analogously,
(b⊕τ(b))∧(x⊕τ(x)) � 0. (erefore, x ∈ (〈a〉τ)′ ∩
(〈b〉τ)′. □

Lemma 4. Let (L, τ) be a state residuated lattice, x ∈ L and
n ∈ N, n≥ 2. >en, the following hold:

(P17) (nx)″ � nx;
(P18) x″⊕τ(x″) � x⊕τ(x).

Proof. (P17): By induction, we have 2x � x⊕x � (x′ ⊙ x′)′.
It follows that (2x)″ � (x′ ⊙x′)″′ � (x′ ⊙x′)′ � 2x. Let
k ∈ N such that k≥ 2. Assume that (kx)″ � kx. (en, we
have (k + 1)x � kx⊕x �

hypotesis
(kx)″⊕x � ((kx)″′ ⊙x′)′ �

((kx)′ ⊙ x′)′. It follows that ((k + 1)x)″ � ((kx)′ ⊙x′)″′ �
((kx)′ ⊙ x′)′ � (kx)⊕x � (k + 1)x. (erefore, (nx)″ � nx

for all n ∈ N, n≥ 2.

(P18): We have x″⊕τ(x″) �
(SO21)

x″⊕(τ(x))″ �

(x″′ ⊙ (τ(x))″′)′ �
(RL11)

(x′ ⊙ (τ(x))′)′ � x⊕τ(x). □

Theorem 5. Let (L, τ) be a De Morgan state residuated
lattice. >e following are equivalent:

(i) (SI(L),∨,∧, ′, 0{ }, L) is a Boolean algebra;
(ii) Every state ideal of (L, τ) is principal, and for every

x ∈ L, there is n ∈ N∗, such that
(x⊕τ(x))∧((n(x⊕τ(x)))′⊕τ((n(x⊕τ(x)))′)) � 0.

Proof. (i)⇒(ii). Assume that (SI(L),∨,∧, ′, 0{ }, L) is a
Boolean algebra. (en, for every I ∈ SI(L), I∨I′ � L; thus,
1 ∈ I∨I′. But according to (eorem 1 (4),
I∨I′: � 〈I∪ I′〉τ � x ∈ L: x≤y⊕z,􏼈 withy ∈ I and z ∈ I′}.
Hence, there are y ∈ I and z ∈ I′ such that y⊕z � 1. We will
prove that I � 〈y〉τ . Since y ∈ I, it follows that 〈y〉τ⊆I.
According to Corollary 1,
I′ � a ∈ L: x∧n(x⊕τ(x)) � 0, for all x ∈ I and n ∈ N∗{ }.
(us, x∧n(z⊕τ(z)) � 0, for all x ∈ I and n ∈ N∗. (en
x⊙ z≤ x∧z � 0 for every x ∈ I, that is, x⊙ z � 0 for every
x ∈ I. Hence, x″⟶ z′ �

(RL11)
(x⊙ z)′ � 1, that is, x″≤ z′.

Since y⊕z � 1, we obtain that n(y⊕τ(y))⊕z � 1 for every
n ∈ N∗ (because y⊕z≤ n(y⊕τ(y))⊕z). Hence, by (P1),
(n(y⊕τ(y)))′⟶ z″ � 1, that is, (n(y⊕τ(y)))′ ≤ z″. It
follows that z′ �

(RL11)
z″′(RL4) ≤ (n(y⊕τ(y)))″ �

(P17)

n(y⊕τ(y)). Hence, z′ ≤ n(y⊕τ(y)). (us, we obtain that
x(RL9) ≤ x″≤ z′ ≤ n(y⊕τ(y)), that is, x≤ n(y⊕τ(y)), for
every x ∈ I, that is, I⊆〈y〉τ . (erefore, I � 〈y〉τ .

Now, let x ∈ L, since (SI(L),∨,∧, ′, 0{ }, L) is a Boolean
algebra, we have L � 〈x〉τ∨(〈x〉τ)′ � t ∈ L:{

t≤y⊕n(x⊕τ(x)), for some n ∈ N∗, y ∈ (〈x〉τ)′}. Hence,
there exists y ∈ (〈x〉τ)′ and n ∈ N∗, such that
y⊕n(x⊕τ(x)) � 1. Since y ∈ (〈x〉τ)′, then by Proposition 5
(1), (x⊕τ(x))∧(y⊕τ(y)) � 0. From y⊕n(x⊕τ(x)) � 1, we
deduce that y′⟶ (n(x⊕τ(x)))″ � 1, which implies
y′ ≤ (n(x⊕τ(x)))″ �

(P17)
n(x⊕τ(x)). (us, by (RL4),

(n(x⊕τ(x)))′ ≤y″, which implies τ((n(x⊕τ(x)))′)
(SO10) ≤ τ(y″). Hence, (n(x⊕τ(x)))′⊕τ((n(x⊕τ(x)))′)
(P6) ≤y″⊕τ (y″) �

(P18)
y⊕τ(y). It follows that

(x⊕τ(x))∧((n(x⊕τ(x)))′⊕τ ((n(x⊕τ(x)))′))≤
(x⊕τ(x))∧(y⊕τ(y)) � 0. (erefore, (x⊕τ(x))∧
((n(x⊕τ(x)))′⊕τ((n(x⊕τ(x)))′)) � 0.

(ii)⇒(i). By Remark 5, (SI(L),∨,∧, ′, 0{ }) is a Heyting
algebra. In order to prove that (SI(L),∨,∧, ′, 0{ }, L) is a
Boolean algebra, it is enough to prove that for every
I ∈ SI(L), we have I′ � 0{ }⇔I � L (according to ([30])).
Let I ∈ SI(L) with I′ � 0{ }. By the hypothesis, every state
ideal is principal. Hence, there is x ∈ L such that I � 〈x〉τ .
(us, (〈x〉τ)′ � 0{ }. Moreover, there is n ∈ N∗ such that
(x⊕τ(x))∧((n(x⊕τ(x)))′⊕ τ((n(x⊕τ(x)))′)) � 0. By
Proposition 5 (1), it follows that
(n(x⊕τ(x)))′∈ (〈x〉τ)′ � 0{ }. (us, (n(x⊕τ(x)))′ � 0, that
is, n(x⊕τ(x)) �

(P17)
(n(x⊕τ(x)))″ � 1. Since n(x⊕τ(x)) ∈

〈x〉τ , we deduce that 1 ∈ 〈x〉τ � I. (erefore,
I � 〈x〉τ � L. □
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4. State Relative Annihilators in DMSRL

Consider a state filter F of a state residuated lattice (L, τ),
Pengfei et al. defined the notion of co-annihilator of a
nonempty subset X of L with respect to F by
X
⊥τ
I � a ∈ L: τ(a)∨x ∈ F, for allx ∈ X{ }, which is a state

filter. Inspired by this work, in this section, we introduce the
notion of state relative annihilator of a nonempty set X with
respect to a state ideal I in a De Morgan state residuated
lattice (L, τ) and study some properties.

Definition 7. Let (L, τ) be a De Morgan state residuated
lattice, I a state ideal of (L, τ), and X a nonempty subset of L.

(e τ-relative annihilator of X with respect to I is de-
fined by X

⊥τ
I � a ∈ L: τ(a)∧x ∈ I, for all x ∈ X{ }.

We have 0 ∈ X
⊥τ
I . Hence, X

⊥τ
I ≠∅. Particularly, the

following facts hold:

(1) If τ � idL, I � 0{ }, then X⊥: � X
⊥idL

0{ } �

a ∈ L: a∧x � 0, for all x ∈ X{ }, and it is called the
annihilator of X in L (see [2]);

(2) If τ � idL, then X⊥I : � X
⊥idL

I �

a ∈ L: a∧x ∈ I, for all x ∈ X{ }, and it is called the
relative annihilator of X with respect to I (see [2]);

(3) If X � x{ }, then x
⊥τ
I : � x{ }

⊥τ
I � a ∈ L: τ(a)∧x ∈ I{ };

(4) If I � 0{ }, then X⊥τ : � X
⊥τ
0{ } �

a ∈ L: τ(a)∧x � 0, for all x ∈ X{ }.

Example 5. Consider the De Morgan residuated lattice of
Example 2. Assume that τ is a state operator on L. (en,
τ(0) � 0. Also, we have b⊙ b � 0, which implies by (SO12)
that 0 � τ(0) � τ(b⊙ b) � τ(b)⊙ τ(b). Hence by the table of
⊙ , τ(b) ∈ 0, p, b􏼈 􏼉. Suppose that τ(b) � 0. Since p≤ b, by
(SO10) τ(p)≤ τ(b) � 0, that is, τ(p) � 0. Moreover, τ(f) �

τ(c⟶ d) �
(SO3) τ(c)⟶ τ(c∧d) � τ(c)⟶ τ(b) � τ(c)

⟶ 0 � (τ(c))′ �
(SO11) τ(c′) � τ(d). (us, τ(f) � τ(d). In

addition, τ(e) � τ(f⟶ e) � τ(f)⟶ τ(f∧e) �

τ(f)⟶ τ(d) � τ(f)⟶ τ(f) �
(RL1) 1, that is, τ(e) � 1.

Since e≤ q≤ 1, by (SO10) 1 � τ(e)≤ τ(q)≤ τ(1), that is,
τ(q) � τ(1) � 1. Also on the one hand, we have 1 � τ(e) �

τ(e⟶ c) �
(SO14) τ(e)⟶ τ(c) � 1⟶ τ(c) �

(RL1) τ(c).
Hence, τ(c) � 1. On the other hand, we have 1 � τ(e) �

τ(c⟶ a) �
(SO14) τ(c)⟶ τ(a) � 1⟶ τ(a) �

(RL1) τ(a).
(us, τ(a) � 1. We have d⊙ a � 0, which implies that
0 � τ(0) � τ(d⊙ a) �

(SO12) τ(d)⊙ τ(a) � τ(d)⊙ 1 � τ(d). It
follows that τ(f) � τ(d) � 0. (erefore, we obtain that the
map τ defined on L by

τ(x) �
0, if x ∈ 0, p, b, d, f􏼈 􏼉;

1, if x ∈ a, c, e, q, 1􏼈 􏼉.
􏼨 (4)

Is a state operator on L. (us, (L, τ) is a De Morgan state
residuated lattice. One can easily check that 0{ }, 0, p􏼈 􏼉,
0, p, a􏼈 􏼉, 0, p, c􏼈 􏼉, 0, p, b, d, f􏼈 􏼉, L are ideals of L and 0{ },

I � 0, p􏼈 􏼉, J � 0, p, b, d, f􏼈 􏼉 and L are state ideals of (L, τ). In
addition, coker(τ) � 0, p, b, d, f􏼈 􏼉≠ 0{ }. (us, τ is a unco-
faithful state operator.

We have 0⊥τI � p
⊥τ
I � L and

a
⊥τ
I � c

⊥τ
I � d

⊥τ
I � e

⊥τ
I � f

⊥τ
I � q

⊥τ
I � 1⊥τI � 0, p, b, d, f􏼈 􏼉 � J.

Let X � 0, P, b{ }, we have X
⊥τ
I � 0, p, b, d, f􏼈 􏼉 � J.

Example 6. Let L � 0, n, a, b, c, d, 1{ } with his Hasse diagram
and Cayley tables of ⊙ and ⟶ be the following (Figure 4):

(en , L � (L,∧,∨, ⊙ ,⟶ , 0, 1) is a nonregular De
Morgan residuated lattice, which is Stonean. Now suppose
that τ is a state operator on L[2]. (en, τ(0) � 0 and by
(SO3),
τ(b) � τ(c⟶ b) � τ(c)⟶ (c∧b) � τ(c)⟶ τ(a). If
τ(c) � 1, we have τ(b) � 1⟶ τ(a) � τ(a), that is,
τ(b) � τ(a). Since c≤ d≤ 1, by (SO10), we have
1 � τ(c)≤ τ(d)≤ τ(1), that is, τ(d) � τ(1) � 1. Also,
1 � τ(d) � τ(a⟶ n) �

(SO14) τ(a)⟶ τ(n), that is,
τ(a)⟶ τ(n) � 1. Hence, τ(a)(RL2) ≤ τ(n). Since, n≤ a, we
have τ(n)≤ τ(a). (us, τ(n) � τ(a) � τ(b) � λ, for some
λ ∈ L. By (SO7) and (SO8), we have, for ∗ ∈ ∨,∧{ },
τ(τ(a)∗ τ(b)) � τ(a)∗ τ(b)⇔τ(λ) � τ(λ∗ λ) � λ∗ λ � λ.
(at is, τ(λ) � λ. (us, λ ∈ 0, n, a, b, 1{ }. In addition, if λ � a,
we have τ(τ(a)⊙ τ(b)) � τ(a⊙ a) � τ(n) � a≠ n � a⊙ a �

τ(a)⊙ τ (b). Hence, by (SO5), λ≠ a. By some calculations,
we obtain that for λ � 1, the map τ defined on L by

τ(x) �
0, if x ∈ 0{ };

1, if x ∈ n, a, b, c, d, 1{ },
􏼨 (5)

is a state operator on L. (us, (L, τ) is a De Morgan state
residuated lattice. In addition, coker(τ) � 0{ }. Hence, τ is
cofaithful.

We have 0⊥τ � L and
n⊥τ � a⊥τ � b⊥τ � c⊥τ � d⊥τ � 1⊥τ � 0{ }.

For any X⊆L, X≠ 0{ }, we have X⊥τ � 0{ }.

Example 7. Consider the De Morgan residuated lattice of
Example 1. (en, from Remark 3, (L, idL) is a De Morgan
state residuated lattice. If I � 0{ } and X � 〈f〉idL

� 0, c, f􏼈 􏼉,
it is easy to check that
X⊥: � X

⊥idL

0{ } � 0, a, b{ } � 〈b〉idL
� 〈b〉.

Theorem 5. Let I be a state ideal of (L, τ). Given a nonempty
subset X of L, X

⊥τ
I is a state ideal of (L, τ).

Proof. Let a, b ∈ X
⊥τ
I . (en, τ(a)∧x ∈ I and τ(b)∧x ∈ I, for

all x ∈ X. Hence, (τ(a)∧x)⊕(τ(b)∧x) ∈ I because I is an
ideal. Since τ(a⊕b)∧x(SO22) ≤ (τ(a)⊕τ(b))∧
x(P16) ≤ (τ(a)∧x)⊕ (τ(b)∧x) ∈ I, we have τ(a⊕b)∧x ∈ I.
(at is, a⊕b ∈ X

⊥τ
I .

Let a ∈ X
⊥τ
I and b ∈ L such that b≤ a. (en, τ(b)≤ τ(a),

from (SO10). It follows that τ(b)∧x≤ τ(a)∧x, for all x ∈ X.
Since τ(a)∧x ∈ I and I is and ideal, τ(b)∧x ∈ I, for all
x ∈ X. (erefore, b ∈ X

⊥τ
I .

Let a ∈ X
⊥τ
I . Since τ(τ(a)) � τ2(a) �

(SO16) τ(a), we have
τ(τ(a))∧x � τ(a)∧x ∈ I, for all x ∈ X. Hence, τ(a) ∈ X

⊥τ
I .

(erefore, X
⊥τ
I is a state ideal of (L, τ). □

Corollary 4. Let I be a state ideal of (L, τ). Given a non-
empty subset X of L, we have
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(1) X⊥τ is a state ideal of (L, τ);
(2) X⊥I and X⊥ are state ideals of L;
(3) For all x ∈ L, x

⊥τ
I is a state ideal of (L, τ) and I⊆x⊥τI .

Proposition 6. Let I, J be state ideals of (L, τ). Given
nonempty subsets X, Y of L, we have

(1) I⊆J⇒X
⊥τ
I ⊆X
⊥τ
J ;

(2) X⊆Y⇒Y
⊥τ
I ⊆X
⊥τ
I ;

(3) ( ∪
k ∈ K

Xk)⊥τ
I

� ∩
k∈K

(Xk)
⊥τ
I ;

(4) X
⊥τ
( ∩

k ∈ K
Ik) � ∩

k∈K
X
⊥τ
Ik
;

(5) 〈X〉
⊥τ
I � X

⊥τ
I . Particularly, ∅⊥τI � 0⊥τI � L;

(6) coker(τ)⊆X⊥τ , L⊥τ � coker(τ);
(7) X

⊥τ
I � ∩

x∈X
x
⊥τ
I ;

(8) X⊥τ � ∩
x∈X

x⊥τ ;
(9) X

⊥τ
I � L if X⊆I. Specifically, 0⊥τI � I

⊥τ
I � L;

(10) ∩
k∈K

(Xk)
⊥τ
I ⊆( ∩

k ∈ K
Xk)⊥τ

I
;

(11) I⊆X⊥τI ;
(12) X⊥τ⊆X⊥τI .

Proof
(1) Let I⊆J and a ∈ X

⊥τ
I . (en,

τ(a)∧x ∈ I, for all x ∈ X. (us, τ(a)∧x ∈ J,

for all x ∈ X, that is, a ∈ X
⊥τ
J . (erefore, X

⊥τ
I ⊆X
⊥τ
J .

(2) Let X⊆Y and a ∈ Y
⊥τ
I . (en, τ(a)∧x ∈

I, for all x ∈ Y. Hence, τ(a)∧x ∈ I for all x ∈ X,
which implies a ∈ X

⊥τ
I . (erefore, Y

⊥τ
I ⊆X
⊥τ
I .

(3) Since Xk⊆ ∪
k∈K

Xk, it follows from (2) that
( ∪

k ∈ K
Xk)⊥τ

I
⊆(Xk)

⊥τ
I for all k ∈ K. We deduce that

( ∪
k ∈ K

Xk)⊥τ
I
⊆ ∩

k∈K
(Xk)
⊥τ
I .

Conversely, let a ∈ ∩
k∈K

(Xk)
⊥τ
I ; we have a ∈ (Xk)

⊥τ
I

for all k ∈ K. Hence, τ(a)∧xk ∈ I for all xk ∈ Xk

and k ∈ K, which implies a ∈ ( ∪
k ∈ K

Xk)⊥τ
I
. (at is,

∩
k∈K

(Xk)
⊥τ
I ⊆( ∪

k ∈ K
Xk)⊥τ

I
. (erefore,

( ∪
k ∈ K

Xk)⊥τ
I

� ∩
k∈K

(Xk)
⊥τ
I .

(4) We have
a ∈ X

⊥τ
( ∩

k ∈ K
Ik)⇔(τ(a)∧x ∈ ∩

k∈K
Ik, for allx ∈ X)⇔(τ(a)∧x ∈ Ik, for all x ∈ X and k ∈ K)

⇔(a ∈ X
⊥τ
Ik

, for all k ∈ K)⇔a ∈ ∩
k∈K

X
⊥τ
Ik

.

(us, X
⊥τ
( ∩

k ∈ K
Ik) � ∩

k∈K
X
⊥τ
Ik
.

(5) Since X⊆〈X〉, by (2), we obtain 〈X〉
⊥τ
I ⊆X
⊥τ
I .

Conversely, let a ∈ X
⊥τ
I and z ∈ 〈X〉. (en,

τ(a)∧x ∈ I, for all x ∈ X. Since z ∈ 〈X〉, there are
n ∈ N∗ and x1, x2, . . . ., xn ∈ X such that
z≤x1⊕x2⊕, . . . .,⊕xn. It follows that
τ(a)∧z≤ τ(a)∧(x1⊕x2⊕, . . . .,⊕xn)≤ (τ(a)∧x1)⊕
(τ(a)∧x2)⊕, . . . .,⊕(τ(a)∧xn). But τ(a)∧xi ∈ I, for
all 1≤ i≤ n. (us, τ(a)∧z ∈ I, which implies that
a ∈ 〈X〉

⊥τ
I . (erefore, 〈X〉

⊥τ
I � X

⊥τ
I .

(6) Let a ∈ coker(τ). (en, τ(a) � 0. Since
τ(a)∧x≤ τ(a) � 0, for all x ∈ X, we have
τ(a)∧x � 0, for all x ∈ X. (at is, a ∈ X⊥τ . (us,
coker(τ)⊆X⊥τ . Taking X � L, we have
coker(τ)⊆L⊥τ . Now, let a ∈ L⊥τ , and then,
τ(a)∧x � 0, for all x ∈ L. In particular, taking
x � τ(a), we have τ(a) � 0, which implies that
a ∈ coker(τ), that is, L⊥τ⊆coker(τ). (erefore,
coker(τ)⊆X⊥τ and L⊥τ � coker(τ).

1

d

b c

a

n

0

0 n a b c d 1

0 0 0 0 0 0 0 0

n 0 n n n n n n

a 0 n n n n n a

b 0 n n b n b b

c 0 n n n c c c

d 0 n n b c d d

1 0 n a b c d 1

0 n a b c d 1

0 1 1 1 1 1 1 1

n 0 1 1 1 1 1 1

a 0 d 1 1 1 1 1

b 0 c c 1 c 1 1

c 0 b b b 1 1 1

d 0 a a b c 1 1

1 0 n a b c d 1

Figure 4: A non regular De Morgan residuated lattice.
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(7) According to (3), we have
X
⊥τ
I � ( ∪

x ∈ X
x{ })
⊥τ
I

� ∩
x∈X

x
⊥τ
I .

(8) Taking I � 0{ } in (1), we obtain X⊥τ � ∩
x∈X

x⊥τ .
(9) Assume X

⊥τ
I � L, and let x ∈ X. (en,

x � τ(1)∧x ∈ I, that is, x ∈ I.
Conversely, suppose X⊆I, and a ∈ L. (en, for any
x ∈ X, we have x ∈ I. Since τ(a)∧x≤x ∈ I, we
obtain τ(a)∧x ∈ I. Hence, a ∈ X

⊥τ
I , and therefore,

X
⊥τ
I � L.

(10) Since ∩
k∈K

Xk⊆Xk for each k ∈ K, it follows from (2)
that (Xk)

⊥τ
I ⊆( ∩

k ∈ K
Xk)⊥τ

I
for all k ∈ K. (us,

∩
k∈K

(Xk)
⊥τ
I ⊆( ∩

k ∈ K
Xk)⊥τ

I
.

(11) Let a ∈ I. Since I is a state ideal, we have τ(a) ∈ I. In
addition, τ(a)∧x≤ τ(a) ∈ I, for all x ∈ X. (en,
τ(a)∧x ∈ I, for all x ∈ X. (at is a ∈ X

⊥τ
I . (ere-

fore, I⊆X⊥τI .
(12) Let I be an ideal of L. We have a ∈ X⊥τ implies

τ(a)∧x � 0 ∈ I, for any x ∈ X. Hence, τ(a)∧x ∈ I,
for any x ∈ X. (us, a ∈ X

⊥τ
I . (erefore,

X⊥τ⊆X⊥τI . □

Example 8. Consider the De Morgan state residuated lattice
(L, τ) of Example 6. By taking X � c{ } and Y � d{ }, for
I � 0{ }, we have X

⊥τ
I � Y

⊥τ
I � 0{ }. It follows that

X
⊥τ
I ∩Y

⊥τ
I � 0{ }. But (X∩Y)

⊥τ
I � ∅⊥τI � L⊈ 0{ } � X

⊥τ
I ∩Y

⊥τ
I .

So, the inclusion may be strict for (10).
Set Z � 0, n, a, b{ }, then Z � 0{ }∪ n{ }∪ a{ }∪ b{ }. It fol-

lows by (3) that
Z
⊥τ
I � 0⊥τI ∩ n

⊥τ
I ∩ a
⊥τ
I ∩ b
⊥τ
I � L∩ 0{ }∩ 0{ }∩ 0{ } � 0{ }.

Remark 6. For the reader’s convenience, we shall notice that
for τ � idL in the above Proposition 6, we get all the
properties of relative annihilators established in De Morgan
residuated lattices in ([2], Proposition 4.51). Also, for τ � idL

and I � 0{ }, we get all the important results about annihi-
lators in De Morgan residuated lattices investigated in Ref.
[2] (pages 462–472).

(e following properties of relative annihilators always
hold for τ � idL but may not in general be the case for some
state operators of De Morgan residuated lattices.

Proposition 7. Let L be a De Morgan residuated lattice and
I, J, K be ideals of L and X, Y two nonempty subsets of L.
>en,

(1) J⊥I ∩ J⊆I;
(2) J∩K⊆I⇔K⊆J⊥I ;
(3) X∩X⊥I ⊆I;
(4) I⊆X if X∩X⊥I � I. Particularly, X⊥I ∩ (X⊥I )

⊥
I � I;

(5) Y⊥I ∪X⊥I ⊆Y⊥(X⊥
I

), X⊥(Y⊥
I

) and Y⊥(X⊥
I

) ∪X⊥(Y⊥
I

)⊆(X∧Y)⊥I ,
where X∧Y � x∧y: x ∈ X, y ∈ Y􏼈 􏼉;

(6) L⊥I � I and 1⊥I � I;
(7) X⊆(X⊥I )

⊥
I . Particularly, (I⊥I )

⊥
I � I and (L⊥I )

⊥
I � L;

(8) X⊥I � ((X⊥I )
⊥
I )
⊥
I ;

(9) X⊥(X⊥
I

)⊆X(X(Y⊥
I

))
;

(10) If X⊆I, then X⊥(X⊥
I

) � X⊥(X⊥
(X⊥

I
)
) � X(X(Y⊥

I
))

� L,
whenever X⊆Y.

Proof. For the proof of (1) and (2), see [2] (Proposition 4.51
(9) and (10)).

(3) Let a ∈ X∩X⊥I . (en, for any x ∈ X, we have
a∧x ∈ I. Particularly, for x � a, we obtain
a � a∧a ∈ I, implying a ∈ I. (us, X∩X⊥I ⊆I.

(4) Firstly, X∩X⊥I ⊆I, from (3). Conversely, assume
I⊆X. We know that I⊆X⊥I , from Proposition 6 (11).
(erefore, I⊆X∩X⊥I . Hence, X∩X⊥I � I.
In another hand, assume X∩X⊥I � I. (en,
I � X∩X⊥I ⊆X

(5) We have I⊆Y⊥I . Applying Proposition 6 (1), we
obtain X⊥I ⊆X⊥(Y⊥

I
). Since from (1), Y⊥I ⊆X⊥(Y⊥

I
), it

follows that Y⊥I ∪X⊥I ⊆X⊥(Y⊥
I

). Similarly, we obtain
Y⊥I ∪X⊥I ⊆Y⊥(X⊥

I
).

In addition, let a ∈ Y⊥(X⊥
I

), and z ∈ X∧Y. (en, there
are x ∈ X, y ∈ Y such that z � x∧y. Since,
a∧y ∈ X⊥I , we have
a∧z � a∧(x∧y) � (a∧x)∧y � (a∧y)∧x ∈ I, which
means that a∧z ∈ I. Hence, a ∈ (X∧Y)⊥I , that is,
Y⊥(X⊥

I
)⊆(X∧Y)⊥I . Analogously, we show that

X⊥(Y⊥
I

)⊆(X∧Y)⊥I . (erefore, Y⊥(X⊥
I

) ∪X⊥(Y⊥
I

)⊆(X∧Y)⊥I .
(6) From Proposition 6 (11), we have I⊆L⊥I . Conversely,

for any x ∈ L⊥I , we have x � 1∧x ∈ I. Hence, x ∈ I.
Similarly, we obtain 1⊥I � I.

(7) Let x ∈ X. For any a ∈ X⊥I , we have a∧x ∈ I, which
implies x ∈ (X⊥I )

⊥
I .

(8) By (7), we have X⊥I ⊆((X⊥I )
⊥
I )
⊥
I . On the other hand,

applying Proposition 6 (2) to the above (7), we
obtain ((X⊥I )

⊥
I )
⊥
I ⊆X⊥I .

(9) We always have I⊆Y⊥I , from Proposition 6 (11).
Applying Proposition 6 (1) twice, we obtain
X⊥(X⊥

I
)⊆X(X(Y⊥

I
))
.

(10) Now assume X⊆I. First of all, we show that
X⊥(X⊥

I
) � L.

We know that X⊆I⊆X⊥I , that is, X⊆X⊥I , which implies
X⊥(X⊥

I
) � L, from Proposition 6 (9).

In addition, since I⊆X⊥I , applying Proposition 6 (1)
twice, we have X⊥(X⊥

I
)⊆X
⊥
(X⊥

(X⊥
I

)
). (erefore,

L � X⊥(X⊥
I

)⊆X
⊥
(X⊥

(X⊥
I

)
), which implies X⊥(X⊥

(X⊥
I

)
) � L. (us,

X⊥(X⊥
I

)⊆X
⊥
(X⊥

(X⊥
I

)
) � L.

Moreover, suppose X⊆Y. (en, from Proposition 6 (2),
Y⊥I ⊆X⊥I . (is implies X(X(Y⊥

I
))
⊆

(Prop.3.71)

X⊥(X⊥
(X⊥

I
)
) � X⊥(X⊥

I
).

Since X⊥(X⊥
I

) ⊆
(9)

X(X(Y⊥
I

))
, it follows that

X(X(Y⊥
I

))
� X⊥(X⊥

I
). □

Example 8. Consider the De Morgan state residuated lattice
(L, τ) of Example 5. I � 0, p􏼈 􏼉 and J � 0, p, b, d, f􏼈 􏼉 are two
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state ideals of (L, τ). We will show that item (3) and (4) do
not hold with τ.

(3) Set X � b{ }, and then, X
⊥τ
I � J. But X∩X

⊥τ
I � b{ }⊈I.

(4) Let X � 0, P, b{ }, we obtain X
⊥τ
I � J. I⊆X, but

X∩X
⊥τ
I � X∩ J � X≠ I.

Theorem 6. Let I be an ideal of L and X a nonempty set of L.
>en, we have 〈X〉⟶ I � x ∈ L: 〈X〉∩ 〈x〉⊆I{ } � X⊥I in
the frame (I(L),⊆).

Proof. Let x ∈ 〈X〉⟶ I. (en, 〈X〉∩ 〈x〉⊆I. It follows
from Proposition 6 (5) and Proposition 7 (1) that
x ∈ 〈X〉⊆〈X〉

⊥τ
I � X⊥I . (erefore, we obtain

〈X〉⟶ I⊆X⊥I .
Conversely, let x ∈ X⊥I . Since 〈X〉⊥I � X⊥I , we have

x ∈ 〈X〉⊥I , which implies that 〈x〉⊆〈X〉⊥I . By Proposition 7
(2), we have 〈X〉∩ 〈x〉⊆I. It follows that x ∈ 〈X〉⟶ I.
Hence, X⊥I ⊆〈X〉⟶ I. (erefore, we obtain 〈X〉⟶ I �

X⊥I in the frame (I(L),⊆).
In Ref. [31], the authors investigated the concept of

f-relative annihilators in residuated lattices, where f is an
endomorphism. Knowing that the notion of endomorphism
already existed in universal algebras and due to the fact that
any idempotent endomorphism is a state operator, it seems
reasonable that all the results of this section can be extended
to a general universal algebras and in particular to residuated
lattice, where the state operator τ is replaced by an idem-
potent endomorphism. □

5. Prime State Ideals in DMSRL

(is section proceeds with the study of the notion of prime
state ideals in De Morgan state residuated lattices. We es-
tablish the prime state ideal theorem and make investigation
for some related properties.

Proposition 8. Let P be a proper state ideal of (L, τ). >en,
the following statements are equivalent:

(1) If P1, P2 ∈ SI(L) and P � P1 ∩P2, then P � P1 or
P � P2;

(2) If P1, P2 ∈ SI(L) and P1 ∩P2⊆P, then P1⊆P or
P2 � P;

(3) If a, b ∈ L so that (a⊕τ(a))∧(b⊕τ(b)) ∈ P, then a ∈ P

or b ∈ P.

Proof. (1)⇒(2) Let P1, P2 ∈ SI(L) and P1 ∩P2⊆P. (en,
(P1 ∩P2)∨P � P. From Proposition 3, the lattice
(SI(L),⊆) is Brouwerian, so it is distributive. It follows
that (P1∨P)∩ (P2∨P) � P. Now by (1), P1∨P � P or
P2∨P � P. (us, P1⊆P or P2⊆P.

(1)⇒(3). Let a, b ∈ L. Assume (a⊕τ(a))∧(b⊕τ(b)) ∈ P.
Set (P1 � 〈P, a〉τ and (P2 � 〈P, b〉τ . Obviously, P⊆P1 ∩P2.
Let x ∈ P1 ∩P2, then by(eorem 1 (3), there are l, k ∈ P and
m, n≥ 1 such that x≤ k⊕m(a⊕τ(a)) and x≤ l⊕n(b⊕τ(b)).
Hence, we have

x≤ (k⊕m(a⊕τ(a)))∧(l⊕n(b⊕τ(b)))

(P16) ≤ ((k⊕m(a⊕τ(a)))∧l)⊕((k⊕m(a⊕τ(a)))∧n(b⊕τ(b)))

(P16) ≤ (k∧l)⊕(m(a⊕τ(a))∧l)⊕(k∧n(b⊕τ(b)))⊕(m(a⊕τ(a))∧n(b⊕τ(b)))

(P15) ≤ (k∧l)⊕(l∧m(a⊕τ(a)))⊕(k∧n(b⊕τ(b)))⊕mn((a⊕τ(a))∧(b⊕τ(b))).

(6)

But (k∧l), (l∧m(a⊕τ(a))), (k∧n(b⊕τ (b))), mn(a⊕τ
(a))∧(b⊕τ(b)) ∈ P. (us, x ∈ P. Hence, P � P1 ∩P2.
(erefore, by (1), P � P1 or P � P2, that is, a ∈ P or b ∈ P.

(3)⇒(1) Let P1, P2 ∈ SI(L) such that P � P1 ∩P2.
Suppose that P≠P1 and P≠P2 and let a ∈ P1/P and
b ∈ P2/P. (en, (a⊕τ(a))∧(b⊕τ(b)) ∈ P1 ∩P2 � P, that is, a
contradiction. (us, P � P1 or P � P2. □

Definition 8. A proper state ideal P of (L, τ) is said to be
prime if it satisfies one of the equivalent conditions of
Proposition 8.

We denote the set of all prime state ideals of (L, τ) by
Spectτ(L).

(e following example shows a prime state ideal of
(L, τ), which is not a prime ideal of L.

Example 10. Consider the De Morgan state residuated
lattice (L, τ) of Example 5. 0{ }, 0, p􏼈 􏼉, 0, p, a􏼈 􏼉, 0, p, c􏼈 􏼉,
0, p, b, d, f􏼈 􏼉, L are ideals of L, and the state ideals of (L, τ)

are 0{ }, I � 0, p􏼈 􏼉, J � 0, p, b, d, f􏼈 􏼉 and L. (e ideal I is not a
prime ideal of L, because 0, p􏼈 􏼉 � 0, p, a􏼈 􏼉∩ 0, p, c􏼈 􏼉 but
0, p􏼈 􏼉≠ 0, p, a􏼈 􏼉 and 0, p􏼈 􏼉≠ 0, p, c􏼈 􏼉. Still as a state ideal of

(L, τ), 0, p􏼈 􏼉 is a prime state ideal (according to Proposition
8, (1)).

Now, we give one of our main theorems.

Theorem 7 (Prime state ideal theorem) Let F be a filter in the
lattice (L,⊆), and I be a state ideal of (L, τ) such that
I∩F � ∅. >en, there is a prime state ideal P of (L, τ) such
that I⊆P and P∩F � ∅.

Proof. Set μ(I) � J: J ∈ SI(L), I⊆J and J∩F � ∅{ }. We
have I ∈ SI(L), I⊆I and I∩F � ∅. (en, I ∈ μ(I), that is,
μ(I)≠∅. It is easy to check that the set μ(I) is inductively
ordered by inclusion. Hence by Zorn’s lemma, it has a
maximal element P. Let’s show that that P ∈ Spectτ(L).
Since P ∈ μ(I), it follows that P is a proper state ideal and
P∩F � ∅. Let x, y ∈ L, such that (a⊕τ(a))∧(b⊕τ(b)) ∈ P.
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Assume a ∉ P and b ∉ P, and consider the sets 〈P, a〉τ and
〈P, b〉τ . (en, P is strictly contained in 〈P, a〉τ and 〈P, b〉τ
and the maximality of P implies that 〈P, a〉τ ∉ μ(I) and
〈P, b〉τ ∉ μ(I). (us, 〈P, a〉τ ∩F≠∅ and 〈P, b〉τ ∩F≠∅.

Let x ∈ 〈P, a〉τ ∩F and y ∈ 〈P, b〉τ ∩F≠∅. According to
(eorem 1 (3), there are k, l ∈ P and m, n≥ 1 such that
x≤ k⊕m(a⊕τ(a)) and y≤ l⊕n(b⊕τ(b)). (en,

x∧y≤ (k⊕m(a⊕τ(a)))∧(l⊕n(b⊕τ(b)))

(P16) ≤ ((k⊕m(a⊕τ(a)))∧l)⊕(k⊕m(a⊕τ(a)))∧n(b⊕τ(b))

(P16) ≤ (k∧l)⊕(m(a⊕τ(a))∧l)⊕(k∧n(b⊕τ(b)))⊕(m(a⊕τ(a)))∧n(b⊕τ(b))

(P15) ≤ (k∧l)⊕(l∧m(a⊕τ(a)))⊕(k∧n(b⊕τ(b)))⊕mn((a⊕τ(a))∧(b⊕τ(b))).

(7)

But (k∧l), (l∧m(a⊕τ(a))), (k∧n(b⊕τ(b))), mn

((a⊕τ(a))∧(b⊕τ(b))) ∈ P; hence, x∧y ∈ P. Moreover, since
F is a filter of the lattice (L,⊆), it follows that x∧y ∈ F, and
therefore, P∩F≠∅, which is a contradiction. (erefore,
P ∈ Spectτ(L). □

Proposition 9. Let I be a proper state ideal of (L, τ). >en,
there is a maximal state ideal M of (L, τ) such that I⊆M.

Proof. Let us consider the set
θ(I) � J: J is a proper state ideal such that I⊆J􏼈 􏼉. I is a
proper state ideal of (L, τ) and I⊆I. So, I ∈ θ(I), that is,
θ(I)≠∅. One can easily see that θ(I) is inductively ordered
by inclusion. (en, by Zorn’s lemma, θ(I) has a maximal
element M. Let show that θ(I) is a maximal state ideal of
(L, τ). In fact, if N is a proper state ideal of (L, τ) such that
M⊆N, then N ∈ θ(I) and the maximality of M implies that
N � M. □

Proposition 10. Let a ∈ L, a> 0. >en, there is a prime state
ideal P of (L, τ) such that a ∉ P.

Proof. Since 0{ } is a state ideal and 0{ }∩ [a) � ∅ (where [a)

is the filter generated by a{ } in the lattice (L,⊆)). Hence by
(eorem 7, there exists a prime state ideal P such that
P∩ 〈a〉 � ∅. (us, a ∉ P. □

6. Conclusion

In this article, we have introduced the notion of De Morgan
state residuated lattice (DMSRL) andmade investigations on
certain related properties and examples. We have proved
that the lattice of all state ideals (SI(L),⊆) of a DMSRL is a
coherent frame, and for any state ideal I, the pseudo-
complement of I is
I′ � I⟶ 0{ } � x ∈ L: I∩ 〈x〉τ � 0{ }􏼈 􏼉 � x ∈ L: i∧n{

(x⊕τ(x)) � 0, for all i ∈ I and n ∈ N∗}. Furthermore, we
have illustrated that the set of compacts element of the
sublattice SI(L) is C(SI(L)) � 〈x〉τ: x ∈ L􏼈 􏼉. Also, we
characterized the DMSRL for which the lattice SI(L) is a
Boolean algebra. In addition, we brought in the concept of
state relative annihilator of a given nonempty subset with
respect to a state ideal in DMSRL and investigated some of
its properties.We proved that state relative annihilators are a

particular kind of state ideals. After all, we have studied the
notion of prime state ideals in DMSRL and established the
prime state ideal theorem.

Knowing that in universal algebras, any idempotent
endomorphism is a state operator [29], it seems reasonable
that all the results in this article can be extended to the more
general class of residuated lattice and even in general case of
universal algebras, where the state operator τ is replaced by
an idempotent endomorphism. So, our further work will
consist to look this direction. In the same view as the work in
Ref. [32], another way on this topic will focus on the study of
the lattices of L-fuzzy state ideals in De Morgan state
residuated lattices.
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