A Necessary and Sufficient Condition for $\mathbf{k}=\mathbb{Q}\left(\sqrt{4 \mathbf{n}^{2}+1}\right)$ to Have Class Number $\omega(\mathbf{n})+\mathbf{c}$

Ahmad Issa (D) and Hasan Sankari
Department of Mathematics, Tishreen University, Lattakia, Syria
Correspondence should be addressed to Ahmad Issa; ahmad.ali.issa90@gmail.com

Received 26 August 2021; Accepted 29 March 2022; Published 31 May 2022
Academic Editor: Aloys Krieg
Copyright © 2022 Ahmad Issa and Hasan Sankari. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In this paper, we give a necessary and sufficient condition for real quadratic field $k=\mathbb{Q}\left(\sqrt{4 n^{2}+1}\right)$ to have class number $\omega(n)+c$ where $c \in\{1,2\}$ and $\omega(n)$ is the number of odd prime divisors of n.

1. Introduction

Let d be a positive square-free integer and let $h(d)$ and C_{k} denote the class number and the class group of a real quadratic field $k=\mathbb{Q}(\sqrt{d})$, respectively.

The class number problem of quadratic fields is one of the most intriguing unsolved problems in algebraic number theory, and it has been the object of attention for many years of research.

In [1], Gauss had conjectured that there exist exactly nine imaginary quadratic fields of class number 1. Later, this was solved after diverse works of Stark, Heegner, and Baker. On the other hand, it was conjectured by Gauss that there are infinitely many real quadratic fields with class number one. This conjecture is still open.

Many fruitful research studies have been conducted in this direction (see [2-7]). In particular, we mention some results showing finiteness of class number one real quadratic fields in special families of real quadratic fields. Biro (see [2, 3])proved in 2003 two important results: Yokoi's conjecture which asserts that $h\left(m^{2}+4\right)=1$ only for six values of $m=1,3,5,7,13,17$ and Chowla's conjecture which says that $h\left(4 m^{2}+1\right)=1$ only for six values of $m=1,2,3,5,7,13$.

Another line of work, in these contexts, is finding bounds for class number of a number field. Hasse [8] and Yokoi $[9,10]$ studied lower bounds for class numbers of certain real quadratic fields. Mollin [11, 12] generalized their results for certain real quadratic and biquadratic fields. Recently,

Chakraborty et al. [13] derived a lower bound for $\mathbb{Q}\left(\sqrt{n^{2}+1}\right)$. Also, Mishra [14] gave a lower bound for $\mathbb{Q}\left(\sqrt{n^{2}+r}\right)$, where $r=1,4$. For a given fixed number h, it is interesting to find necessary and sufficient conditions for a real quadratic field to have class number h, see [15-18]. In particular, Yokoi [18] showed that the class number of $k=$ $\mathbb{Q}\left(\sqrt{4 n^{2}+1}\right)$ is 1 if and only if $n^{2}-t(t+1)$ (with $1 \leq t \leq n-1)$ is a prime. In this work, we use the lower bound for $h\left(4 n^{2}+1\right)$ to give a necessary and sufficient condition for $k=\mathbb{Q}\left(\sqrt{4 n^{2}+1}\right)$ to have class number $\omega(n)+c$ where $c \in\{1,2\}$.

2. Preliminaries

Let k be a real quadratic field and $\zeta_{k}(s)$ be its Dedekind zeta function. Siegel [19] developed a method of computing $\zeta_{k}(1-2 n)$, where n is a positive integer. By specializing Siegel's formula for a real quadratic field, we obtain the following result.

Theorem 1 (Zagier, [20]). Let k be a real quadratic field with discriminant D. Then,

$$
\begin{equation*}
\zeta_{k}(-1)=\frac{1}{60} \sum_{\substack{|t|<\sqrt{D} \\ \mathrm{t}^{2} \equiv D(\bmod 4)}} \sigma_{1}\left(\frac{D-\mathrm{t}^{2}}{4}\right) \tag{1}
\end{equation*}
$$

where $\sigma_{1}(r)$ denotes the sum of divisors of r.

However, there is another method, due to Lang, of computing special values of $\zeta_{k}(s)$ if k is a real quadratic field.

Let $k=\mathbb{Q}(\sqrt{d})$ be a real quadratic field of discriminant D and H an ideal class of k. Let I be any integral ideal belonging to H^{-1} with an integral basis $\left\{r_{1}, r_{2}\right\}$. We put

$$
\begin{equation*}
\delta(\mathrm{I})=r_{1} r_{2}^{\prime}-r_{1}^{\prime} r_{2} \tag{2}
\end{equation*}
$$

where r_{1} and r_{2} are the conjugates of r_{1} and r_{2}, respectively.
Let ε be the fundamental unit of k. Then, $\left\{\varepsilon r_{1}, \varepsilon r_{2}\right\}$ is also integral basis of I, and thus we can find a matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ with integer entries satisfying

$$
\varepsilon\left[\begin{array}{l}
r_{1} \tag{3}\\
r_{2}
\end{array}\right]=M \cdot\left[\begin{array}{l}
r_{1} \\
r_{2}
\end{array}\right]
$$

The entries of M are given by

$$
\begin{align*}
& a=\operatorname{tr}\left(\frac{r_{1} r_{2}^{\prime} \varepsilon}{\delta(\mathrm{I})}\right), b=\operatorname{tr}\left(\frac{r_{1} r_{1}^{\prime} \varepsilon^{\prime}}{\delta(\mathrm{I})}\right), \\
& c=\operatorname{tr}\left(\frac{r_{2} r_{2}^{\prime} \varepsilon}{\delta(\mathrm{I})}\right), d=\operatorname{tr}\left(\frac{r_{1} r_{2}^{\prime} \varepsilon^{\prime}}{\delta(\mathrm{I})}\right) . \tag{4}
\end{align*}
$$

Moreover, $\operatorname{det} M=N(\varepsilon)$ and $b c \neq 0$. See ([13, 14, 21]). Now, we can state Lang's formula.

Theorem 2 (Lang, [22]). By keeping the abovementioned notation, we have

$$
\begin{align*}
\zeta_{k}(-1, \mathrm{H})= & \frac{\operatorname{sgn} \delta(\mathrm{I}) r_{2} r_{2}^{\prime}}{360 N(\mathrm{I}) c^{3}}\left\{(a+d)^{3}-6(a+d) N(\varepsilon)\right. \\
& -240 c^{3}(\operatorname{sgn} c) S^{3}(a, c)+180 a c^{3}(\operatorname{sgn} c) S^{2}(a, c) \\
& \left.-240 c^{3}(\operatorname{sgn} c) S^{3}(d, c)+180 d c^{3}(\operatorname{sgn} c) S^{2}(d, c)\right\}, \tag{5}
\end{align*}
$$

where $N(\mathrm{I})$ denotes the norm of an ideal $\mathrm{I}, N(\varepsilon)$ is the norm of ε, and $S^{i}(-,-)$ denotes the generalized Dedekind sum as defined in [23].

Now, we will introduce some basics about quadratic number field $k=\mathbb{Q}\left(\sqrt{4 n^{2}+1}\right)$. Let n be a positive integer and let $d=4 n^{2}+1$ be a square-free integer. Clearly
$d \equiv 1$ or $5(\bmod 8)$. In this case, the fundamental unit of k is $\varepsilon=2 n+\sqrt{d}$ and $N(\varepsilon)=-1$. We also know that if $p \mid n$, where p is an odd prime, then p splits in $k=\mathbb{Q}(\sqrt{d})$ as

$$
\begin{equation*}
\langle p\rangle=\left\langle p, \frac{1+\sqrt{d}}{2}\right\rangle\left\langle p, \frac{1-\sqrt{d}}{2}\right\rangle . \tag{6}
\end{equation*}
$$

By ([21], Theorem 2.4), we also know that

$$
\begin{equation*}
\zeta_{k}(-1, A)=\frac{4 n^{3}+14 n}{180} \tag{7}
\end{equation*}
$$

where A will always denote the principal ideal class in k.
By ([13], Proposition 3.1), we also know that

$$
\begin{equation*}
\zeta_{k}(-1, \mathrm{C})=\frac{2 n^{3}+n\left(2 p^{4}+5 p^{2}\right)}{90 p^{2}} \tag{8}
\end{equation*}
$$

where C is the ideal class containing $\langle p,(1+\sqrt{d}) / 2\rangle$ or $\langle p,(1-\sqrt{d}) / 2\rangle$.

3. Main Results

In this section, we will prove our main results. As a start, we record the following theorem that we derive from ([13], Proposition 3.1).

Theorem 3. Let n be a positive integer and let $d=4 n^{2}+1$ be a square-free integer and suppose that
(i) $\omega(n) \geq 3$
(ii) $c=1$ if $d \equiv 5(\bmod 8)$ and $c=2$ if $d \equiv 1(\bmod 8)$

Then,

$$
\begin{equation*}
h(d) \geq \omega(n)+c \tag{9}
\end{equation*}
$$

Now, we find necessary and sufficient condition for $k=$ $\mathbb{Q}\left(\sqrt{4 n^{2}+1}\right)$ to have class number $\omega(n)+c$.

Theorem 4. By keeping the abovementioned notation, we have

$$
h(d)=\omega(n)+c \text { if and only if }
$$

$$
\sum_{m=0}^{n-1} \sigma_{1}\left(n^{2}-m(m+1)\right)=\left\{\begin{array}{l}
\frac{4 n^{3}+14 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}} \text { if } c=1 \tag{10}\\
\frac{5 n^{3}+40 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}} \text { if } c=2
\end{array}\right.
$$

where p_{i} are odd primes, $p_{i} \mid n$, and $\omega(n) \geq 3$.

Proof. Now, by Theorem 1,

$$
\begin{align*}
\zeta_{k}(-1) & =\frac{1}{60} \sum_{\substack{|t|<\sqrt{4 n^{2}+1} \\
\mathrm{t}^{2} \equiv 4 n^{2}+1(\bmod 4)}} \sigma_{1}\left(\frac{4 n^{2}+1-\mathrm{t}^{2}}{4}\right) \\
& =\frac{1}{60} \sum_{\substack{1 \leq \mid t \leq \leq 2 n-1 \\
t i \text { sodd }}} \sigma_{1}\left(\frac{4 n^{2}+1-\mathrm{t}^{2}}{4}\right) \tag{11}\\
& =\frac{1}{30} \sum_{\substack{1 \leq t \leq 2 n-1 \\
t \text { isodd }}} \sigma_{1}\left(\frac{4 n^{2}+1-\mathrm{t}^{2}}{4}\right) \\
& =\frac{1}{30} \sum_{m=0}^{n-1} \sigma_{1}\left(\frac{4 n^{2}+1-(2 m+1)^{2}}{4}\right)
\end{align*}
$$

so that

$$
\begin{equation*}
\zeta_{k}(-1)=\frac{1}{30} \sum_{m=0}^{n-1} \sigma_{1}\left(n^{2}-m(m+1)\right) \tag{19}
\end{equation*}
$$

(12) $\sum_{m=0}^{n-1} \sigma_{1}\left(n^{2}-m(m+1)\right)=\frac{4 n^{3}+14 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}}$.

Let $C_{i}(1 \leq i \leq \omega(n))$ be the ideal class in k such that $\left\langle p_{i},(1+\sqrt{d}) / 2\right\rangle \in C_{i}$, then by (8), we obtain

$$
\begin{equation*}
\zeta_{k}\left(-1, C_{i}\right)=\frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{90 p_{i}^{2}} \tag{13}
\end{equation*}
$$

If $c=1$, then 2 remains prime in k. We note $\left\{C_{1}, \ldots C_{\omega(n)}\right\}$ are distinct nonprincipal ideal classes in k.

If $c=2$, then 2 splits in k, that is,

$$
\begin{equation*}
\langle 2\rangle=\left\langle 2, \frac{(1+\sqrt{d})}{2}\right\rangle\left\langle 2, \frac{(1-\sqrt{d})}{2}\right\rangle . \tag{14}
\end{equation*}
$$

We assume that B denotes the ideal class in k such that $\langle 2,(1+\sqrt{d}) / 2\rangle \in B$, then by $([21]$, Theorem 2.5$)$, we obtain

$$
\begin{equation*}
\zeta_{k}(-1, B)=\frac{n^{3}+26 n}{180} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{m=0}^{n-1} \sigma_{1}\left(n^{2}-m(m+1)\right)=\frac{5 n^{3}+40 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}} \tag{22}
\end{equation*}
$$

Sufficiency: let

$$
\sum_{m=0}^{n-1} \sigma_{1}\left(n^{2}-m(m+1)\right)=\left\{\begin{array}{l}
\frac{4 n^{3}+14 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}} \text { if } c=1 \tag{23}\\
\frac{5 n^{3}+40 n}{6}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{3 p_{i}^{2}} \text { if } c=2
\end{array}\right.
$$

Then, by (12), we find

$$
\zeta_{k}(-1)=\left\{\begin{array}{l}
\frac{4 n^{3}+14 n}{180}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{90 p_{i}^{2}} \text { if } c=1, \tag{24}\\
\frac{5 n^{3}+40 n}{180}+\sum_{i=1}^{\omega(n)} \frac{2 n^{3}+n\left(2 p_{i}^{4}+5 p_{i}^{2}\right)}{90 p_{i}^{2}} \text { if } c=2
\end{array}\right.
$$

By Theorem 3, we get $h(d) \geq \omega(n)+c$.
Suppose $h(d)>\omega(n)+c$. Then, there exist at least $\omega(n)+c+1$ ideal classes in k. Since for any ideal class E , $\zeta_{k}(-1, \mathrm{E})>0$, thus

$$
\begin{equation*}
\zeta_{k}(-1)>\zeta_{k}(-1, A)+(c-1) \zeta_{k}(-1, B)+\sum_{i=1}^{\omega(n)} \zeta_{k}\left(-1, C_{i}\right) \tag{25}
\end{equation*}
$$

It is a contradiction.

Data Availability

No date were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by Tishreen University.

References

[1] C. F. Gauss, Disquisitiones Arithmeticae, Springer-Verlag, Berlin, Germany, 1986.
[2] A. Biró, "Yokoi’s conjecture," Acta Arithmetica, vol. 106, no. 1, pp. 85-104, 2003.
[3] A. Biró, "Chowla's conjecture," Acta Arithmetica, vol. 107, no. 2, pp. 179-194, 2003.
[4] A. Biro and K. Lapkova, "The class number one problem for the real quadratic fields $\mathbb{Q}\left(\sqrt{(a n)^{2}+4 a}\right), "$ Acta Arithmetica, vol. 172, no. 2, pp. 117-131, 2016.
[5] D. Byeon, M. Kim, and J. Lee, "Mollin's conjecture," Acta Arithmetica, vol. 126, no. 2, pp. 99-114, 2007.
[6] A. Issa and H. Sankari, "Some criteria for class numbers to be non-one," Journal of Mathematics, vol. 2020, Article ID 5672983, 5 pages, 2020.
[7] R. A. Mollin, "On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of richaud-degert type," Nagoya Mathematical Journal, vol. 105, pp. 39-47, 1987.
[8] H. Hasse, "Über mehrklassige aber eingeschlechtige reellquadratische Zahlkörper," Elemente der Mathematik, vol. 20, pp. 49-59, 1965.
[9] H. Yokoi, "On real quadratic fields containing units with norm -1," Nagoya Mathematical Journal, vol. 33, pp. 139-152, 1968.
[10] H. Yokoi, "On the fundamental unit of real quadratic fields with norm 1," Journal of Number Theory, vol. 2, no. 1, pp. 106-115, 1970.
[11] R. A. Mollin, "Lower bounds for class numbers of real quadratic fields," Proceedings of the American Mathematical Society, vol. 96, no. 4, pp. 545-550, 1986.
[12] R. A. Mollin, "Lower bounds for class numbers of real quadratic and biquadratic Fields," Proceedings of the American Mathematical Society, vol. 101, no. 1, pp. 439-444, 1987.
[13] K. Chakraborty, A. Hoque, and M. Mishra, "On the structure of order 4 class groups of $\$ \$\{\backslash$ mathbb $\{\mathrm{Q}\}\}(\backslash \operatorname{sqrt}\{n 2+1\}) \$ \$$," Annales mathématiques du Québec, vol. 45, no. 1, pp. 203-212, 2021.
[14] M. Mishra, "Lower bound for class number of certain real quadratic fields," 2019, https://arxiv.org/abs/1906.09718.
[15] D. Byeon and H. K. Kim, "Class number 1 criteria for real quadratic fields of richaud-degert type," Journal of Number Theory, vol. 57, no. 2, pp. 328-339, 1996.
[16] K. Chakraborty, A. Hoque, and M. Mishra, "A note on certain real quadratic fields with class number up to three," Kyushu Journal of Mathematics, vol. 74, no. 1, pp. 201-210, 2020.
[17] H. Sankari and A. Issa, "Lower bound for the class number of $\mathbb{Q}\left(\sqrt{n^{2}+4}\right), "$ International Journal of Mathematics and Mathematical Sciences, vol. 2020, Article ID 9519613, 4 pages, 2020.
[18] H. Yokoi, "Class-number one problem for certain kind of real quadratic fields," in Proceedings of the. International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields (Katata, 1986), pp. 125-137, Nagoya Univ, Katata, Japan, June 1986.
[19] C. L. Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, vol. 10, pp. 87-102, Göttingen, Math-Phys. Klasse, Springer, Berlin, Germany, 1969.
[20] D. B. Zagier, "On the values at negative integers of the zeta function of a real quadratic field," L'Enseignement Mathématique, vol. 19, pp. 55-95, 1976.
[21] D. Byeon and H. K. Kim, "Class number 2 criteria for real quadratic fields of richaud-degert type," Journal of Number Theory, vol. 62, no. 2, pp. 257-272, 1997.
[22] H. Lang, "Über eine Gattung elementar-arithmetischer Klassen invarianten reell-quadratischer Zahlkörper," Journal f $\ddot{U} r$ Die Reine und Angewandte Mathematik, vol. 223, pp. 123-175, 1968.
[23] T. M. Apostol, "Generalized Dedekind sums and transformation formulae of certain Lambert series," Duke Mathematical Journal, vol. 17, no. 2, pp. 147-157, 1950.

