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In real-life situations, censoring issues do arise due to the incompleteness of data. �is article examined the inferences on right-
censored beta type I generalized half logistic distribution. In this work, some statistical properties of the beta type I generalized half
logistic distribution were derived. Furthermore, the beta type I generalized half logistic distribution was studied under a censoring
situation in the presence and absence of covariates. Estimation ofmodel parameters was conducted using themaximum likelihood
estimation method. A simulation study was carried out to assess the performance of the parameters of the model in terms of
e�ciency and consistency. In a real-life application, the model was applied to COVID-19 data and the necessary inferences
were drawn.

1. Introduction

In real-life experiments, the issue of censoring is experi-
enced. �is occurs when the subject under study is lost to
follow up, survived beyond the given time of the study, or
dropped out. In medical research studies, for example, to
know the survival times, the �rst date of contact and last date
of contacts are known and recorded. Censoring can be right
censoring, left censoring, or interval censoring. Given T as
the time of occurrence for some event and as a given value, it
is right-censoring if variable T is greater than some value “c”.
Left censoring is most likely to occur when you begin ob-
serving a sample at a time when some of the individuals may
have already experienced the event. It is an interval if time T
falls between two values of c. Left censoring is most likely to
occur when you begin observing a sample at a time when

some of the individuals may have already experienced the
event. It is interval if time T falls between two values of c.

A lot of works have been done, assessing probability
distributions in the presence of right censoring conditions.
Some of the recent works include [1–6], etc. For this re-
search, the beta type I generalized half logistic distribution is
studied under a right-censoring mechanism.

One of the probability distributions, which is a member
of the logistic distribution, is the half logistic distribution.
�e half logistic distribution which is also known as folded
logistic is derived from logistic distribution by truncating at
point x� 0. �e half logistic distribution has the probability
distribution as follows:

f(x) �
2ex

1 + ex( )2
0≤< x<∞. (1)
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and its cumulative distribution function (cdf) is as
follows:

F(x) �
e

x
− 1

1 + e
x

( 􏼁
0≤x<∞. (2)

)e author of [7] in his research stated some theorems
that characterized the half logistic distribution.)e author of
[8] derived a new probability density function of type I
generalized half logistic distribution by addition of a shape
parameter to half logistic distribution. He obtained the
moments, median, cumulative distribution function, mode,
100p-percentage point, and order statistics of the distribu-
tion. He further estimated parameters of the distribution
using the maximum likelihood method. )erefore,

f(x) �
b2b

e
x

1 + e
x

( 􏼁
b+1. (3)

Introducing the scale parameters ψ, equation (3)
becomes

f(x) �
b2b

e
x/ψ

ψ 1 + e
x/ψ

􏼐 􏼑
b+1. (4)

)e type I generalized half logistic distribution by [8] is
gradually gaining attention in research studies. It has been
further generalized by adding parameters. )ese generalized
distributions have been extensively studied and applied to
solve real life situations both under complete and censored
observations. )e author of [9] obtained the four-parameter
type I generalized half logistic distribution. He also obtained
the cumulative distribution function (CDF), the survival
function, and the hazard function, moments, the 100p-
percentage point, and the mode of the distribution. )e
author of [10] introduced the distribution of [8] to survival
analysis. )e properties of the survival model such as sur-
vival function, hazard function were studied and applied to
data on breast cancer patients. )e author of [11] derived a
parametric survival model for breast cancer patient survival
data using the survival model obtained by [10].)e author of
[12] further generalized the four-parameter type I gener-
alized half logistic distribution obtained by [9] by the ad-
dition of a shifting parameter to have the five parameters
generalized half logistic distribution. A further study on
some of the properties and estimation of the parameter of
distribution of under complete observation was carried out
by [13].)e author of [14] extended the distribution of [8] by
addition of a parameter to have the Lehmann type II gen-
eralized half logistic distribution. Due to the nondecreasing
properties of the hazard function of the type I generalized
half logistic distribution, )e author of [15] derived the
BTIGHLD that is not limited to only nondecreasing hazards
but can take any other form of hazard function. Its prop-
erties were studied and estimation of parameters was done
under complete observations. )e distribution was applied

to two real life data sets. )e BTIGHLD has the probability
density function as follows:

f(x) �
1

B(a, b)
1 −

2
1 + ex/ψ􏼒 􏼓

q

􏼠 􏼡

(a− 1)

,

2
1 + ex/ψ􏼒 􏼓

q(b− 1) q2q
e

x/ψ

1 + e
x/ψ

􏼐 􏼑
q+1,

(5)

with CDF as follows:

F(x) �
1

B(a, b)
􏽚
1− 2/1+ex/ψ( )

q

0
x

a− 1
(1 − x)

b− 1
dx . (6)

Equation (6) therefore results to the following:

F(x) � IG(x)(a, b) � Ik(a, b) �
B(k; a, b)

B(a, b)
, (7)

where the G(x) � k � 1 − (2/1 + ex/ψ)q and B(k; a, b) is the
incomplete beta function.

)e survival function and hazard function is as follows:

s(x) �
1

B(a, b)
􏽚

h

0
x

a− 1
(1 − x)

b− 1
dx �

B(h; a, b)

B(a, b)
, (8)

and

h(x) �
1 − 2/1 + e

x/ψ
􏼐 􏼑

q
􏼐 􏼑

(a− 1)
q2qb

e
x/ψ

B(h; a, b) 1 + e
x/ψ

􏼐 􏼑
qb+1 , (9)

respectively, where

h �
2

1 + ex/ψ􏼒 􏼓
q

, (10)

for a> 0, b> 0,ψ > 0 and q> 0.
In literature, several studies have been conducted to

examine other generalizations of the half logistic distribu-
tion under incomplete data situations. Some of these include
[4–16]. )e author of [16] obtained an extended generalized
half logistic distribution and studied different methods of
estimation of its parameters based on censored and complete
data, In this paper, we examined some statistical properties
of the beta type I generalized half logistic and study its
inferences under right-censored observations. )e work
further applied the model to the survival time of COVID-19
patients in a bid to assess some factors that contribute to
their survival. A preprint of this work has been previously
published in [17].

In the next section, we present some properties of
BTIGHLD. In Section 3, we estimated the parameters of the
distribution under censored observations without cova-
riates, and Section 4 deals with estimation with covariates.
Section 5 has a simulation study of the model and assesses
the performance of parameters of the model. In Section 6,
the model is applied to COVID-19 data.
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2. Statistical Properties of BTIGHLD

In this section, further study is carried out on some prop-
erties of type I generalized half logistic distribution. )e
properties under study include moments, moment gener-
ating function, incomplete moments, and order statistics.
For simplicity in formulae which can be easily handled for
computer software because of their ability to deal with
analytic expressions of formidable size and complexity,
established explicit expressions to calculate statistical mea-
sures can be more efficient than computing them directly by
numerical integration. )erefore, the need to also compute
the mixture representation of the PDF of the BTIGHLD by
having the Exp-G form which will enable us in studying the
statistical properties of the.

2.1. Mixture Representation. By using the power series,

(1 − z)
b− 1

� 􏽘
∞

l�0
(− 1)

l
b − 1

l

⎛⎝ ⎞⎠z
l
,

2
1 + ex/ψ􏼒 􏼓

q

􏼢 􏼣

(b− 1)

� 􏽘
∞

l�0
(− 1)

l
b − 1

l

⎛⎝ ⎞⎠ 1 −
2

1 + ex/ψ􏼒 􏼓
q

􏼠 􏼡

l

.

(11)

)erefore, the p.d.f of BTIGHLD becomes as follows:

f(x) � 􏽘
∞

l�0

(− 1)
l

b − 1

l

⎛⎝ ⎞⎠

B(a, b)

q2q
e

x/ψ

1 + e
x/ψ

􏼐 􏼑
q+1 1 −

2
1 + ex/ψ􏼒 􏼓

q

􏼠 􏼡

l+a− 1

.

(12)

)erefore, the expression in (12) can be expressed as a
mixture of the exponentiated-type I generalized half logistic
distribution (Lehmann type II generalized half logistic
distribution) as follows:

f(x) � 􏽘
∞

l�0
jkΘl+a(x), (13)

where

jk �

(− 1)
l

b − 1

l

⎛⎝ ⎞⎠

(l + a)B(a, b)
�

(− 1)
lΓ(a + b)

(l + a)Γ(a)Γ(l + 1)Γ(b − l)
,

(14)

and

Θl+a(x) � (l + a)
q2q

e
x/ψ

1 + e
x/ψ

􏼐 􏼑
q+1 1 −

2
1 + ex/ψ􏼒 􏼓

q

􏼠 􏼡

l+a− 1

,

(15)

Θl+a(x) is the Exp-G PDF form of the distribution. Inte-
grating expression in 11 gives the mixture of the Exp-G CDF
as follows:

f(x) � 􏽘
∞

l�0
jkΦl+a(x), (16)

where

Φl+a(x) � 1 −
2

1 + ex/ψ􏼒 􏼓
q

􏼠 􏼡

l+a

. (17)

Further simplifying expression in 10, using the binomial
expression,

1 −
2

1 + ex/ψ􏼒 􏼓
q

􏼠 􏼡

l+a− 1

� 􏽘

∞

j�0
(− 1)

j
l + a − 1

j

⎛⎝ ⎞⎠
2

1 + ex/ψ􏼒 􏼓
qj

.

(18)

)erefore, expression 10 becomes as follows:

f(x) � 􏽘
∞

l�0
􏽘
∞

j�0

(− 1)
l+j

b − 1

l

⎛⎝ ⎞⎠
l + a − 1

j

⎛⎝ ⎞⎠

B(a, b)

q2q
e

x/ψ

1 + e
x/ψ

􏼐 􏼑
q+1

2
1 + ex/ψ􏼒 􏼓

qj

,

(19)

which finally gives

f(x) � 􏽘
∞

l�0
􏽘

∞

j�0

(− 1)
l+j

b − 1

l

⎛⎝ ⎞⎠
l + a − 1

j

⎛⎝ ⎞⎠

B(a, b)(j + 1)

q(j + 1)2q(j+1)
e

x/ψ

1 + e
x/ψ

􏼐 􏼑
q(j+1)+1 ,

(20)

(20) can be written as follows:

f(x) � 􏽘
∞

l�0
􏽘

∞

j�0
rl+jβq(j+1), (21)

where

rl+j � 􏽘
∞

l�0
􏽘

∞

j�0

(− 1)
l+j

b − 1

l

⎛⎝ ⎞⎠
l + a − 1

j

⎛⎝ ⎞⎠

B(a, b)(j + 1)
,

(22)

and

βq(j+1) �
q(j + 1)2q(j+1)

e
x/ψ

1 + e
x/ψ

􏼐 􏼑
q(j+1)+1 , (23)

βq(j+1) is the p.d.f of the type I generalized half logistic
distribution with power parameter (q(j+1)).

2.2. Moments and Moment Generating Function. Given that
X is a random variable with BTIGHLD distribution, its sth

moment (ζs
′) is given as follows:

ζs
′ � E X

s
􏼂 􏼃 � 􏽘

∞

l�0
􏽘

∞

j�0
rl+jE βs

q(j+1)􏽨 􏽩, (24)
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where E[βs
q(j+1)] is the sth moment of the type I generalized

half logistic distribution with power parameter (q(j+ 1)).
From the expression of the sth moments, we obtain the
second moment, skewness, and kurtosis.

For the moment generating function, say, Ms,

Ms � 􏽘
∞

l�0
􏽘

∞

j�0
rl+jE Msq(j+1)􏽨 􏽩, (25)

where Msq(j+1) is the moment generating function of the
type I generalized half logistic distribution with power pa-
rameter q(j+ 1).

Tables 1 and 2reveal the values of the moments of the
BTIGHLD for different parameter values. )e tables show
positive values for the mean, the second moment, and the
variance, indicating its ability to handle real life situations
which are most times positive.

2.3. Order Statistics. Given that X1: n ≤X2: n ≤X3: n ≤ . . .

≤Xn: n be the order statistics from a distribution with
probability density function f(x) and cumulative density
function F(x), then the PDF of Xv: n, which is the vth order
statistics, is given as follows:

fv: n(x) �

􏽐
n− v
b�0(− 1)

b
n − v

b

⎛⎝ ⎞⎠f(x)F(x)
v+b− 1

B(v, n − v + 1)
,

(26)

where B(..) is a beta function.
Introducing 11 and 12 as f(x) and F(x), respectively,

using an equation given in page 17 of Gradshteyn and

Ryzhik for a power series raised to a positive integer n we
have the order statistics of the BTIGHLD as follows:

fv: n(x) �

􏽐
n− v
b�0(− 1)

b
n − v

b

⎛⎝ ⎞⎠

B(v, n − v + 1)
􏽘

∞

l�0
Ck,v+b− 1Θl+a(x),

(27)

where

Ck,v+b− 1 � (v + b − 1)
− 1

g0( 􏼁
− 1

􏽘

v+b− 1

m�1
[m(k + 1) − v − b + 1] gm( 􏼁 Ck,v+k− 1− m􏼐 􏼑. (28)

)erefore, we can deduce that the p.d.f of BTIGHLD
order statistics is a mixture of Exp-G p.d.fs. Hence, the
properties of Xi: n follows from properties of a+ k.

3. Estimation of BTIGHLD under Right-
Censored Observation without Covariates

Let X1, X2, . . . , Xn be random variables of size n follows a
particular probability distribution, the likelihood function
under censored observation is as follows:

L � 􏽙
r

i�1
f xi( 􏼁 􏽙

n

i�r+1
s xi( 􏼁, (29)

where 􏽑
r
i�1 f(xi) represents the joint probability of ob-

serving the uncensored survival times and 􏽑
n
i�r+1 s(xi)

represents the joint probability of those censored
observations.

)erefore, given a sample X1, X2, X3, . . ., Xn of size n
from the BTIGHLD, the likelihood function under censored
observation without considering the covariates is given as
follows:

L �
1

B(a, b)
􏼠 􏼡

r

1 −
2

1 + exi/ψ
􏼒 􏼓

q

􏼠 􏼡

r(a− 1)

,

q
r2rqb

􏽑
n
i�1e

xi/ψ

􏽑
n
i�1 1 + e

xi/ψ􏼐 􏼑
qb+1

􏽑
n
i�r+1B(k; a, b)

B(a, b)
n− r􏼠 􏼡,

(30)

where

k �
2

1 + ex+
i
/ψ􏼒 􏼓

q

. (31)

From (30), taking the logarithm of both sides, we have

Table 1: Moments for BTIGHLD (1, 0.5, 0.5, a, 2.5).

a Mean E [X2] Var[X]
0.5 3.9217 18.8285 3.465919
1.0 2.976694 11.02313 2.173289
1.5 2.546119 7.364395 0.886102
2.0 2.286235 5.640117 0.415324
2.5 2.070578 4.696419 0.4111824
3.0 1.924737 3.961982 0.2586615
3.5 1.809295 3.448451 0.1757825

Table 2: Moments for BTIGHLD (a, 3, 0.5, 0.5, b).

b Mean E [X2] Var[X]
0.5 2.585223 9.611061 2.942398
1.0 1.885569 4.377903 0.8266652
1.5 1.527243 2.659732 0.3289052
2.0 1.435395 2.319144 0.2600847
2.5 1.3717 2.09347 0.2129731
3.0 1.275957 1.740993 0.1134955
3.5 1.274244 1.714889 0.09164902
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lnL � l � nln
Γ(a + b)

Γ(a)Γ(b)
􏼠 􏼡 + rlnq + 􏽘

r

i�1

xi

ψ
+ rqb ln 2 + r(a − 1)ln􏽘

r

i�1
1 −

2
1 + exi/ψ

􏼒 􏼓
q

􏼠 􏼡

− (qb + 1) 􏽘
r

i�1
ln 1 + e

xi/ψ􏼐 􏼑 + 􏽘
n

i�r+1
lnB(k; a, b),

(32)

which gives

l � n(lnΓ(a + b) − lnΓ(a) − lnΓ(b)) + 􏽘
r

i�1

xi

ψ
+ r(a − 1)ln􏽘

r

i�1
1 −

2
1 + exi/ψ

􏼒 􏼓
q

􏼠 􏼡 + rlnq

+ rqb ln 2 − (qb + 1) 􏽘
r

i�1
1 + e

xi/ψ + ln 􏽘
n

i�r+1
B(k; a, b).

(33)

Differentiating l with respect to the parameters, we have

zl

za
�

nΓ′(a + b)

Γ(a + b)
−

nΓ′(a)

Γ(a)

+ rln􏽘
r

i�1
1 −

2
1 + exi/ψ

􏼒 􏼓
q

􏼠 􏼡 + 􏽘
n

i�r+1

B′(k; a, b)

B(k; a, b)

zl

zb
� n
Γ′(a + b)

Γ(a + b)
−
Γ′(b)

Γ(b)
􏼠 􏼡 − q 􏽘

r

i�1
1 + e

xi/ψ􏼐 􏼑 + rqln2 + 􏽘
n

i�r+1

B′(k; a, b)

B(k; a, b)
,

zl

zψ
� qr2q

(a − 1) 􏽘

r

i�1

xi/ψ
2
e

xi/ψ􏼐 􏼑
q

1 − 2/1 + e
xi/ψ􏼐 􏼑

q
⎛⎝ ⎞⎠ − 􏽘

r

i�1

xi

ψ2 +(qb + 1) 􏽘

r

i�1
e

xi/ψ + 􏽘

n

i�r+1

B′(k; a, b)

B(k; a, b)
,

zl

zq
� r(a − 1) 􏽘

r

i�1

2/1 + e
xi/ψ􏼐 􏼑

q
ln 2/1 + e

xi/ψ􏼐 􏼑

1 − 2/1 + e
xi/ψ􏼐 􏼑

q
⎛⎝ ⎞⎠ + rbln2 − b 􏽘

r

i�1
1 + e

xi/ψ + 􏽘
n

i�r+1

B′(k; a, b)

B(k; a, b)
.

(34)

Expressions for the derivatives of the incomplete beta
function with respect to the model parameter can be found
in Appendix. In obtaining the interval estimation, and to
further carry out the test of hypothesis on model parameters
(ψ, q, a, b), we obtain a 4× 4 unit information matrix, with
the elements obtained by the second derivates of the
loglikelihood function.

If the assumptions that are set for fulfilment in model
BTIGHLD, the asymptotic distribution in

�
n

√
( 􏽢Ω − Ω) is

N4(0, K( 􏽢Ω)− 1) distribution of Ω.)is found use in way of
constructing confidence intervals with its respective region
of confidence with each of the distribution values. In
obtaining or assessing the goodness of fit of BTIGHLD, we
can also make use of asymptotic normality which will also
be useful in comparison procedure with other distribution
of sub-models using the Wald Statistics or Likelihood
statistics. If Ωi is the model parameter of BTIGHLD, we
obtain the C.I for λ level of significance given by the
following:

ACI Ωi, 100(1 − λ)( 􏼁 � 􏽢Ω − zλ/2

�����

M
􏽢Ω,􏽢Ω

􏽱

,

􏽢Ω + zλ/2

�����

M
􏽢Ω,􏽢Ω

􏽱

.

(35)

where M
􏽢Ω,􏽢Ω is the ith diagonal element of Kn( 􏽢Ω)− 1 for i �

1, 2, 3, 4 and zλ/2 is the quantile of the standard normal
distribution.

4. Estimation of BTIGHLD under Censored
Observation with Covariates

In this section, we examined the estimation of the BTIGHLD
under right censored with covariates. )e likelihood func-
tion is given as follows:

L � 􏽙
r

i�1
f xi|d, β( 􏼁 􏽑

n

i�r+1
s x

+
i |d, β( 􏼁, (36)

which is equivalent to
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L � 􏽙
r

i�1
g(d|β)fo Z xi( 􏼁( 􏼁. 􏽙

n

i�r+1
so Z x

+
i( 􏼁( 􏼁, (37)

where g(d|β) � exp(− d′β) and Z(x) � x exp(− d′β). Also
fo(Z(x)) and so(Z(x+)) are the baseline probability density

function and baseline survival function, respectively
(Appendix).

)is now gives

L � 􏽙
r

i�1
g(d|β)

Γ(a + b)

Γ(a)Γ(b)
􏼠 􏼡

q2qb
e

Z xi( )/ψ

1 + e
Z xi( )/ψ􏼒 􏼓

qb+1 1 −
2

1 + eZ xi( )/ψ
􏼠 􏼡

q

􏼠 􏼡

(a− 1)

􏽙

n

i�r+1

B(f; a, b)

B(a, b)
􏼠 􏼡, (38)

where

f �
2

1 + eZ x+
i( )/ψ

􏼠 􏼡

q

. (39)

From (38), taking the logarithm of both sides, we have

lnL � r − d′β( 􏼁 + nln
Γ(a + b)

Γ(a)Γ(b)
􏼠 􏼡 + rlnq + r(a − 1)ln􏽘

r

i�1
1 −

2
1 + eZ xi( )/ψ

􏼠 􏼡

q

􏼠 􏼡 + rqb ln 2 + 􏽘
r

i�1

Z xi( 􏼁

ψ

− (qb + 1) 􏽘
r

i�1
1 + e

Z xi( )/ψ􏼒 􏼓 + ln 􏽘
n

i�r+1
B(f; a, b).

(40)

Differentiating l with respect to the parameters, we have

zl

za
� n
Γ′(a + b)

Γ(a + b)
−
Γ′(a)

Γ(a)
􏼠 􏼡 + rln􏽘

r

i�1
1 −

2
1 + eZ xi( )/ψ

􏼠 􏼡

q

+ 􏽘
n

i�r+1

B′(f; a, b)

B(f; a, b)

zl

zb
� n
Γ′(a + b)

Γ(a + b)
−
Γ′(b)

Γ(b)
􏼠 􏼡 + qrln2

− q 􏽘
r

i�1
1 + e

Z xi( )/ψ + 􏽘
n

i�r+1

B′(f; a, b)

B(f; a, b)
,

zl

zψ
� qr2q

(a − 1) 􏽘
r

i�1

Z xi( 􏼁/ψ2
e

Z xi( )/ψ􏼒 􏼓
q

1 − 2/1 + e
Z xi( )/ψ􏼒 􏼓

q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 􏽘

r

i�1

Z xi( 􏼁

ψ2 +(qb + 1) 􏽘
r

i�1

Z xi( 􏼁

ψ2 + 􏽘
n

i�r+1

B′(f; a, b)

B(f; a, b)
,

zl

zq
� r(a − 1) 􏽘

r

i�1

2/1 + e
Z xi( )/ψ􏼒 􏼓

q

ln 2/1 + e
Z xi( )/ψ􏼒 􏼓

1 − 2/1 + e
Z xi( )/ψ􏼒 􏼓

q

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

r

q
+ rbln2 − b 􏽘

r

i�1
1 + e

Z xi( )/ψ + 􏽘
n

i�r+1

B′(f; a, b)

B(f; a, b)
.

(41)

For interval estimation and test of hypothesis on the
parameters (ψ, q, a, b, β1, β2, . . . , βj), we obtain a (4 + j)
x(4 + j) unit information matrix where the corresponding
elements are obtained by taking the second derivatives with
respect to the parameters.

Under conditions that are fulfilled for parameters, the
asymptotic distribution of

�
n

√
( 􏽢Ω − Ω) is

N(4+j)(0, K( 􏽢Ω)− 1) distribution of Ω can be used to con-
struct approximate confidence intervals and confidence
regions for the parameters and for the hazard and survival

functions. )is found use in way of constructing confi-
dence intervals with its respective region of confidence
with each of the distribution values. In obtaining or
assessing the goodness of fit of BTIGHLD, we can also
make use of asymptotic normality which will also be
useful in comparison procedure with other distribution
of sub-models using the Wald Statistics or Likelihood
statistics. If Ωi is the model parameter of BTIGHLD, we
obtain the C.I for λ level of significance given by the
following:
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ACI Ωi, 100(1 − λ)( 􏼁 � 􏽢Ω − zλ/2

�����

M
􏽢Ω,􏽢Ω

􏽱

, 􏽢Ω + zλ/2

�����

M
􏽢Ω,􏽢Ω

􏽱

,

(42)

where M
􏽢Ω,􏽢Ω is the ith diagonal element of Kn( 􏽢Ω)− 1 for i �

4 + j and zλ/2 is the quantile of the standard normal
distribution.

5. Simulation Study

In this section, a simulation will be carried out in order to
assess the performance of the estimates using the maximum
likelihood estimation method of the BTIGHLD.)e value of
scale parameter is fixed at 1 for all simulations. For, given
values of a, b, q for Group I(2.5, 0.5, 3.0), Group II (0.35, 5.0,
1.8), we simulated data that are distributed to BTIGHLD. In
assessing the performance of the estimates, the average
estimate (AE) and MSE of 􏽢ρl over the r samples are given,
respectively, by the following:

􏽢ρl �
1
r

􏽘

r

i�1
􏽣ρkl, MSE 􏽢ρl􏼐 􏼑 �

1
r

􏽘

r

i�1
􏽣ρkl − ρl( 􏼁

2
. (43)

)is simulation was conducted for n� 50, 100, 200, and
500 and censor rate at 20% and 80%

)e simulation procedure is as follows;

(1) We generate a random sample of size
n� 50,100,200,500 from the beta distribution Bi.

(2) From (1), the observations x1, x2, . . . .xn following
the BTIGHLD are as follows:

L � ψln
2

�����
1 − Bi

q
􏽰 − 1􏼠 􏼡(see Appendix). (44)

(3) Generate the simple sample of the censoring times
c1, c2, . . . , cn from a BTIGHLD and adjust the pa-
rameters of the BTIGHLD to obtain the desired
censoring rates.

(4) To get the right censored data, this is obtained from
the minimum value of censoring time and survival
time, that is,

yi � min xi, ci( 􏼁,

δi � I xi ≤ ci( 􏼁,

i � 1, 2, . . . , n.

(45)

(5) )e observed data set is D � (yi, δi), i � 1, 2, . . . , n.
(6) Replicate the values from (5) r-times for the different

sample sizes to be considered. For this simulation, we
take r� 1,000.

(7) Based on the dataset from (6), we can get the
maximum likelihood estimates of the parameters.

(8) )e likelihood function of the model is maximized
with respect to parameters ψ, q, a, b to obtain
􏽢ψ, 􏽢q, 􏽢a, 􏽢b.

(9) .If 􏽣ρkl is a MLE of ρl, such that l� 1, 2, 3, 4 (i.e. ρ1 � a,
ρ2 � b, ρ3 � q, ρ4 � ψ), based on sample sizes k,
k � 1, . . . , r. All simulation results are summarized
in Tables 3 and 4.

Clearly, from Tables 3 and 4, they show that the values of
the average estimates decrease as the sample size increases
for all parameters across the two censoring proportions. It
indicates that MSE reduces as samples size increases. )is
indicated efficiency and consistency of the estimates of the
parameters.

6. Application of the BTIGHLD to COVID-
19 Data

In this section, we considered a data that were culled from
information released by the Mexican Ministry of Health
(Secretaŕıa de Salud, SS) through the Epidemiological Sur-
veillance System for Viral Respiratory Diseases on COVID-
19. Some of the confirmed cases of COVID-19 registered
from February 21st to 18th February, 2021, were used in the
present analysis. )e database included all positive, negative,
and suspected cases of COVID-19 registered by 475 Viral
Respiratory Disease Monitoring Units (Unidades Monitoras
de Enfermedad Respiratoria viral; USMER by its Spanish
acronym) and by the medical units that attended the cases.
)e data can be found using the link [18]. For this research,
the variables considered for every subject includes: sex, age,
immunosuppression, pneumonia, and asthma. )e survival
time(in days) is taken as time to death, which is the time
difference between the date on admission and the date of last
contact. )e survival time was right censored at 20 days. )e
Kaplan–Meier method was used to plot survival curves.
)ese graphs served to test the proportional hazard as-
sumption.)e BTIGHLD as a parametric model was used to
fit the data with the covariates under consideration. )e
result obtained was compared with that of the cox pro-
portional regression model using the Akaike Information
Criterion(AIC) and the Corrected AIC(CAIC). )e signif-
icance level for the contributions of the covariate was set at
τ � 0.05. )e data were analyzed with the statistical package
software Statistical Packages for Social Sciences SPSS version
20.0 and R 4.0.4.

After analysis, Figure 1 shows the histogram of the
survival times of the patients, with the fit of the BTIGHLD. It
reveals that the data are rightly skewed which from [14] had
shown that the BTIGHLD can give good fit.

Table 5 gives the descriptive statistics of the survival time.
)e graph of the distribution of the age of the patients as

at the time of report is in Figure 2. It shows that most
patients were between 55 and 60 years.

Furthermore, Figure 3 reveals the KM plot of the survival
data.

For variables with dichotomous responses, we plotted
KM curves to compare their survival rates. For pneumonia,
Figure 4 shows the probability of survival is higher in those
who do not have pneumonia than those who have it.
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Also, in Figure 5 shows that those that do not have
asthma have a higher chance of survival than those who have
asthma.

Figure 6 shows that those who have immunosuppression
and those who do not have almost equal chance of survival.

Figure 7 shows that the probability of survival in male is
higher than that of the female.

Analyzing the survival time using the BTIGHLD to
assess the contribution of the prognostic factors to survival
of the COVID-19 patients, we have the result in Table 6 in
which it revealed that pneumonia, age, asthma, and

Table 3: Results of the simulation of BTIGHLD (2.5, 0.5, 3.0) at 80% censoring.

Sample size Parameter AE MSE

50
􏽢a 3.265 3.725
􏽢b 0.618 4.628
􏽢q 2.924 3.884

100
􏽢a 3.038 3.167
􏽢b 0.564 4.606
􏽢q 2.651 3.526

200
􏽢a 2.231 2.026
􏽢b 0.563 4.590
􏽢q 2.218 3.016

500
􏽢a 1.878 1.803
􏽢b 0.546 4.434
􏽢q 1.971 2.674

Table 4: Results of simulation of BTIGHLD (0.35, 5.0, 1.8) at 20% censoring.

Sample size Parameter AE MSE

50
􏽢a 0.424 0.444
􏽢b 6.961 5.195
􏽢q 2.567 1.044

100
􏽢a 0.281 0.295
􏽢b 5.531 4.339
􏽢q 1.668 0.947

200
􏽢a 0.242 0.234
􏽢b 4.028 3.391
􏽢q 1.496 0.821

500
􏽢a 0.210 0.166
􏽢b 2.367 2.767
􏽢q 1.075 0.603

Fitted density
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BTIGHLD

Figure 1: Histogram with fitted density.

Table 5: Descriptive statistics of COVID-19 survival data.

Min 1st qu. Median Mean 3rd qu. Max.
1 2 6 20 16 168
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immunosuppression are significant, with a gender insig-
nificant at level 0.05.

In this study, it was discovered that about two third of
respondents had pneumonia comorbidity followed by

immunosuppression. )is is not farfetched as the symptoms
of COVID-19 are very similar to those of pneumonia. )ere
could even be a transposition of symptoms, more patients
presenting with pneumonia-like symptoms. )is finding is
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Figure 3: KM plot of survival time.
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Figure 4: KM plot for pneumonia.
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Figure 2: Histogram of the distribution of age.
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Figure 6: KM plot for immunosuppression.
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Figure 7: KM plot for gender.
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similar to another study done by Hernandez–Vasquez where
pneumonia is one of the presenting complaints of COVID-
19 patients.

As also found in this study, asthma comorbidity with
COVID-19 is minute, which is comparable to another study
conducted in Saudi Arabia where only 1.7 of respondents
had asthma. However, it was concluded in the study that
patients with pneumonia-like symptoms could develop a
life-threatening situation to COVID-19. Furthermore,
pneumonia, asthma, and immunosuppression were found to
statistically influence the survival times of patients, right
from the day of admission till day of last contact. )is is in
tandem with another study done in Mexico by [19] where
there was a statistically significant incremental gradient
between COVID-19 and pneumonia as well as death among
respondents with comorbidity like pneumonia and asthma.
Also, immunosuppression was found out in the same study
to increase the likelihood of dying from COVID-19. )is is
not farfetched as comorbidity as well as immunosuppression
weakens the immune system of individuals, thereby making
it difficult for immune responses to be mounted against
diseases that should not have been able to overcome the
patient. It has been postulated that most comorbidities with
COVID-19 are associated with the ACE-2 receptor ex-
pression subsequently leading to a copious release of pro-
protein convertase that ultimately increases the entry of the
virus into the cells as found by the author of [20].

7. Conclusion

In this work, some properties of the BTIGHLD have been
further studied which include the moments, moment gen-
erating function, and order statistics. Furthermore, the
BTIGHLD was studied under right-censored observations,
both in presence and absence of covariates. Using the
maximum likelihood estimation method, the properties of
estimates of the model were discussed using simulation
studies with various parameters under different censoring
rates. It was revealed from the result that the estimates
performed well due to reducing values of average estimates
coupling with the mean square error as the sample sizes
increase. We further applied this model to COVID-19 data
[8, 18, 21, 22].

Appendix

)e AFT model is of the following form:

lnx � ] + d′β + ϵ, (A.1)

where ϵ is said to follow a particular distribution, β′s are the
estimates of the covariates x, and ] is the intercept of the
model. Let Y � lnx.

Y � ] + dβ + ϵ,

Y − dβ � ] + ϵ.
(A.2)

From the definition of survival function with covariates,

s(x) � Pr(X> x|d),

so(x) � Pr(X> x|d � 0).
(A.3)

)e above equation is the baseline survival function

so(x) � Pr(exp(] + ϵ)> x). (A.4)

Now,

s(x) � Pr(X>x|d),

s(x) � Pr(Y> lnx|d),

s(x) � Pr Y − d′β> lnx − d′β|d( 􏼁,

s(x) � Pr exp Y − d′β( 􏼁> exp lnx − d′β( 􏼁|d( 􏼁,

s(x) � Pr exp(] + ϵ)>xexp − d′β( 􏼁|d( 􏼁,

s(x|d, β) � so xexp − d′β( 􏼁( 􏼁.

(A.5)

From the relationship between probability distribution
function and survival function,

f(x|d, β) � −
d
dt

s(x|d, β),

f(x|d, β) �
d
dt

so xexp − d′β( 􏼁( 􏼁,

f(x|x, β) � exp − d′β( 􏼁fo xexp − d′β( 􏼁( 􏼁.

(A.6)

From the relationship between hazard function, prob-
ability distribution function, and survival function,

h(x|d, β) �
f(x|d, β)

s(x|d, β)
,

h(x|d, β) �
exp − d′βfo(xexp(− d′β))􏼒 􏼓

so(xexp(− d′β))
,

h(x|d, β) � exp(− d′β)ho(xexp(− d′β)).

(A.7)

Let g(d|β) � exp(− d′β) and Z(x) � xexp(− d′β), thus,

h(x|d, β) � g(d|β)ho(Z(x)),

f(x|d, β) � g(d|β)fo(Z(x)),

s(x|d, β) � so(Z(x)).

(A.8)

Let

X ∈ Beta(a, b) (A.9)

)en,

Table 6: Results for analysis of COVID-19 data.

Parameter Estimate SError Z p
Sex 0.008 0.016 0.504 0.614
Pneumonia 0.072 0.017 4.133 0.000
Age 0.004 0.0005 9.498 0.000
Asthma 0.705 0.032 21.804 0.000
Immuno 0.511 0.029 17.512 0.000
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X � 1 −
2

1 + eQ/ψ􏼒 􏼓
q

,

2
1 + e

Q/ψ􏼠 􏼡 � 1 − X,
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1 + e

Q/ψ􏼠 􏼡 � (1 − X)
1/q

,

1 + e
Q/ψ

�
2

(1 − X)
1/q,

e
Q/ψ

�
2

(1 − X)
1/q − 1,

Q

ψ
� ln

2
(1 − X)

1/q − 1􏼠 􏼡,

Q � ψln
2

(1 − X)
1/q − 1􏼠 􏼡.

(A.10)

From the Wolfram statistics,

dB(k; a, b)

dk
� (1 − k)

b− 1
k

a− 1
, (A.11)

where k � 1 − (2/1 + ex/ψ) )erefore,

dB(k; a, b)

dq
�
dB(k; a, b)

dk

dk

dq
. (A.12)

)is gives

B′(k; a, b) �
dB(k; a, b)

dq
�

2
1 + ex/ψ􏼒 􏼓

q(b− 1)

1 −
2

1 + ex/ψ􏼒 􏼓
q

􏼠 􏼡

a− 1 2
1 + ex/ψ􏼒 􏼓

q

+ ln
2

1 + e
x/ψ􏼠 􏼡,

dB(k; a, b)
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� Bk(a, b)log(k) − k

aΓ(a)
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3

􏽥F2(a, a, 1 − b; a + 1, a + 1; k),

d2B(k; a, b)

da
2 � 2Γ(a)

2 Γ(a)4
􏽥F3(a, a, a, 1 − b, a + 1, a + 1, a + 1; k)(

− 3
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+ B(k; a, b)log2(k),
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(1 − k)

b
3

􏽥F2(b, b, 1 − a; b + 1, b + 1; 1 − k)

− 3
􏽥F2(b, b, 1 − a, b + 1, b + 1; 1 − k) − B(1 − k; b, a)log(1 − k) +(ϕ(b)

− ϕ(a + b))B(a, b),
dB′(k; a, b)

db
2 � B(a, b)()

(A.13)
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