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Let X and Y be Banach spaces and Ω⊆X. Let f: Ω⟶Y be a single valued function which is nonsmooth. Suppose that
F: X⇉2Y is a set-valued mapping which has closed graph. In the present paper, we study the extended Newton-type method for
solving the nonsmooth generalized equation 0 ∈ f(x) + F(x) and analyze its semilocal and local convergence under the
conditions that (f + F)− 1 is Lipschitz-like and f admits a certain type of approximation which generalizes the concept of point-
based approximation so-called (n, α)-point-based approximation. Applications of (n, α)-point-based approximation are provided
for smooth functions in the cases n � 1 and n � 2 as well as for normal maps. In particular, when 0< α< 1 and the derivative of f,
denoted∇f, is (ℓ, α)-Hölder continuous, we have shown thatf admits (1, α)-point-based approximation for n � 1 whilef admits
(2, α)-point-based approximation for n � 2, when 0< α< 1 and the second derivative of f, denoted ∇2f, is (K, α)-Hölder.
Moreover, we have constructed an (n, α)-point-based approximation for the normal maps fC + F when f has an (n, α)-point-
based approximation. Finally, a numerical experiment is provided to validate the theoretical result of this study.

1. Introduction

Robinson [1, 2] introduced the generalized equation as a
general tool for describing, analyzing and solving different
problems in a unified manner and it has been studied ex-
tensively. Typical examples are systems of inequalities,
variational inequalities, linear and nonlinear complementary
problems, system of nonlinear equations, equilibrium
problems, first-order necessary conditions for nonlinear
programming etc. (ey also have plenty of applications in
engineering and economics. For more details on these ap-
plications and many other ones that we did not mention
here, one can refer to [1–3].

In this study, let X and Y be Banach spaces, F: X⇉2Y
be a set-valued mapping with closed graph and
f: Ω⊆X⟶Y be a nonsmooth single-valued function that
admits (n, α)-point-based approximation A on Ω with a
constant L> 0. We are concerned with the problem of

approximating the point x∈ Ω (which is called the solution
of (1)) of the following nonsmooth generalized equation:

0 ∈ f(x) + F(x). (1)

(e classical Newton method is very well known and
extensively used to find solutions of (1) when F � 0{ }, where
f has Lipschitz continuous Fréchet derivatives. A survey of
local and semilocal convergence results for Newton
method’s are found and mentioned in [4–7]. When f is
nonsmooth, such a classical linearization is no longer
available and we need to seek a replacement. In other words,
if f doesn’t possess Fréchet derivatives, it is not so clear how
a Newton algorithm should be designed. (ere are many
investigators have worked on this question and the appli-
cants have presented different methods for a few things that
are important in certain cases and have proved their jus-
tification; see for example [4, 8–14]. Several papers have
worked on the Newton-type methods for nonsmooth
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equations and variational inequalities; see for example
[8, 9, 15] for inspiration and advanced works on these topics.

In the case when F � 0{ } and f is a nonsmooth function,
Robinson [9, (eorem 3.2] considered point-based ap-
proximation with Lipschitzian property to show the con-
vergence of Newtons method under the Newton-
Kantorovich-type hypothesis. Argyros [10] presented a
semilocal convergence analysis of Newtons method based on
a suitable point-based approximation. More explicitly, he
has taken weaker assumptions in point-based approxima-
tion by considering Hölderian property instead of Lip-
schitzian property in order to cover a wider range of
problems than those discussed in [9] and hence showed the
convergence result for Newton’s method.

In addition, Kummer [16] presented a necessary and
adequate condition for superlinear convergence of the
Newton method, which was originally designed for deriv-
ative-type approximations of a nonsmooth function around
an isolated zero. Relevant results, for solving the nonsmooth
generalized (1) are given in [8, 17, 18].

To solve the nonsmooth generalized (1), Geoffroy and
Piétrus in [19] considered the following method

0 ∈ A xk, xk+1(  + F xk+1(  for each k � 0, 1, 2, . . . , (2)

where A: X × X⟶ Y is an approximation of f, and
presented a local convergence result by using the assump-
tions that f admits an (n, α)-point-based approximation A

and the set-valued map (A(x∗, ·) + F(·))− 1 is M-pseudo-
Lipschitz around (0, x∗). For the first time, Dontchev [11]
introduced the iterative procedure (2) for solving (1) and
presented the nonsmooth analogue of the Kantorovich-type
theorem for this procedure by assuming the Aubin conti-
nuity of the map (A(x0, ·) + F(·))− 1 at (0, x1) (or, equiva-
lently, (f + F)− 1 is Aubin continuous at
(f(x1) − A(x0, x1), x1) ), where x1 is the first iterate of (2).

Let x ∈ Ω⊆X. (e subset of Ω, denoted by M(x), is
defined by

M(x) :� d ∈ Ω: 0 ∈ A(x, x + d) + F(x + d){ }. (3)

Although the method (2) guarantees the existence of a
convergent sequence xk  for solving (1), the constructed
points x1, x2, . . . , xk are not unique and therefore, for a
starting point near to a solution, the sequences generated by
the method (2) are not uniquely defined. For example, the
convergence result established in [19, (eorem 3.3], guar-
antees the existence of a convergent sequence. Hence, in
view of numerical computation, this kind of Newton-type
methods are not convenient in practical application. Based
on these ideas, Rashid [8] introduced and studied the fol-
lowing algorithm and presented semilocal and local con-
vergence results under the assumptions that f has a point-
based approximation and (f + F)− 1 is Lipsctiz-like
mapping:

It is noted that, in the case when A is replaced by the
classical linearization of f, the Algorithm 1 is reduced to the
Gauss-Newton-type method introduced by Rashid et al.
[20].

Moreover, when the single-valued function involved in
(1) is smooth, there has been increased amount of interest on
semilocal and local analysis (see, for example, [8, 20–23] and
the references therein).

Our approach is somewhat different. In this study, we
give a more general approach, namely (n, α)-point-based
approximation, which is an extension of the concept of
point-based approximation introduced by Robinson [9] and
it can apply to a wide range of particular problems. Because
of the presence of Step 3 in Algorithm 1, we have shown in
the main proof ((eorem 2) that each of the constructed
points x1, x2, . . . , xk has limit. (erefore, in numerical
computational view point, Algorithm 1 gives the more ac-
curate result than the result given by the method (2).

In the present paper, we present semilocal and local
convergence of Algorithm 1 under some mild conditions for
the function f and the set-valuedmapping f + F. In fact, the
main motivation of this research is to analyze the semilocal
and local convergence of the sequence generated by Algo-
rithm 1 for solving the nonsmooth generalized (1) using the
notion of (n, α)-point-based approximation introduced by
Geoffroy and Piétrus [19] and Lipschitz-like property. Based
on the information around the initial point, the main result
is the convergence criterion, developed in the section 3,
which provides some sufficient conditions, for a starting
point near to the solution, ensuring the convergence to the
solution of any sequence generated by Algorithm 1. As a
result, local convergence result for the extended Newton-
type method is obtained.

(is paper is organized as follows: In section 2, we recall
some definitions, notations and preliminarily results that
will need afterwards. In Section 3, we show the existence of
the sequence generated by Algorithm 1 and then establish
the convergence of the extended Newton-type method by
using the concept of (n, α)-point-based approximation as
well as Lipchitz-like property. In Section 4, we have given
some applications of (n, α)-point-based approximation for
smooth functions in the case when n � 1, n � 2 and 0< α< 1
and for normal maps fC + F which is reformulated by
Rashid [8]. In the last section, a numerical experiment is
provided to justify the theoretical result of this study.

2. Preliminaries

(roughout this paper, we assume thatX andY are two real
or complex Banach spaces and N is the set of all Natural
numbers and N∗ � N − 0{ }. Suppose that f: X⟶Y is a
Fréchet differentiable function and F: X⇉2Y is a set-valued
mapping with closed graph. Let x ∈ X and r> 0. (e closed
ball centered at x with radius r is denoted by Br(x).

All the norms are denoted by ‖ · ‖. (e domain domF

and the inverse F− 1 are respectively defined by

domF :� x ∈ X: F(x)≠∅{ },

F
− 1

(y) :� x ∈ X: y ∈ F(x)  for eachy ∈ Y.
(4)

Let D⊆X. (e distance from a point x to a set D is
defined by
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dist(x, D): � inf ‖x − a‖: a ∈ D{ }for eachx ∈ X, (5)

while the excess from the set D to the set C⊆X is defined by

e(C, D) � sup dist(x, D): x ∈ C{ }. (6)

Definition 1. Consider the set-valued mapping F: X⇉2Y.

(en the graph of F is defined by

gphF ≔ (x, y) ∈ X × Y: y ∈ F(x) . (7)

Definition 2. A set-valued function F: X⇉2Y is said to be a
closed graph if the set (x, y): y ∈ F(x)  is a closed subset of
X × Y in the product topology i.e. for all sequences xk k∈N
and yk k∈N such that xk⟶ x and yk⟶ y and
yk ∈ F(xk) for all n, we have y ∈ F(x).

(e notions of pseudo-Lipschitz and Lipchitz-like set-
valued mappings were introduced by Aubin in [24] and have
been studied extensively; see for example [25, 26]. We recall
these notions from [20].

Definition 3. Let Γ: y⇉2X be a set-valued mapping and let
(y, x) ∈ gphΓ. Let rx > 0, ry > 0 and M> 0. Γ is said to be

(a) Lipchitz-like on Bry
(y) relative to Brx

(x) with
constant M if the following inequality holds:

e Γ y1( ∩Brx
(x), Γ y2(  ≤M y1 − y2

����
����for any y1, y2 ∈ Bry

(y).

(8)

(b) pseudo-Lipschitz around (y, x) if there exist con-
stants ry

′ > 0, rx
′ > 0 and M′ > 0 such that Γ is Lipchitz-

like on Bry
′(y) relative to Brx

′(x) with constant M′.

Remark 1. (e pseudo-Lipschitz property of a set-valued
mapping Γ is equivalent to the openness with linear rate of
Γ− 1 (the covering property) and to the metric regularity of
Γ− 1 (a basic well-posedness property in optimization) (see
[23, 24, 27, 28] for more details).

Remark 2. Equivalently for the property (a) we can say
that Γ is Lipschitz-like at (y0, x0) ∈ gphΓ on Bry0

(y0) ×

Brx0
(x0) with constant M if for every x1, x2 ∈ Brx0

(x0) and
for every x1 ∈ Γ(y1)∩Brx0

(x0), there exists x2 ∈ Γ(y2)

such that

x1 − x2
����

����≤M y1 − y2
����

����, for every y1, y2 ∈ Bry0
y0( . (9)

(e following lemma is useful and it was proven by
Rashid et al. in [20, Lemma 2.1].

Lemma 1. Let Γ: y⇉2X be a set-valued mapping and let
(y, x) ∈ gphΓ. Assume that Γ is Lipschitz-like on Bry

(y)

relative to Brx
(x) with constant M. 3en

dist(x, Γ(y)) ≤Mdist y, Γ− 1
(x) , (10)

holds for every x ∈ Brx
(x) and y ∈ Bry/3(y) satisfying

dist(y, Γ− 1(x))≤ ry/3.
3e following concept of (n, α)-point-based approxima-

tion is extracted from Geoffroy and Piétrus [19].

Definition 4. Let f: Ω⊆X⟶Y be a function and
n ∈ N∗, α> 0. (en a function A: Ω × Ω⟶Y is said to be
a (n, α)-point-based approximation ((n, α)-PBA in brief) on
Ω for f with modulus κ if there exists a scalar κ such that, for
each u, v ∈ Ω, both of the following assertions hold:

(a) ‖f(v) − A(u, v)‖≤ κ/πn,α‖u − v‖n+α, where

πn,α � 

n

i�1
(α + i). (11)

(b) (e functionA(u, ·) − A(v, ·) is Lipschitz continuous
on Ω with modulus κ‖u − v‖α .

It is clear that when n � 1 and α � 1, Definition 4 agrees
with Robinson’s definition of point-based approximation
introduced in [9].

Recall the following definition of strict differentiability,
which has been taken from [11].

Definition 5. A function f: X⟶Y is said to be strictly
differentiable at x∗ with strict derivative ∇f(x∗) if for every
ε> 0 there exists δ > 0 such that

f x′(  − f x″(  − ∇f x
∗

(  x′ − x″( 
����

����

≤ ε x′ − x″
����

����, for every x′, x″ ∈ Bδ x
∗

( .
(12)

(e following result is a version of [11, Lemma 2]. (is
result establishes the connection between the strict differ-
entiability of f and (n, α)-PBA of a function f.

Lemma 2. Let A be a (n, α)-point-based approximation of a
function f in Ω with a constant κ and let x∗ ∈ Ω. 3en the
function A(x∗, ·) − f(·) is strictly differentiable at the point
x∗ and its strict derivative at x∗ is zero.

(e following lemma is taken from [25, Corollary 2].

Lemma 3. Let F: X⇉2Y be a set-valued mapping with
closed graph and let f, g: X⟶Y be two continuous
functions. Let (x∗, y∗) ∈ gphF, let f(x∗) � g(x∗) � 0 and let
the difference f − g be strictly differentiable at the point
x∗ ∈ X with ∇(f − g)(x∗) � 0. Let L be a positive constant.
3en the following are equivalent:

(i) 3e map (f + F)− 1 is Lipschitz-like at (y∗, x∗) with
modulus < L;

(ii) 3e map (g + F)− 1 is Lipschitz-like at (y∗, x∗) with
modulus < L.

Remark 3. Combining Lemma 2 and Lemma 3 we conclude
that if A is a (n, α)-PBA of a function f in an open
neighborhood of some x∗ ∈ (f + F)− 1(y∗), then (f + F)− 1
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is Lipschitz-like at (y∗, x∗) if and only if the map
(A(x∗, ·) + F(·))− 1 possesses the same property.

(e following theorem on the convergence of the
nonsmooth function using (n, α)-point-based approxima-
tion is due to Geoffroy and Piétrus; see [19, (eorem 3.3]:

Theorem 1. Let x∗ be a solution of (1). Fix n ∈ N∗andα> 0.
Suppose that F has closed graph and f admits a (n, α)-point-
based approximation with modulus k, denoted by A, on some
open neighborhood Ω of x∗; 3e set-valued map
[A(x∗, ·) + F(·)]− 1 is M-pseudo-Lipschitz around (0, x∗).
3en for every c>Mk/πn,α, one can find δ > 0 such that for
every starting point x0 ∈ Bδ(x∗), there exists a sequence xk 

generated by (2), which satisfies

xk+1 − x
∗����
����≤ c xk − x

∗����
����

n+α
. (13)

Dontchev and Hager [25] proved Banach fixed point
theorem, which has been employing the standard iterative
concept for contracting mapping. To prove the existence of
the sequence generated by Algorithm 1, the following lemma
will be played an important rule in this study.

Lemma 4. Let Φ: X⇉2X be a set-valued mapping. Let
x∗ ∈ X, 0< λ< 1 and r> 0 be such that

(a)dist x
∗
,Φ x
∗

( ( < r(1 − λ), (14)

(b)e Φ x1( ∩B x
∗
, r( ,Φ x2( ( 

≤ λ x1 − x2
����

���� for allx1, x2 ∈ B x
∗
, r( .

(15)

Then Φ has a fixed point in B(x∗, r), that is, there exists
x ∈ B(x∗, r) such that x ∈ Φ(x). Furthermore, ifΦ is single-
valued, then there exists a fixed point x ∈ B(x∗, r) such that
x � Φ(x).

3. Convergence Analysis

(roughout the whole study we assume that X and Y are
real or complex Banach spaces. Let n ∈ N∗, α> 0 and
F: X⇉2Y be a set-valued mapping with closed graph.
Suppose that f: Ω⊆X⟶ Y is a nonsmooth function that
admits (n, α)-point-based approximation A on Ω with a
constant L> 0, where Ω is an open neighborhood of a point
x∈ X. Let x ∈ X and define the mapping Rx by

Rx(·) ≔ A(x, ·) + F(·). (16)

(en

M(x) � d ∈ X: 0 ∈ Rx(x + d)  � d ∈ X: x + d ∈ R
− 1
x (0) . (17)

Furthermore, the following equivalence is clear:

z ∈ R
− 1
x (y)⇔y ∈ A(x, z) + F(z)for any z ∈ X andy ∈ Y.

(18)

In particular,

x ∈ R
− 1
x (y)for each(x, y) ∈ gph(f + F). (19)

Let (x, y) ∈ gph(f + F) and let rx > 0, ry > 0. Further-
more, throughout in this section we assume that
Brx

(x)⊆Ω∩ domF. Suppose that πn,α is defined in Defini-
tion 4.

Define

r ≔ min ry −
Lr

n+α
x 3n+α

+ 2n+α
( 

πn,α2
n+α ,

rx 2α − MLr
α
x( 

4.2αM
 . (20)

(en

r> 0⇔L<min
ryπn,α2

n+α

r
n+α
x 3n+α

+ 2n+α
( 

,
2α

MLr
α
x

 . (21)

Let us recall that (1) is an abstract model for various
problems. From now on, we make the following
assumptions.

(i) F has closed graph;
(ii) f admits an (n, α)-point-based approximation with

modulus L, denoted by A, on some open neigh-
borhood Ω of x

(iii) (e set valued map (f + F)− 1 is Lipschitz-like on
Bry

(y) relative to Brx
(x) with constant M.

(e following lemma plays an important role to the
convergence analysis of the extended Newton-type method
which is defined by Algorithm 1.(e proof is a refinement of
the one for [11, Lemma 1].

Lemma 5. Suppose the assumptions (i)-(iii) hold and let r be
defined in (10), so that (11) is satisfied. Let x ∈ Brx/2(x). 3en
R− 1

x (·) is Lipschitz-like on Br(y) relative to Brx/2(x) with
constant 2αM/2α − MLrα

x
, that is,

e R
− 1
x y1( ∩Brx/2(x), R

− 1
x y2(  ≤

2αM

2α − MLr
α
x

y1 − y2
����

���� for any y1, y2 ∈ Br(y). (22)

Proof. Since f has a (n, α)-point-based approximation A on
an open neighbourhood of x∈ (f + F)− 1(y) with a constant
L and the map (f + F)− 1 is Lipschitz-like around (y, x) with
a constant M, then by Remark 3 we have that R− 1

x (·) is
Lipschitz-like around (y, x) with a constant M< L, that is,
there exist constants rx > 0, ry > 0 and M such that

e R
− 1
x y1( ∩Brx

(x), R
− 1
x y2(  ≤M y1 − y2

����
���� for ally1, y2 ∈ Bry

(y). (23)

Note, by (20 and 21), that r> 0. Now let

y1, y2 ∈ Br(y) andx′ ∈ R
− 1
x y1( ∩Brx/2(x). (24)

It is sufficent to show that there exist x″ ∈ R− 1
x (y2) such

that

4 International Journal of Mathematics and Mathematical Sciences



x′ − x″
����

����≤
2αM

2α − MLr
α
x

y1 − y2
����

����. (25)

To this end, we shall verify that there exists a sequence
xk  ⊂ Brx

(x) such that

y2 ∈ A x, xk− 1(  − A x, xk− 1(  + A x, xk(  + F xk( , (26)

xk − xk− 1
����

����≤M y1 − y2
����

����
MLrα

x

2α
 

k− 2

, (27)

hold for each k � 2, 3, 4, . . .. We proceed by mathematical
induction. Denote

zi :� yi − A x, x′(  + A x, x′( for each i � 1, 2. (28)

Note by (24) that

x − x′
����

����≤ ‖x − x‖ + x − x′
����

����≤
rx

2
+

rx

2
≤ rx. (29)

It follows, from (13) and the relation
r≤ ry − Lrn+α

x
(3n+α + 2n+α)/πn,α2n+α by (20) that

zi − y
����

����≤ yi − y
����

���� + A x, x′(  − A x, x′( 
����

����

≤ r + f x′(  − A x, x′( 
����

���� + f x′(  − A x, x′( 
����

����

≤ r +
L

πn,α
x − x′

����
����

n+α
+ x − x′

����
����

n+α
 

≤ r +
L

πn,α
r

n+α
x +

rx

2
 

n+α
 

� r +
Lr

n+α
x 2n+α

+ 1( 

πn,α
≤ ry.

(30)

(is implies that zi ∈ Bry
(y) for each i � 1, 2. Letting

x1 :� x′. (en x1 ∈ R− 1
x (y1) by (13) and it follows from (18)

that

y1 ∈ A x, x1(  + F x1( , (31)

which can be rewritten as

y1 − A x, x1(  + A x, x1(  ∈ A x, x1(  + F x1( . (32)

(is, by the definition of z1, means that
z1 ∈ A(x, x1) + F(x1). Hence x1 ∈ R− 1

x (z1) by (18). (is
together with (24) implies that

x1 ∈ R
− 1
x z1( ∩Brx

(x). (33)

According to the concept of Lipschitz-like property of
R− 1

x (·) and noting that z1, z2 ∈ Bry
(y), it follows from (23)

that there exists x2 ∈ R− 1
x (z2) such that

x2 − x1
����

����≤M z1 − z2
����

���� � M y1 − y2
����

����. (34)

Moreover, by the definition of z2 and noting x1 � x′, we
have

x2 ∈ R
− 1
x z2(  � R

− 1
x y2 − A x, x1(  + A x, x1( ( , (35)

which together with (18) implies that

y2 ∈ A x, x1(  − A x, x1(  + A x, x2(  + F x2( . (36)

(is shows that 26 and 27 are true with constructed
points x1 and x2.

Suppose that the points x1, x2, . . . , xm have constructed
so that 26 and 27 are true for k � 2, 3, . . . , m. We need to
construct xm+1 such that (26 and 27) are also true for
k � m + 1. To do this, setting

z
m
i :� y2 − A x, xm+i− 1(  + A x, xm+i− 1( for each i � 0, 1.

(37)

(en, by the inductional assumption together with the
concept of (n, α)-point-based approximation of A, we obtain
that

z
m
0 − z

m
1

����
���� � A x, xm− 1(  − A x, xm− 1(   − A x, xm(  − A x, xm(  

����
����

≤ L‖x − x‖
α

xm − xm− 1
����

����≤
Lr

α
x

2α
xm − xm− 1

����
����

≤ y1 − y2
����

����
MLrα

x

2α
 

m− 1

.

(38)

We have ‖x1 − x‖≤ rx/2 and ‖y1 − y2‖≤ 2r from (24)
and using (27) we get

xm − x
����

����≤ 
m

k�2
xk − xk− 1

����
���� + x1 − x

����
����

≤ 2Mr 
m

k�2

MLrα
x

2α
 

k− 2

+
rx

2

≤
2.2αMr

2α − MLr
α
x

+
rx

2
.

(39)

By (20), we have 4.2αMr≤ rx(2α − MLrα
x
) and then (39)

becomes

xm − x
����

����≤ rx. (40)

Consequently,

xm − x
����

����≤ xm − x
����

���� +‖x − x‖≤
3
2

rx. (41)

Furthermore, using 13 and 20, we get that, for each
i � 0, 1
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z
m
i − y

����
����≤ y2 − y

����
���� + A x, xm+i− 1(  − A x, xm+i− 1( 

����
����

≤ r + f xm+i− 1(  − A x, xm+i− 1( 
����

����

+ f xm+i− 1(  − A x, xm+i− 1( 
����

����

≤ r +
L

πn,α
x − xm+i− 1

����
����

n+α
+ x − xm+i− 1

����
����

n+α
 

≤ r +
L

πn,α

3
2
rx 

n+α
+ r

n+α
x 

� r +
L 3n+α

+ 2n+α
( r

n+α
x

πn,α2
n+α ≤ ry.

(42)

It follows that zm
i ∈ Bry

(y) for each i � 0, 1. Since as-
sumption (14) holds for k � m, we have

y2 ∈ A x, xm− 1(  − A x, xm− 1(  + A x, xm(  + F xm( , (43)

which can be written as

y2 − A x, xm− 1(  + A x, xm− 1(  ∈ A x, xm(  + F xm( . (44)

(en by definition of zm
0 , it follows that

zm
0 ∈ A(x, xm) + F(xm).(is, together with 18 and 40, yields

that

xm ∈ R
− 1
x z

m
0( ∩Brx

(x). (45)

Using (23) again, inasmuch as zm
0 , zm

1 ∈ Bry
(y), there

exists an element xm+1 ∈ R− 1
x (zm

1 ) such that

xm+1 − xm

����
����≤M z

m
0 − z

m
1

����
����≤M y1 − y2

����
����

MLrα
x

2α
 

m− 1

,

(46)

where the last inequality holds by (38). By the definition of
zm
1 , we have

xm+1 ∈ R
− 1
x z

m
1(  � R

− 1
x y2 − A x, xm(  + A x, xm( ( , (47)

which together with (18) implies

y2 ∈ A x, xm(  − A x, xm(  + A x, xm+1(  + F xm+1( . (48)

(is together with (46) completes the induction step and
the existence of sequence xk  satisfying (14) and (15).

Since MLrα
x
/2α < 1, we see from (27) that xk  is a

Cauchy sequence. Define x″: � limk⟶∞xk. Note that F has
closed graph. (en, taking limit in (26), we get
y2 ∈ A(x, x″) + F(x″) and so x″ ∈ R− 1

x (y2). Moreover,

x′ − x″
����

����≤ limm⟶∞sup 
m

k�2
xk − xk− 1

����
����

≤ limm⟶∞sup 

m

k�2

MLrα
x

2α
 

k− 2

M y1 − y2
����

����

≤
2αM

2α − MLr
α
x

y1 − y2
����

����.

(49)

(is completes the proof of the Lemma 5.

Before going to state the main theorem in this study, for
our convenience, we define the map Zx: X⟶ Y, for each
x ∈ X, by

Zx(·) ≔ A(x, ·) − A(x, ·), (50)

and the set-valued map Φx: X⇉2X by

Φx(·) � R
− 1
x Zx(·) . (51)

(en we have that

Zx x′(  − Zx x″( 
����

���� � A x, x′(  − A x, x′(  
����

− A x, x″(  − A x, x″(  
����

≤L‖x − x‖
α

x′ − x″
����

����for any x′, x″ ∈ X.

(52)

(e main result of this study read as follows, which
provides some sufficient conditions ensuring the conver-
gence of the extended Newton-type method for nonsmooth
generalized (1) from starting point x0. □

Theorem 2. Suppose that η> 1. Let x∈ X, Ω be an open and
convex subset ofX containing x and let f be a function which
has (n, α)-point-based approximation A on Ωwith a constant
L> 0. Suppose that the map F has closed graph and the map
R− 1

x (·) is Lipschitz-like on Bry
(y) relative to Brx

(x) with
constant M> 0. Let r be defined by (10) so that (11) holds. Let
δ > 0 be such that

(a) δ ≤min rx/4, r.πn,α/4n+α,

(ryπn,α/L(3n+α + 2n+α + 1))1/n+α, 1},

(b) (M + 1)L(2α+1ηδα + rα
x
)≤ 2α,

(c) ‖y‖< L/πn,αδ
n+α.

Suppose that

limx⟶xdist(y, A(x, x) + F(x)) � 0. (53)

3en there exists some δ > 0 such that any sequence xm 

generated by Algorithm 1 with starting point x0 ∈ Bδ
(x)

converges to a solution x∗ of nonsmooth generalized (1), that
is, x∗ satisfies 0 ∈ f(x∗) + F(x∗).

Proof.
By assumption (b), it can be easily written that

ML 2α+1ηδα + r
α
x ≤ (M + 1)L 2α+1ηδα + r

α
x ≤ 2α. (54)

Set

t ≔
2αηMLδα

2α − MLr
α
x

. (55)

It follows from (54) that

t≤
1
2
. (56)

Since πn,α‖y‖<Lδn+α by assumption (c) and (26) holds,
there exists 0< δ ≤ δ be such that
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dist 0, A x0, x0(  + F x0( ( ≤
L

πn,α
δn+αfor each x0 ∈ Bδ

(x).

(57)

Let x0 ∈ Bδ
(x). We will proceed by mathematical in-

duction. We will show that Algorithm 1 generates at least
one sequence and any sequence xm  generated by Algo-
rithm 1 for (1) satisfies the following assertions:

xm − x
����

����≤ 2δ, (58)

xm+1 − xm

����
����≤ t

1
πn,α

 

(n+α)m

δ, (59)

for each m � 0, 1, 2, . . .. For this purpose we define

rx ≔
3
2

ML

πn,α
‖x − x‖

n+α
+ M‖y‖ for eachx ∈ X. (60)

Owing to the fact 4δ ≤ rx in assumption (a) and η> 1, by
assumption (b) we can write as follows

(M + 1)L2α.3δα ≤ (M + 1)L.2α 2δα + δα( 

� (M + 1)L 2α+1δα +(2δ)
α

 

≤ (M + 1)L 2α+1ηδα +(4δ)
α

 

≤ (M + 1)L 2α+1ηδα + r
α
x ≤ 2α.

(61)

(e above inequality gives either

MLδα ≤
2α

2α.3
�
1
3
or Lδα ≤

2α

2α.3
�
1
3
. (62)

By the facts πn,α‖y‖<Lδn+α from condition (c)and (34),
the inequality (33) reduces to, for each x ∈ B2δ(x)

rx �
3
2

ML

πn,α
‖x − x‖

n+α
+ M‖y‖ ≤

3
2

ML

πn,α
‖x − x‖

n+α
+

ML

πn,α
δn+α

 

≤
3
2

ML

πn,α
(2δ)

n+α
+

ML

πn,α
δn+α

  �
3
2

ML

πn,α
δα 2n+α

+ 1( .δn

Since δn ≤ δ,we get that, ≤
3
2

ML

πn,α
δα 2n+α

+ 1( .δ

≤
3
2
.
1

3πn,α
2n+α

+ 1( .δ ≤
1

2πn,α
2n+α

+ 1( .δ ≤ 2δfor eachx ∈ B2δ(x).

(63)

It is trivial that (58) is true for m � 0. To show, (32) holds
for m � 0, firstly we need to verify that x1 exists, that is, we
need to show that M(x0)≠∅. To do this, we consider the
mapping Φx0

defined by (24) and apply Lemma 4 to the map
Φx0

with η0 � x. Let us check that both assumptions (5) and
(6) of Lemma 4, with r: � rx0

and λ: � 1/3 hold. Noting that
x∈ R− 1

x (y)∩Brx0
(x) by (3) and according to the definition of

the excess e and the map Φx0
, we obtain

dist x,Φx0
(x) ≤ e R

− 1
x (y)∩Brx0

(x),Φx0
(x) 

≤ e R
− 1
x (y)∩B2δ(x), R

− 1
x Zx0

(x)  

≤ e R
− 1
x (y)∩Brx

(x), R
− 1
x Zx0

(x)  

≤M y − Zx0
(x)

�����

�����.

(64)

From the notion of (n, α)-point-based approximation A

of f with L, we obtain that

Zx0
(x) − y

�����

����� � A(x, x) − A x0, x(  − y
����

����

≤ A(x, x) − A x0, x( 
����

���� +‖y‖

≤ ‖f(x) − A(x, x)‖ + f(x) − A x0, x( 
����

���� +‖y‖

≤
L

πn,α
‖x − x‖

n+α
+

L

πn,α
x0 − x

����
����

n+α
+‖y‖

≤
L

πn,α
‖x − x‖

n+α
+ x0 − x

����
����

n+α
  +‖y‖.

(65)

Note that Lδn+α(2n+α + 3n+α + 1)≤ πn,αry because of as-
sumption (a), πn,α‖y‖< Lδn+α by assumption (c) and
‖x0 − x‖≤ δ ≤ δ. It follows from (65), for each
x ∈ Brx0

(x)⊆B2δ(x), that

International Journal of Mathematics and Mathematical Sciences 7



Zx0
(x) − y

�����

�����≤
L

πn,α
‖x − x‖

n+α
+ x0 − x

����
���� +‖x − x‖ 

n+α
  +‖y‖

≤
L

πn,α
(2δ)

n+α
+(δ + 2δ)

n+α
(  +‖y‖ �

L

πn,α
(2δ)

n+α
+(3δ)

n+α
(  +‖y‖

≤
L

πn,α
δn+α 2n+α

+ 3n+α
(  +

L

πn,α
δn+α

�
L

πn,α
δn+α 2n+α

+ 3n+α
+ 1( ≤ ry.

(66)

(is implies that

Zx0
(x) ∈ Bry

(y)for eachx ∈ Brx0
(x). (67)

In particular, letting x � x in (65). (en we have that

Zx0
(x) − y

�����

�����≤
L

πn,α
x0 − x

����
����

n+α
+‖y‖, (68)

≤
L

πn,α
δn+α

+
L

πn,α
δn+α ≤

2L

πn,α
δn+α ≤ ry, (69)

and hence

Zx0
(x) ∈ Bry

(y). (70)

Hence, by the assumed Lipschitz-like property of R− 1
x

and (68), we have from (64) that

dist x,Φx0
(x) ≤M y − Zx0

(x)
�����

�����

≤
ML

πn,α
x0 − x

����
����

n+α
+ M‖y‖ � 1 −

1
3

 rx0
� (1 − λ)r,

(71)

that is, the assumption (5) of Lemma 4 is satisfied.
Below, we will show that the assumption (6) of Lemma 4

holds. To do this, let x′, x″∈ Brx0
(x). (en from assumption

(a) and (35), we have that x′, x″∈ Brx0
(x)⊆B2δ(x)⊆Brx

(x)

and Zx0
(x′), Zx0

(x″) ∈ Bry
(y) by (39). (is, together with

the assumed Lipschitz-like property of R− 1
x , implies that

e Φx0
x′( ∩Brx0

(x),Φx0
x″(  ≤ e Φx0

(x′)∩Brx
(x),Φx0

x″(  

� e R
− 1
x Zx0

x′ ( ∩Brx
(x), R

− 1
x Zx0

x″ (  ≤M Zx0
x′(  − Zx0

x″( 
�����

�����.

(72)

Applying (52), we get that

Zx0
(x′) − Zx0

(x″)
�����

�����≤L x − x0
����

����
α
‖x′ − x″‖. (73)

With the help of first relation in (62) and combining the
above two inequalities we get,

e Φx0
x′( ∩Brx0

(x),Φx0
x″(  ≤ML x − x0

����
����
α

x′ − x″
����

����

≤MLδα x′ − x″
����

����

≤
1
3

x′ − x″
����

���� � λ x′ − x″
����

����.

(74)
(is means that the assumption (6) of Lemma 4 is also

satisfied. Since both assumptions (5) and (6) of Lemma 4 are
satisfied, we can say that Lemma 4 is applicable and
therefore, we conclude that there exists x1 ∈ Brx0

(x) such
that x1 ∈ Φx0

(x1), that is, 0 ∈ A(x0, x1) + F(x1) and so
x1 − x0 ∈M(x0). (is fact reflects that M(x0)≠∅.

Since η> 1 and M(x0)≠∅, we can choose d0 ∈M(x0)

such that

d0
����

����≤ ηdist 0,M x0( ( . (75)

By Algorithm 1, x1: � x0 + d0 is defined. Hence x1 is
generated for (1).

Furthermore, by the definition of M(x0), we can write

M x0(  ≔ d0 ∈ Ω: 0 ∈ A x0, x0 + d0(  + F x0 + d0(  

� d0 ∈ Ω: x0 + d0 ∈ R
− 1
x0

(0) ,
(76)

so

dist 0,M x0( (  � dist x0, R
− 1
x0

(0) . (77)

Now we are ready to show that (59) is hold for m � 0.
Note that r> 0 by assumption (a). (en (21) is satisfied by
(20). Lemma 5 states us that the mapping R− 1

x (·) is Lipschitz-
like on Br(y) relative to Brx/2(x) with constant 2αM/2α −

MLrα
x
for each x ∈ Brx/2(x) when R− 1

x (·) is Lipschitz-like on
Bry

(y) relative to Brx
(x). Particularly, R− 1

x0
(·) is Lipschitz-

like on Br(y) relative to Brx/2(x) with constant 2αM/2α −

MLrα
x
as x0 ∈ Bδ

(x)⊆Bδ(x)⊆Brx/2(x) by assumption (a) and
the choice of δ.

Furthermore, assumptions (a), (c) and the 2nd relation
of the inequality (62) imply that

‖y‖≤
L

πn,α
δn+α

�
L

πn,α
δα.δn ≤

L

πn,α
δα.δ ≤

1
3πn,α

.δ

≤
1

3πn,α
.
rπn,α

4n+α ≤
r

3
.

(78)

Now (57) becomes

dist 0, Rx0
x0 (  � dist 0, A x0, x0(  + F x0( ( 

≤
L

πn,α
δn+α ≤

r

3
.

(79)

Noting that x0 ∈ Brx/2(x) as mentioned earlier and by
(78)) we have that 0 ∈ Br/3(y) .

(us, by applying Lemma 1, we obtain that

dist x0, R
− 1
x0

(0) ≤
2αM

2α − MLr
α
x

dist 0, Rx0
x0 ( . (80)
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According to Algorithm 1 and using (77 and 80) we have

x1 − x0
����

���� � d0
����

����≤ ηdist 0,M x0( (  � ηdist x0, R
− 1
x0

(0) ≤
2αηM

2α − MLr
α
x

dist 0, Rx0
x0 ( 

≤
2αηML

πn,α 2α − MLr
α
x( 
δn+α ≤

2αηML

πn,α 2α − MLr
α
x( 
δn

.δα ≤
2αηMLδα

πn,α 2α − MLr
α
x( 
δ. Sinceδn ≤ δ .

(81)

From (56 and 81) we get,

x1 − x0
����

���� � d0
����

����≤
t

πn,α
δ ≤ t

1
πn,α

 δ. (82)

(is shows that (59) is hold for m � 0.
Suppose that the points x1, x2, . . . , xk have obtained by

Algorithm 1 satisfying (2) such that (31 and 32) are hold for
m � 0, 1, 2, . . . , k − 1. We show that assertions (31) and (32)
are also hold for m � k. Since (31) and (32) are true for each
m≤ k − 1, we have the following inequality

xk − x
����

����≤ 
k− 1

i�0
di

����
���� + x0 − x

����
����≤ tδ 

k− 1

i�0

1
πn,α

 

(n+α)i

+ δ ≤ 2δ,

(83)

and so xk ∈ B2δ(x). (is shows that (58) holds for m � k.
Next we show that the assertion (59) is also hold for

m � k. Let xk ∈ Brxk

(x). If we apply Lemma 4 to the mapΦxk

with η � x, r: � rxk
and λ: � 1/3, then by the analogue

argument as we did for the case k � 0 one can find that
M(xk)≠∅. Because of xk ∈ Brxk

(x)⊆B2δ(x)⊆Brx/2(x),
Lemma 5 permit us to say that R− 1

xk
(·) is Lipschitz-like on

Br(y) relative to Brx/2(x) with constant 2αM/2α − MLrα
x
.

Moreover, inasmuch as − A(xk− 1, xk) ∈ F(xk), using the
idea of (n, α)-point-based approximation of f, the in-
equality 4n+αδ ≤ rπn,α from assumption (a), we obtain that

dist 0, Rxk
xk (  � dist 0, A xk, xk(  + F xk( ( ≤ A xk, xk(  − A xk− 1, xk( 

����
����

�
L

πn,α
f xk(  − A xk− 1, xk( 

����
����

n+α ≤
L

πn,α
xk − xk− 1

����
����

n+α ≤
L

πn,α
xk − x

����
���� + x − xk− 1

����
���� 

n+α

≤
L

πn,α
(2δ + 2δ)

n+α
�

L

πn,α
4n+αδn+α ≤

L

πn,α
δα4n+αδ �

1
3πn,α

4n+αr.πn,α

4n+α ≤
r

3
.

(84)

It is noted earlier that xk ∈ Brx/2(x). Moreover, (78)
implies that 0 ∈ Br/3(y). (is, together with (84), implies
that Lemma 1 is applicable for the map R− 1

xk
(·) and hence we

have that

dist xk, R
− 1
xk

(0) ≤
2αM

2α − MLr
α
x

dist 0, Rxk
xk ( . (85)

SinceM(xk)≠∅, Algorithm 1 ensure us the existence of
a point xk+1 which satisfy the following inequality

xk+1 − xk

����
���� � dk

����
����≤ ηdist 0,M xk( (  � ηdist xk, R

− 1
xk

(0) ≤
2αηM

2α − MLr
α
x

dist 0, Rxk
xk ( 

�
2αηM

2α − MLr
α
x

dist 0, A xk, xk(  + F xk( ( ≤
2αηM

2α − MLrx

A xk, xk(  − A xk− 1, xk( 
����

����

�
2αηM

2α − MLr
α
x

f xk(  − A xk− 1, xk( 
����

����≤
2αηLM

πn,α 2α − MLr
α
x( 

xk − xk− 1
����

����
n+α ≤

t

δαπn,α
t

1
πn,α

 

(n+α)k− 1

δ⎛⎝ ⎞⎠

n+α

≤
t

δαπn,α
t

1
πn,α

 

(n+α)k− 1

⎛⎝ ⎞⎠

n+α

δn+α ≤
t

πn,α
t

1
πn,α

 

(n+α)k− 1

⎛⎝ ⎞⎠

n+α

δn ≤
t

πn,α
t

1
πn,α

 

(n+α)k− 1

⎛⎝ ⎞⎠

n+α

δ Sinceδn ≤ δ 

≤ t
1

πn,α
 

(n+α)k

δ.

(86)
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(is shows that (59) holds for m � k. (us, we can see
from (59) that xm  is a Cauchy sequence and hence con-
vergent to some x∗. Since the graph of F is closed, we can
pass to the limit in xk+1 ∈ R− 1

xk
(0) obtaining that x∗ is a

solution of (1). (erefore, the proof is completed.
In particular, in the case when x is a solution of (1), that

is, y � 0, (eorem 2 is reduced to the following corollary,
which gives the local convergent result of the extended
Newton-type method for solving nonsmooth generalized
(1). □

Corollary 1. Suppose that η> 1 and x be a solution of (1). Let
Ω be an open and convex subset of X containing x and r> 0
be such thatBr(x) is an open and convex set. Suppose that the
function f is continuous which has an (n, α)-point-based
approximation A on Br(x) with a constant L> 0, the map F

has closed graph. Assume that the map R− 1
x (·) is Lipschitz-like

around (0, x) with constant M. Suppose that

limx⟶xdist(0, A(x, x) + F(x)) � 0. (87)

(en there exists some δ > 0 such that any sequence xm 

generated by Algorithm 1 starting from x0 ∈ Bδ
(x) con-

verges to a solution x∗ of nonsmooth generalized (1), that is,
x∗ satisfies that 0 ∈ f(x∗) + F(x∗).

Proof. By hypothesis R− 1
x (·) is pseudo-Lipschitz around

(0, x). (en there exists constants r0, rx and M such that
R− 1

x (·) is Lipschitz-like on Br0
(y) relative to Brx

(x) with
constant M. (en, for each 0< r≤ rx, one has that

e R
− 1
x y1( ∩Br(x), R

− 1
x y2(  ≤M y1 − y2

����
����for any y1, y2 ∈ Br0

(0),

(88)

that is, the map R− 1
x (·) is Lipschitz-like on Br0

(0) relative to
Br(x) with constant M.

Let L ∈ (0, 1) and choose rx ∈ (0, rx) such that
rx

2
≤ r, 2n+απn,αr0 − L 3n+α

+ 2n+α
( r

n+α
x > 0, (89)

and A is a (n, α)-point-based approximation of f on
Brx/2(x). (en, define

r � min r0 −
Lr

n+α
x 3n+α

+ 2n+α
( 

πn,α2
n+α ,

rx 2α − MLr
α
x( 

4.2αM
 > 0,

(90)

min
rx

4
,
rπn,α

4n+α ,
r0πn,α

L 3n+α + 2n+α + 1( )
 

1/n+α⎧⎨

⎩

⎫⎬

⎭. (91)

(us we can choose 0< δ ≤ 1 such that

δ ≤min
rx

4
,
r.πn,α

4n+α ,
r0πn,α

L 3n+α + 2n+α + 1( )
 

1/n+α⎧⎨

⎩

⎫⎬

⎭, (92)

(M + 1)L 2α+1ηδα + r
α
x ≤ 2α. (93)

Now it is routine to check that all the conditions of
(eorem 2 are hold. (us, (eorem 2 is applicable to
complete the proof of the corollary 1. □

4. Application of (n, α)-point-
based approximation

(is section is devoted to present applications of
(n, α)-point-based approximation. In particular, when the
Fréchet derivative of f is (ℓ, α)-Hölder, the function A is an
(1, α)- point-based approximation for f . Moreover, when f

is a twice Fréchet differentiable function such that ∇2f is
(K, α)-Hölder, then the function A is an (2, α)-point-based
approximation for f. In addition, application of
(n, α)-point-based approximation is provided for normal
maps.

4.1. Application of (n, α)-PBA for smooth function f. Let
0< α< 1 and Ω be a convex subset of X. Let u, v ∈ Ω.

(1) Suppose that the Fréchet derivative of f is
(ℓ, α)-Hölder continuous. We show that the function

A: (u, v)↦f(u) + ∇f(u)(v − u), (94)

is an (1, α)-point-based approximation for f. In this case, by
using the Algorithm 1 we can infer that there exists a se-
quence xk  which converges superlinearly and this result
recovers the convergence result of Geoffroy and Piétrus in
[19].

In this regards, define the function Λ(u, v) by

Λ(u, v) � ‖f(v) − A(u, v)‖. (95)

It follows that

Λ(u, v) � ‖f(v) − f(u) − ∇f(u)(v − u)‖ � 
1

0
(∇f(u + t(v − u)) − ∇f(u))(v − u)dt

�������

�������

≤ ‖v − u‖ 
1

0
‖∇f(u + t(v − u)) − ∇f(u)‖dt ≤ ‖v − u‖ 

1

0
ℓ‖t(v − u)‖

α
dt ≤ ‖v − u‖

1+αℓ
1

0
t
α
dt

≤
ℓ

(α + 1)
‖v − u‖

1+α
.

(96)
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(is yields that A satisfies the first property of
(1, α)-point-based approximation onΩ. To proof the second

property of (1, α)-point-based approximation, we assume
that y, z ∈ Ω. (en, we have that

Λ′(u, v, y, z) � ‖A(u, y) − A(v, y) − A(u, z) + A(v, z)‖,

� ‖f(u) + ∇f(u)(y − u) − f(v) − ∇f(v)(y − v) − f(u) − ∇f(u)(z − u) + f(v) + ∇f(v)(z − v)‖

≤ ‖(∇f(u) − ∇f(v))(y − z)‖≤ ‖∇f(u) − ∇f(v)‖‖y − z‖≤ ℓ‖u − v‖
α
‖y − z‖.

(97)

(is shows that the second property of (1, α)-PBA for f

also holds. (erefore, we say that when the Fréchet deriv-
ative of f is (ℓ, α)-Hölder with exponent α ∈ (0, 1), the
function A: (u, v)↦f(u) + ∇f(u)(v − u) is an (1, α)-point-
based approximation.

(2) Let rx > 0 be such that Brx/2(x)⊆X. Suppose that f is
a twice Fréchet differentiable function on Brx/2(x)

such that ∇2f is (K, α)-Hölder on Brx/2(x) and with
exponent α ∈ (0, 1). Choose ℓ > 0 and L> 0 be such
that

L> ℓ + K rx + 1( . (98)

Let p, q ∈ Brx/2(x) and define the function

A(p, q) � f(p) + ∇f(p)(q − p) +
1
2
∇2f(p)(q − p)

2
. (99)

(en, (eorem 2 ensures the existence of a sequence
xk  which converges super-quadratically and the result of
(eorem 2 coincides with the result of [22, 29].

To show the first property of (2, α)-point-based ap-
proximation, denote △(p, q) � ‖f(q) − A(p, q)‖. (en we
have that

△(p, q) � f(q) − f(p) − ∇f(p)(q − p) −
1
2
∇2f(p)(q − p)

2
�������

�������
. (100)

Since, ‖ 
1
0((1 − t)∇2f(p + t (q − p))(q − p)2)dt‖ �

‖f(q) − f(p) − ∇f(p)(q − p)‖, then (100) reduces to

△(p, q) � 
1

0
(1 − t)∇2f(p + t(q − p))(q − p)

2
 dt −

1
2
∇2f(p)(q − p)

2
�������

�������

� 
1

0
(1 − t)∇2f(p + t(q − p)) − (1 − t)∇2f(p) (q − p)

2
dt

�������

�������

≤ ‖q − p‖
2


1

0
(1 − t)∇2f(p + t(q − p)) − (1 − t)∇2f(p)
����

����dt

≤ ‖q − p‖
2


1

0
(1 − t)∇2f(p + t(q − p)) − ∇2f(p) dt

≤K‖q − p‖
2


1

0
(1 − t)‖t(q − p)‖

α
dt ≤K‖q − p‖

2+α

1

0
(1 − t)t

α
dt

≤
K

(α + 1)(α + 2)
‖q − p‖

2+α ≤
L

(α + 1)(α + 2)
‖q − p‖

2+α
.

(101)

(erefore, A satisfies the first property of an (2, α)-point-
based approximation on Ω.

For the proof of second property, we assume that a, b be
any elements of Brx/2(x), (en, we have that
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△′(p, q, a, b) � ‖A(p, a) − A(q, a) − A(p, b) + A(q, b)‖

� f(p) + ∇f(p)(a − p) +
1
2
∇2f(p)(a − p)

2
− f(q) − ∇f(q)(a − q) −

1
2
∇2f(q)(a − q)

2
− f(p) − ∇f(p)(b − p)

�������

−
1
2
∇2f(p)(b − p)

2
+ f(q) + ∇f(q)(b − q) +

1
2
∇2f(q)(b − q)

2
�������

� [∇f(p) − ∇f(q)](a − b) +
1
2
∇2f(p)(a − p)

2
− ∇2f(q)(a − q)

2
− ∇2f(p)(b − p)

2
+ ∇2f(q)(b − q)

2
 

�������

�������

� [∇f(p) − ∇f(q)](a − b) +
1
2

∇2f(p)(a − q + q − p, a − p) − ∇2f(p)(b − q + q − p, b − p)+

∇2f(q)(b − q, b − p + p − q) − ∇2f(q)(a − q, a − p + p − q)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

�����������

�����������

� [∇f(p) − ∇f(q)](a − b) +
1
2

∇2f(p)(a − q, a − p) + ∇2f(p)(q − p, a − p) − ∇2f(p)(b − q, b − p) − ∇2f(p)(q − p, b − p)+

∇2f(q)(b − q, b − p) + ∇2f(q)(b − q, p − q) − ∇2f(q)(a − q, a − p) − ∇2f(q)(a − q, p − q)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

�����������

�����������

� [∇f(p) − ∇f(q)](a − b)‖ +
1
2

∇2f(q)(b − q, b − p) − ∇2f(p)(b − q, b − p) + ∇2f(p)(a − q, a − p) − ∇2f(q)(a − q, a − p)

+∇2f(p)(q − p, a − p) − ∇2f(p)(q − p, b − p) + ∇2f(q)(b − q, p − q) − ∇2f(q)(a − q, p − q)

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦

�����������

�����������

�

[∇f(p) − ∇f(q)](a − b) +
1
2
∇2f(q) − ∇2f(p) (b − q, b − p)

+
1
2
∇2f(p) − ∇2f(q) (a − q, a − p) +

1
2
∇2f(p)(q − p, a − b) +

1
2
∇2f(q)(b − a, p − q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

������������������

������������������

�

[∇f(p) − ∇f(q)](a − b) +
1
2
∇2f(q) − ∇2f(p) (b − q, b − p)

+
1
2
∇2f(p) − ∇2f(q) (a − b + b − q, a − p) +

1
2
∇2f(p)(q − p, a − b) +

1
2
∇2f(q)(b − a, p − q)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

������������������

������������������

.

(102)

(is also can be written as

△′(p, q, a, b) � [∇f(p) − ∇f(q)](a − b) +
1
2
∇2f(q) − ∇2f(p) (b − q, b − a) +

1
2
∇2f(p) − ∇2f(q) (a − b, a − p)

�������

+
1
2
∇2f(p)(q − p, a − b) +

1
2
∇2f(q)(b − a, p − q)

�������
.

(103)

Since there exist an open subset Brx/2(x)⊆X and
a positive number K such that ‖∇2f‖≤K on Brx/2(x).
Let a, b ∈ Brx/2(x). (en, ‖a − b‖≤ rx. (en, by applying

the notion of (ℓ, α)-Hölder continuity property
of ∇f and (K, α)-Hölder continuity property of ∇2f , we
get
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Step 1 Select η ∈ [1, t∞), x0 ∈ Ω, and put i: � 0.
Step 2 If 0 ∈M(xi), then stop; otherwise, go to Step 3.
Step 3 If 0 ∉M(xi), choose di such that di ∈M(xi) and ‖di‖≤ ηdist(0,M(xi)).
Step 4 Set xi+1: � xi + di.
Step 5 Replace i by i + 1 and go to Step 2.

ALGORITHM 1: ((e Extended Newton-type Method)(ENM).

Table 1: Numerical results for Example 1 for the case s< 0.

iteration no. sk Γ � s2 + 3s/14 − 1/7 sk Γ � s2 + 8s/7 + 1/7

1 -1.7000 2.3829 -1.5000 0.6786
2 -0.9520 0.5595 -1.1346 0.1335
3 -0.6209 0.1096 -1.0161 0.0140
4 -0.5142 0.0114 -1.0003 0.0002
5 -0.5002 0.0002 -1.0000 0.0000
6 -0.5000 0.0000 -1.0000 0.0000
7 -0.5000 0.0000 -1.0000 0.0000

Table 2: Numerical results for Example 1 for the case s≥ 0.

iteration no. sk Γ � 10s2/7 − 27s/14 − 1/7 sk Γ � 10s2/7 − s + 1/7

1 1.5000 0.1786 1.7000 2.5714
2 1.4242 0.0082 1.0333 0.6349
3 1.4204 0.0000 0.7081 0.1511
4 1.4204 0.0000 0.5605 0.0311
5 1.4204 0.0000 0.5087 0.0038
6 1.4204 -0.0000 0.5002 0.0001
7 1.4204 0.0000 0.5000 0.0000
8 1.4204 0.0000 0.5000 0.0000

The graph of the nonsmooth generalized equation ζ+ξ 
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Figure 1: Superlinear rate of convergence of Algorithm 1 at -1.0000 (-0.5000) and 0.5000 (1.4204).
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△′(p, q, a, b)≤ ‖[∇f(p) − ∇f(q)](a − b)‖ +
1
2
∇2f(q) − ∇2f(p)

����
����‖b − q‖‖b − a‖ +

1
2
∇2f(p) − ∇2f(q)

����
����‖a − b‖‖a − p‖

+
1
2
∇2f(p)

����
����‖q − p‖‖a − b‖ +

1
2
∇2f(q)

����
����‖b − a‖‖p − q‖

≤ ℓ‖p − q‖
α
‖a − b‖ +

K

2
‖p − q‖

α
‖b − q‖‖b − a‖ +

K

2
‖p − q‖

α
‖b − a‖‖a − p‖ +

K

2
‖q − p‖

α
‖a − b‖ +

K

2
‖p − q‖

α
‖b − a‖

≤ ℓ‖p − q‖
α
‖a − b‖ +

K

2
rx‖p − q‖

α
‖a − b‖ + K‖p − q‖

α
‖a − b‖

≤ ℓ + K rx + 1( ( ‖p − q‖
α
‖a − b‖

≤ L‖p − q‖
α
‖a − b‖, for all a, b ∈ Brx/2(x).

(104)

(is shows that the second property of (2, α)-PBA is
satisfied. (us, both of properties for (n, α)-PBA hold on
Brx/2(x)when n � 2 and 0< α< 1. Hence, A is an (2, α)-PBA
for f on Brx/2(x).

4.2.Application toNormalMaps. In this subsection we deal
with a class of nonsmooth functions, i.e. normal maps.
Normal maps have been studied by many authors to
obtain solutions of variational inequalities and com-
prehensive accounts on this topic can be found in
[9, 12, 13, 17, 30].

A detailed discussion about normal maps is given by
Robinson [13]. Recall the following notion of normal maps
which was introduced by Robinson [9, 13].

Definition 6. LetC be a nonempty closed convex subset of a
Banach space X and let  be the metric projector from X

ontoC. LetΩ be an open subset ofXmeetingC and let f be
a function fromΩ toX. (e normal map fC is defined from
the set 

− 1
(Ω) to X by

fC(x) � f  (x)  + x −  (x) . (105)

Moreover, the following variational problem

findy0 ∈ C: 〈f y0( , c − y0〉 ≥ 0, for all c ∈ C, (106)

is completely equivalent to the normal-map equation
fC(x0) � 0 through the transformation x0 � y0 − f(y0).
Robinson has shown that how the first-order necessary
optimality conditions for nonlinear optimization, as well as
linear and nonlinear complementarity problems and more
general variational inequalities, can all be expressed com-
pactly and conveniently in the form of equations fC(x) � 0
involving normal maps.

However, sometimes the use of normal maps enables one
to gain insight into special properties of problem classes that
might have remained obscure in the formalism of variational
inequalities. A particular illustration of this is the charac-
terization of the local and global homeomorphism prop-
erties of linear normal maps, given in [13] and improved in
[31, 32].

In [8, Proposition 4.1], Rashid proved that for any
function f admitting a PBA on a nonempty closed convex

subset C of a Hilbert space H, the normal map associated
with f admits a PBA on H. In our study we will show that
the same result holds when we replace the normal maps
fC + F in lieu of the normal maps fC. Rashid [8, 14]
reformulate the normal maps fC + F by simple modification
of the definition of normal maps given by Robinson [13]. In
[8, 14] Rashid assumed the concept of point-based ap-
proximation and p-point-based approximation. Here we
extend that concept to (n, α)-point-based approximation
which is reformulated by Rashid [8, 14], then we show that if
f have a (n, α)-point-based approximation, then one can
easily be constructed a (n, α)-point-based approximation for
fC + F.

(e following reformulation of the normal maps fC + F

is due to [14].

Definition 7. LetC be a nonempty closed convex subset of a
Banach space X and let  be the metric projector from X

onto C. Let Ω be an open subset of X meeting C and let
f: Ω⟶ X and F: Ω⇉X. (e normal map fC + F is
defined from the set 

− 1
(Ω) to X by

fC + F( (x) � f  (x)  + F  (x)  + x −  (x) .

(107)

We are now able to construct a (n, α)-point-based ap-
proximation for the normal map fC + F provided that a
(n, α)-point-based approximation exists for f. (e following
proposition can be extracted from [14, Proposition 4.3].

Proposition 1. Let X be a Banach space and C be a non-
empty closed convex subset of X and let  be the metric
projector on C which is nonexpansive. Let f: C⟶ X ,
A: C × C⟶ X be functions and let F: C⇉X be a set-
valued map with closed graph. If A is a (n, α)-point-based
approximation for f on C with a constant L, then the
function H: X × X⟶ X defined by
H(y, x) � (A( (y), ·)C + F(·))(x) is a (n, α)-point-based
approximation for fC + F on X with the same constant L.

Proof. Let y, x ∈ X. We note that by the definition of
normal map, (fC + F)(x) and H(y, x) are respectively
defined by
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fC + F( (x) � f  (x)  + F  (x)  + x −  (x) ,

(108)

H(y, x) � A  (x),  (x)  + F  (x)  + x −  (x) .

(109)

By hypothesis we have that A has the two properties for
f given in Definition 4 with a constant L. We need to show
that H also has these same two properties for fC + F with
the constant L. Since A is the (n, α)-point-based approxi-
mation for f onC, then using the notion of first property of
(n, α)-point-based approximation and the non expansive-
ness of the metric projector we have that

fC + F( (x) − H(y, x)
����

���� � f  (x)  + F  (x)  + x −  (x)  − A  (y),  (x)  + F  (x)  + x −  (x)  
�����

�����

� f  (x)  − A  (y),  (x) 
�����

�����≤
L

πn,α
 (y) −  (x)

�����

�����
n+α
≤

L

πn,α
‖y − x‖

n+α
.

(110)

(is implies that H satisfies the first property of
(n, α)-point-based approximation. For proving the second
property, we suppose that x, x′∈ X. To this end, let y, z ∈ X.
We will show that H(x, ·) − H(x′, ·) is Lipschitz continuous

on X with lipschitz constant L‖x − x′‖
α. Again using the

concept of second property of (n, α)-point-based approxi-
mation and non expansiveness of metric projector, we
obtain that

‖[H(x, y) − H(x′, y)] − [H(x, z) − H(x′, z)]

� A  (x),  (y)  + F  (y)  + y −  (y)  − A  (x′),  (y)  − F  (y)  − y −  (y)  

������

− A  (x),  (z)  + F  (z)  + z −  (z)  − A  (x′),  (z)  − F  (z)  − z −  (x)  

������

� A  (x),  (y)  − A  (x′),  (y)   − A  (x),  (z)  − A  (x′),  (z) 

������

������

≤ L  (x) −  (x′)
�����

�����  (x) −  (z)
�����

�����≤ L‖x − x′‖
α
‖y − z‖.

(111)

(is shows that the second property of the (n, α)-point-
based approximation is satisfied. Since the both properties in
Definition 4 are fulfilled for H, we can conclude that H is a
(n, α)-point-based approximation for fC + F on X. (e
proof is completed. □

5. Numerical Experiment

In this section, to present the numerical experiment we recall
some necessary notations and notions . Let s ∈ Rn and
ψ: Rn⟶ Rm be a Fréchet differentiable function at s.
Suppose that the set of all points s ∈ Rn is denoted by Pψ at
which the derivative ψ′(s) exists. (e B-subdifferential of ψ
at s ∈ Rn, denoted by zBψ(s), is the set

zBψ(s) � J ∈ Rm×n
: J � limk⟶+∞ψ′ sk( for some sk  ⊂ Pψsuch that sk ⟶ s . (112)

(en, Clarke’s generalized Jacobian of ψ at s ∈ Rn is
the set zψ(s) �conv zBψ(s). If ψ is differentiable near s,
and ψ′ is continuous at s, then obviously

zψ(s) � zBψ(s) � ψ′(s) . Otherwise, zBψ(s) is not nec-
essarily a singleton, even if ψ is differentiable at s. In this
case, ψ′(s) ∈ zBψ(s) holds. Now, in order to illustrate the
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theoretical result of the extended Newton-type method,
we consider the following example.

Example 1. Let X � Y � R, s0 � − 1.7, η � 5,

L � 0.5, rs � 3, n � 1, α � 0.9 and M � 1. Let ζ: R⟶ R

and ξ: R⇉R be defined, respectively, by

ζ(s) �

s

7
+ s

2
, if s< 0,

10s
2

7
− 2s, if s≥ 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξ(s) �
s

14
−
1
7
, s +

1
7

 .

(113)

(en Algorithm 1 generates a sequence which converges
superlinearly to s∗ � − 0.5000 and s∗ � − 1.0000 , respec-
tively, with initial points s0 � − 1.7 and s0 � − 1.5 in the case
s< 0. On the other hand, Algorithm 1 generates a superlinear
convergent sequence which converges to s∗ � 01.4204 and
s∗ � 0.5000 , respectively, with initial points s0 � 1.5 and
s0 � 1.7 in the case s≥ 0.

Solution: It is manifest that ζ is not differentiable at s � 0
and hence ζ is nonsmooth function onR. But this function is
differentiable onR − 0{ } and hence zBζ(s) � ζ′(s) . So, we
get

zBζ(s) � ζ′(s)  �

1
7

+ 2s, if s< 0,

20s

7
− 2, if s≥ 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(114)

We mark that

Γ(s): � (ζ + ξ)(s)

s
2

+
3s

14
−
1
7
, s

2
+
8s

7
+
1
7

 , if s< 0,

10s
2

7
−
27s

14
−
1
7
,
10s

2

7
− s +

1
7

 , if s≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(115)

Initially, we study the set-valued mapping Γ(s) � s2 +

3s/14 − 1/7 for the case x< 0 and note that Γ has a closed
graph at (s, t) with s � − 1 and t � 0.64. (us, (− 1, 0.64) ∈
gph Γ and (ζ + ξ)− 1, that is, Γ− 1 is Lipschitz-like at
(0.64, − 1). By taking A(s, ·) � ζ(s) + zBζ(s)(· − s), it is
easily shown that Rs(·) � [ζ(s) + zBζ(s)(· − s) + ξ(·)]− 1 is
Lipschitz-like at (t, s) for t � 0.64 and s � − 1.(erefore, the
assumptions of (eorem 2 hold. From the definition of
M(sk), we get

M sk(  � dk ∈ R: 0 ∈ ζ sk(  + zBζ sk( dk + ξ sk + dk(  

� dk ∈ R: dk �
2 − 3sk − 14s

2
k

3 + 28sk

 .

(116)

Alternatively, if M(sk)≠∅ we take

0 ∈ ζ sk(  + zBζ sk(  sk+1 − sk(  + ξ sk+1( ⇒sk+1 �
2 + 14s

2
k

3 + 28sk

.

(117)

Also, from (86) with 0≤ α≤ 1 we consume

dk

����
����≤

2αηLM

πn,α 2α − MLr
α
s( 

dk− 1
����

����
n+α

. (118)

Hereafter, for the given values of L, M, η, rs, n and α, w
get that Algorithm 1 generates a superlinearly convergent
sequence with initial point s0 � − 1.7 in a neighborhood of
s � − 1.9. (e following Tables 1 and 2, obtained by using
Matlab code, indicate that the solution of the variational
inclusion Γ(s) ∋ 0 has the solutions s∗ � − 1.0000 and s∗ �

− 0.5000 in the case s< 0 and s∗ � 0.5000 and s∗ � 1.4202 in
the case s≥ 0. (e graphs of Γ are plotted in Figure 1.

Remark 4. If we set α � 1 in Example 1, we get the quadratic
convergence of Algorithm 1.

6. Concluding Remarks

We have established semilocal and local convergence of the
extended Newton-type method for solving the nonsmooth
generalized (1) under the conditions η> 1, (f + F)− 1 is
Lipschitz-like and the nonsmooth function f has a
(n, α)-point-based approximation. Moreover, when 0< α< 1
and ∇f is (ℓ, α)-Hölder, we have presented an application of
(n, α)-point-based approximation for smooth function with
n � 1, that is, we have shown A is an (1, α)-point-based
approximation. In this case (eorem 2 provides the
superlinear convergent result and this result extends the
convergence theorem of Geoffroy and Piétrus [19]. On the
other hand, for n � 2 and 0< α< 1, if f is a twice Fréchet
differentiable function and ∇2f is (K, α)-Hölder, we have
given an application of (n, α)-point-based approximation,
that is, we have shown A is an (2, α)-point-based approx-
imation. In this case (eorem 2 yields the superquadratic
convergent result and this result extends the convergence
result of [22, 29]. Furthermore, we have given another
application of normal maps for fC + F which extends the
concept of point-based-approximation reformulated by
Rashid [8]. (at is, we have shown that if f has an
(n, α)-point-based approximations, it is easy to construct an
(n, α)-point-based approximation for the fCC + F. Finally,
we have presented a numerical experiment to validate the
theoretical result.
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