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Elliptic grid generation equations based on the Laplacian operator have the well-known property of clustering the mesh near
convex boundaries and declustering it near concave boundaries. In prior work, a new di�erential operator was derived and
presented to address this issue. �is new operator retains the strong smoothing properties of the Laplacian without the latter’s
adverse curvature e�ects. However, the new operator exhibits slower convergence properties than the Laplacian, which can lead to
increased turnaround times and in some cases preclude the achievement of convergence to machine accuracy. In the work
presented here, a Newton linearization of the new operator is presented, with the objective of achieving more robust convergence
properties. Sample solutions are presented by evaluating a number of solvers and preconditioners and assessing the convergence
properties of the solution process. �e e�ciency of each solution method is demonstrated with applications to two-dimensional
airfoil meshes.

1. Introduction

Elliptic grid generation is a powerful tool for optimizing the
quality of a mesh in a complex domain. �e solution of
elliptic equations based on the Laplace operator can be used
to control virtually all the characteristics of a given mesh,
through the proper speci�cation of control functions.
Various forms of these equations have been proposed, based
on the early works of Winslow [1], Bar�eld [2], Chu [3],
Godunov and Prokopov [4], Amsden and Hirt [5], and
�ompson et al. [6–10].

However, elliptic grid generation equations based on the
Laplacian operator have the well-known property of clus-
tering the mesh near convex boundaries and declustering it
near concave boundaries. �e result of this e�ect is that the
mesh spacing near curved boundaries may not re�ect the
spacing prescribed by the user. In a prior work [11, 12], a
new di�erential operator was derived to address this issue.
�is new operator retains the strong smoothing properties of
the Laplacian operator without the latter’s adverse curvature
e�ects.�e capability of this new operator, herein referred to

as the curvature operator, is illustrated in Figures 1(a) and
1(b) for a simple mesh over a cylinder with equally-spaced
boundary points. It can be seen from Figure 1(b) that the
mesh generated with curvature control yields the desired cell
sizes near the concave corners at the top and bottom of the
cylinder, whereas the mesh generated without curvature
control increases the mesh spacing in these areas. �e ca-
pabilities of this new operator have been demonstrated in
numerous applications involving the generation of meshes
in both two and three dimensions on complex geometry
such as complete aircraft con�gurations [11].

However, it has been observed that the convergence of
the numerical solution of the curvature operator is more
problematic and slower than the solution of the basic
Laplace operator. �e main reason for this is that the cur-
vature operator is inherently more sensitive to mesh cur-
vature, and thus, any spurious or discontinuous curvature
distribution arising during the solution process may cause a
slowdown in convergence. �e approach employed thus far
to deal with this issue has been to simply under-relax the
solution process. However, this approach leads to increased
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turnaround times, and in some cases precludes the
achievement of full convergence to machine accuracy.

)ere is extensive literature on the numerical solution of
similar systems of nonlinear partial differential equations.
Davis and McCammon [13] showed that the incomplete
Cholesky conjugate gradient (ICCG) method is superior to
relaxation methods for solving a system of linear equations
arising from the finite-difference form of the linearized
Poisson–Boltzmann equation. Nicholls and Honig [14] de-
veloped an efficient algorithm for the numerical solution of
the Poisson–Boltzmann equation by the finite-difference
method utilizing successive over-relaxation through the
rapid estimation of the optimum relaxation parameter. Cai
et al. [15] implemented and optimized seven finite-difference
solvers for the full nonlinear Poisson–Boltzmann equation,
including four relaxation methods, one conjugate gradient
method, and two inexact Newton methods. Wang and Luo
[16] assessed five commonly used finite-difference solvers for
the Poisson–Boltzmann equation and found that the mod-
ified incomplete Cholesky conjugate gradient and geometric
multigrid are the most efficient in the diversified test set.

Knoll et al. [17] developed a nonlinear solution method
for the nonequilibrium radiation diffusion problem by
combining an outer Newton-based iteration with the inner
conjugate gradient-like (Krylov) iteration.

Rider et al. [18] developed a robust and scalable solution
of the equilibrium radiation diffusion problem using the

GMRES Newton–Krylov method preconditioned by a
multigrid method resulting from a Picard-type linearization
of the governing equation.

Berndta et al. [19] developed two nonlinear solvers based
on the Jacobian-Free Newton–Krylov (JFNK) methodology
to solve the Laplace–Beltrami system of nonlinear, elliptic,
and partial differential equations discretized using a finite-
element method. )ey also developed two different pre-
conditioners, both of which employ existing algebraic
multigrid (AMG) methods. )ese solvers have been dem-
onstrated to be significantly faster than a standard New-
ton–Krylov approach.

Gupta et al. [20] combined a compact high-order finite-
difference approximation with a multigrid V-cycle algo-
rithm to solve the two-dimensional Poisson elliptic differ-
ential equations and showed that the nine-point
discretization formula, combined with a full-weighting
projection operator, is much more accurate than the five-
point discretization formula. Zhang [21] employed a fourth-
order compact finite-difference scheme (FOS) with the
multigrid algorithm to solve the three-dimensional Poisson
equation and showed that it yields a fast and high-accuracy
3D Poisson solver.

Ilić et al. [22] showed that the fractional Poisson
equation can be approximately solved using a finite-dif-
ference discretization of the Laplacian to produce an ap-
propriate matrix representation of the operator and

(a) (b)

Figure 1: Grids generated without and with curvature control, (a) with no curvature control and (b) with curvature control.
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proposed an algorithm based on a Krylov subspace method
that could be used efficiently to solve the resulting linear
system.

Froese and Oberman [23] developed a fast and accurate
finite-difference solver for the elliptic Monge–Ampère
equation using a hybrid finite-difference discretization
which selects between an accurate standard finite-difference
discretization and a stable monotone discretization.

In the work presented herein, the grid generation
equations with and without curvature control functions are
discretized using finite-differences and a Newton lineari-
zation of the discretized equations is then implemented. To
solve the resulting linear system, a number of solvers and
preconditioners drawn from the Portable Extensible Toolkit
for Scientific Computation (PETSc) library are implemented
and evaluated.

In what follows, Section 2 provides an overview of the
curvature operator and its derivation, followed by a detailed
description of the methodology employed to linearize the
equations. Section 3 presents the numerical implementation
process and setup of the matrix equation, and Section 4
presents applications of the solution process to C-meshes
around a two-dimensional airfoil.

2. Mathematical Derivation

2.1. Overview of the Curvature Operator. In this section, a
brief overview of the curvature operator and its derivation
will be presented followed by a detailed description of the
methodology employed to linearize the equations.

2.1.1. Mesh Generation Equations. Denoting ξi as the cur-
vilinear coordinates, it was shown in [11, 24] that for a mesh
with uniform spacing, the curvature operator can be
expressed as follows:

∇2ξi
� C

i
; i � 1, 2, 3, (1)

where Ci represents the curvature control functions and is
given by the following:
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and where (i, j, k) are cyclic, with no sum on j and k.
In the above expressions, the gij are the contravariant

metric tensor components, and the Γijk are the Christoffel
symbols of the second kind. )e physical interpretation of
equation (3) can be made by noting that, for a ξi

� constant
surface, K

(i)
1 + K

(i)
2 represents the sum of the local principal

curvatures of the surface.
As shown in [11], in the general case of a nonuniform

mesh, the curvature operator must be expressed in terms of
the functions defining the grid clustering, denoted here as
si (i � 1, 2, 3). )e si functions are defined by a mapping of
the spacing distributions of the physical mesh onto a

computational space scaled to a unit square, as shown in
Figure 2. )e points along the boundaries of the si space
represent the normalized arc length distributions along the
boundaries of the physical space, while the points in the
interior of the si space are interpolated algebraically from the
boundaries [25].

)us, for a nonuniform mesh, equation (1) is applied to
the si functions, as follows:
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and where the bar over the terms in equations (4) to (6)
denotes that they are functions of si, not functions of the
curvilinear coordinates ξi [11].

)e abovementioned relations can be recast in terms of
the curvilinear coordinates by expressing the Laplacian of si

in equation (4) as a function of the curvilinear coordinates,
which is given by the following expression:
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It is to be noted that in equation (7) and similar ex-
pressions in the remainder of this work, the summation
convention is used whenever repeated upper and lower
dummy indices are present, unless otherwise noted. Iso-
lating ∇2ξp in equation (7) then leads to the following:
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; p � 1, 2, 3, (9)

S2
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Figure 2: Computational domain defining the si stretching
functions.
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where

R
p

� C
izξp

zs
i
. (10)

In equation (9), the second term on the right-hand side
represents the functions controlling the mesh spacing, as
derived by [25]. Equation (10) gives the general form of the
curvature control functions,Rp, for a mesh with nonuniform
spacing. For a mesh with uniform spacing, equation (9)
reduces to equation (1).

)e mesh generation equations are then built by using
the identity ∇2r � 0 (where r � [x1 x2 x3]T � [x y z]T) and
expressing it in terms of the curvilinear coordinates:

∇2r � g
jk z

2r
zξj

zξk
+ ∇2ξp zr

zξp � 0. (11)

)e above system of equations is solved to yield the mesh
coordinates, with the ∇2ξp terms given by equations (9) and
(10).

2.1.2. Evaluation of Curvature Control Functions. )e nu-
merical generation of the mesh using equation (11) requires
the evaluation of the ∇2ξp terms using equations (9) and (10)
and the evaluation of the C

i terms using equations (5) and (6).
)e solution process begins by defining the si functions,

following the methodology described in detail in [25]. )ese
functions are initially calculated based on the mesh clus-
tering on the boundaries and are interpolated into the in-
terior of the domain. During the iterative solution process,
the si functions can be updated using the Neumann
boundary conditions to enforce orthogonality conditions
where desired, thereby modifying the si functions both on
the boundaries and in the domain at every iteration.

)e si functions are expressed in terms of the curvilinear
coordinates ξi, where s � [s1 s2 s3]T. Once the si functions
have been defined, their first and second derivatives with
respect to ξi can be computed directly at every point in the
domain via finite differences of the coordinate transfor-
mation. To evaluate the second term on the right-hand side
of equation (9), it is also required to compute the derivatives
of the curvilinear coordinates with respect to the si func-
tions, and these can be evaluated using the following well-
known relations [26]:
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zξr􏼠 􏼡, (12)

where (i, r, m) and (j, s, n) are cyclic, and where 􏽢J is the
determinant of the Jacobian matrix of the si-to-ξi coordinate
transformation:

􏽢J � det
zs

i

zξj
􏼨 􏼩. (13)

To evaluate the Rp terms in equation (10), the C
i control

functions must be evaluated with respect to the si coordi-
nates. To do this, we must compute the metric tensor
components and Christoffel symbols of the Cartesian xi-to-

si coordinate transformation. )e metric tensors of the
transformation can be evaluated using the following well-
known relations [27]:
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where (i, r, m) and (j, s, n) are cyclic. To evaluate equation
(14), the derivatives of the Cartesian coordinates with respect
to the si coordinates are required, and these can be computed
using the chain rule involving the ξi coordinates:

zr
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where the zξp/zsj are evaluated using equation (12).
To evaluate the Christoffel symbols with respect to the si

coordinates in (6), denoted as Γijk, the following expression
can be used [27]:

Γijk � g
ilrsl · rsjsk , (18)

In turn, to evaluate the second derivative of the physical
coordinates with respect to the si coordinates, it is useful to
express the second term on the right-hand side of equation
(9) in the following compact form:

p
p
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z
2
s

i

zξj
zξk

; p � 1, 2, 3. (19)

Substituting (19) back into equation (9) then leads to the
following:

∇2ξp
� R

p
+ g

jk
p

p

jk; p � 1, 2, 3. (20)

From equation (19) and the transformation laws for the
Christoffel symbols [27], it can be shown that:

z
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. (21)

Expressions (12) to (21) can be used to evaluate all terms
required to construct the Rp curvature functions appearing
in equations (9) and (10), and the grid generation equation
(11) can then be solved numerically to generate the mesh.

2.2. Two-Dimensional Form of the Equations. In this work,
the applications of the grid generation equations are limited
to two-dimensional domains. To this end, if we let ξ � ξ1 and
η � ξ2 in equation (11), we can write

∇2r � g
11rξξ + 2g

12rξη + g
22rηη + ∇2ξrξ + ∇2ηrη � 0. (22)

In two dimensions, the transformation relations between
the covariant and contravariant metric tensors reduce to the
following:
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Substituting relations (23) into equation (22), we then
obtain the following:

g22rξξ − 2g12rξη + g11rηη + g ∇2ξrξ + ∇2ηrη􏼐 􏼑 � 0. (24)

If we now combine equation (23) with equation (20) and
expand, we obtain

∇2ξ � R
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. (25a)

∇2η � R
2

+
g22p

2
11 − 2g12p

2
12 + g11p

2
22􏼐 􏼑

g
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If we define the functions P1 and P2 as follows,

P
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P
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2
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and insert equations (25) and (26) into equation (24), we
obtain

g22rξξ −2g12rξη + g11rηη + P
1

+ gR
1

􏼐 􏼑rξ + P
2

+ gR
2

􏼐 􏼑rη � 0.

(27)

In the above equations, the components of the curvature
control functions are represented by the R1 and R2 terms. If
R1 and R2 are set to zero, the standard grid generation
equations without curvature control functions are
recovered.

2.2.1. Expansion of Curvature Control Functions in Two
Dimensions. )e general expression for the curvature
control functions are given by equations (5) and (10). In two-
dimensions, g23 � g13 � g23 � g13 � 0, g33 � g33 � 1, and
the expansion of the Christoffel symbols (Γijk) given by
equation (18), in combination with the relations given in
(23), lead to the following expressions for the curvature
control functions:
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where (s, t) � (s1, s2).
It can also be shown that
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where g is the determinant of the metric tensor of the
(x, y)⟶ (ξ, η) transformation, g is the determinant of the

metric tensor of the (x, y)⟶ (s, t) transformation, 􏽢g is the
determinant of the metric tensor of the (s, t)⟶ (ξ, η)

transformation, and 􏽢J is the determinant of the Jacobian
matrix of the (s, t)⟶ (ξ, η) transformation (13).

Inserting relations (29) into (28a)-(28b) then yields:

gC
1

� −􏽢J
2 rs · rtt −

g12

g22
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gC
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� −􏽢J
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g12

g11
rs · rss􏼠 􏼡, (30b)

where the first and second derivatives of rwith respect to the
(s, t) coordinates can be computed using equations (17) and
(21), respectively. )e latter equation can be simplified
further by defining the function R as follows:

Rξiξj � rξiξj + p
p
ijrξp . (31)

Equation (21) can then be rewritten in a more compact
form:

rsjsk � Rξmξnξm
sj ξn

sk . (32)

)e curvature functions in equation (27) are then
evaluated using (10):

gR
p

� gC
iξp

si . (33)

In this work, numerical solutions of the grid generation
equation (27) will be evaluated both with and without the
curvature control functions to quantify the impact of the
latter on the convergence of the numerical solution.

2.3. Discretization Scheme. )e discretization of equation
(27) is accomplished using second-order finite-difference
expressions for all first and second derivatives given by the
following expressions:

rξ �
ri+1,j − ri−1,j􏼐 􏼑

2Δξ

rη �
ri,j+1 − ri,j−1􏼐 􏼑

2Δη

rξξ �
ri+1,j − 2ri,j + ri−1,j􏼐 􏼑

Δξ2

rηη �
ri,j+1 − 2ri,j + ri,j−1􏼐 􏼑

Δη2

rξη �
ri+1,j+1 − ri+1,j−1 − ri−1,j+1 + ri−1,j−1􏼐 􏼑

4ΔξΔη
.

(34)

)e updated values of the coordinates at iteration n + 1,
denoted as r+

i,j, are expressed in terms of the old values at
iteration n plus the increments from iteration n to n + 1,
denoted as follows:
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r+
i,j � ri,j + Δri,j. (35)

Substituting finite-difference expressions (34) and (35)
into (27), and linearizing the equations by neglecting all
second-order terms, O(Δr2i,j), leads to a linear system of
equations that must be solved at every iteration. Although
(27) is a vector equation, because the grid coordinates xi are
coupled through the product of the metric tensor com-
ponents and the Christoffel symbols, the xi coordinates
must be solved simultaneously through the solution of one
matrix equation encompassing the entire system of
equations.

)e methodology employed to linearize the discretized
form of the grid generation equations is described in detail in
the next section.

2.4. Linearization of Grid Generation Equations. In this
section, the linearization of the grid generation equations is
developed in two steps, first without the curvature control
functions and then with the latter included. )e lineari-
zation process involves the discretization of the equations
using second-order finite differences followed by a Newton
linearization of the discretized equations. As will be shown
in the following sections, the addition of the curvature
functions significantly increases the complexity of the
derivations.

2.4.1. Linearization of Equations without Curvature
Functions. )e grid generation equations without the cur-
vature functions are obtained by setting R1 � 0 and R2 � 0 in
(27). Employing the notation described in Section 2.3, the
updated value of equation (27) at iteration n + 1 can be
written as follows:

g
+
22r

+
ξξ − 2g

+
12r

+
ξη + g

+
11r

+
ηη + P

1+r+
ξ + P

2+r+
η � 0. (36)

Expanding the above, we obtain the following:

g22 + Δg22( 􏼁 rξξ + Δrξξ􏼐 􏼑 − 2 g12 + Δg12( 􏼁 rξη + Δrξη􏼐 􏼑

+ g11 + Δg11( 􏼁 rηη + Δrηη􏼐 􏼑 + P
1

+ ΔP1
􏼐 􏼑 rξ + Δrξ􏼐 􏼑

+ P
2

+ ΔP2
􏼐 􏼑 rη + Δrη􏼐 􏼑 � 0.

(37)

Multiplying all terms in (37) and neglecting all higher-
order terms, the equation reduces to

g22rξξ − 2g12rξη + g22rηη + P
1rξ + P

2rη

+ g22Δrξξ − 2g12Δrξη + g11Δrηη + P
1Δrξ + P

2Δrη􏽨 􏽩

+ Δg22rξξ − 2Δg12rξη + Δg11rηη + ΔP1rξ + ΔP2rη􏽨 􏽩 � 0.

(38)

To simplify the subsequent derivations, the left-hand
side of equation (38) is expressed as follows:

G+
� G + ΔG1

+ ΔG2
� 0, (39)

where

G � g22rξξ − 2g12rξη + g11rηη + P
1rξ + P

2rη. (40a)

ΔG1
� g22Δrξξ − 2g12Δrξη + g11Δrηη + P

1Δrξ + P
2Δrη.

(40b)

ΔG2
� Δg22rξξ − 2Δg12rξη + Δg11rηη + ΔP1rξ + ΔP2rη.

(40c)

In equation (40c), all terms must be expressed as
functions of the grid coordinates, rij. To this end, expres-
sions for ΔP1 and ΔP2 are derived from equations (26a) and
(26b) as follows:

ΔP1
� Δg22p

1
11 − 2Δg12p

1
12 + Δg11p

1
22. (41a)

ΔP2
� Δg22p

2
11 − 2Δg12p

2
12 + Δg11p

2
22. (41b)

In the above expressions, the p
p
ij terms represent the grid

stretching functions, which are only functions of the (s, t)

coordinates. Since the latter are held fixed during the so-
lution process, they do not require the calculation of
increments.

Substituting equations (41a) and (41b) into equation
(40c) and collecting terms, we obtain the following:

ΔG2
� Δg22 rξξ + p

1
11rξ + p

2
11rη􏼐 􏼑 −2Δg12 rξη + p

1
12rξ + p

2
12rη􏼐 􏼑

+Δg11 rηη + p
1
22rξ + p

2
22rη􏼐 􏼑.

(42)

If we now substitute equation (31) in equation (42), we
can write,

ΔG2
� Δg22Rξξ − 2Δg12Rξη + Δg11Rηη. (43)

We also need to express the change in the metric tensor
components in terms of the grid coordinates. )e following
expressions can be used for this purpose:

g11 � rξ · rξ , g12 � rξ · rη, g22 � rη · rη. (44)

Differentiating equation (44) then leads to the following:

Δg11 � 2 rξ · Δrξ􏼐 􏼑 � 2 xξΔxξ + yξΔyξ􏼐 􏼑

Δg12 � rξ · Δrη + Δrξ · rη.
(45a)

� xξΔxη + yξΔyη + xηΔxξ + yηΔyξ . (45b)

Δg22 � 2 rη · Δrη􏼐 􏼑 � 2 xηΔxη + yηΔyη􏼐 􏼑. (45c)

Substituting equations (45a)-(45c) into equation (43)
and collecting terms, we get an expression for ΔG2 in terms
of the increments in the derivatives of the grid coordinates:

ΔG2
� 2 Rηηxξ − Rξηxη􏼐 􏼑Δxξ + Rξξxη − Rξηxξ􏼐 􏼑Δxη􏽮

+ Rηηyξ − Rξηyη􏼐 􏼑Δyξ + Rξξyη − Rξηyξ􏼐 􏼑Δyη􏽯.
(46)

Inserting equations (46), (40a) and (40b) into (39), we
then obtain the following:
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g22Δrξξ − 2g12Δrξη + g11Δrηη + P
1Δrξ + P

2Δrη

+ 2 Rηηxξ − Rξηxη􏼐 􏼑Δxξ

+ 2 Rξξxη − Rξηxξ􏼐 􏼑Δxη

+ 2 Rηηyξ − Rξηyη􏼐 􏼑Δyξ

+ 2 Rξξyη − Rξηyξ􏼐 􏼑Δyη � −G.

(47)

Equation (47) is a vector equation in which r � [x y]T,
R � [X Y]T, and G � [Gx Gy]T. To separate this equation
into its x and y components, we note that from equation
(31), we have the following:

Xξiξj � xξiξj + p
p

ijxξp . (48a)

Yξiξj � yξiξj + p
p
ijyξp . (48b)

)erefore, the x and y components of equation (47) can
be written as

g22Δxξξ − 2g12Δxξη + g11Δxηη

+ P
1

+ 2 Xηηxξ − Xξηxη􏼐 􏼑􏽮 􏽯Δxξ

+ P
2

+ 2 Xξξxη − Xξηxξ􏼐 􏼑􏽮 􏽯Δxη

+2 Xηηyξ − Xξηyη􏼐 􏼑Δyξ

+2 Xξξyη − Xξηyξ􏼐 􏼑Δyη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −Gx. (49)

g22Δyξξ − 2g12Δyξη + g11Δyηη

+2 Yηηxξ − Yξηxη􏼐 􏼑Δxξ

+2 Yξξxη − Yξηxξ􏼐 􏼑Δxη

+ P
1

+ 2 Yηηyξ − Yξηyη􏼐 􏼑􏽮 􏽯Δyξ

+ P
2

+ 2 Yξξyη − Yξηyξ􏼐 􏼑􏽮 􏽯Δyη

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� −Gy. (50)

Equations (49) and (50) are the fully linearized versions
of the grid generation equations without curvature control
functions. In these equations, all the derivatives are com-
puted using finite differences involving xi,j and yi,j, using the
expressions given in (34). However, only the updates in the
derivatives in these equations, i.e., the Δ terms, involve x+

i,j

and y+
i,j, while all other terms involve old values of xi,j and

yi,j from the previous iteration.)us, the discretized form of
these equations leads to a system of linear equations that can
be solved for x+

i,j and y+
i,j at every grid point. )e numerical

procedure to assemble the linear system of equations based
on (49) and (50) is described in detail in Section 3.

2.4.2. Linearization of Curvature Control Functions. )e
curvature control functions in equation (27) are given by
equation (33). )e updated values of these terms at iteration
n + 1, denoted as (gRp)+, are expressed in terms of the old
values at iteration n plus the increments from iteration n to
n + 1:

gR
p

( 􏼁
+

� gR
p

+ Δ gR
p

( 􏼁. (51)

In equation (33), the stretching function derivative terms
(ξp

si ) are held constant during the solution process, and thus
Δ(gRp) is given by the following:

Δ gR
p

( 􏼁 � Δ gC
i

􏼒 􏼓ξp

si , (52)

where the (gC
i
) terms are given by equations (30a) and

(30b). In the latter equations, 􏽢J is the Jacobian of the
(s, t)⟶ (ξ, η) coordinate transformation, and is held
constant during the solution process. However, all the other
terms, involving derivatives of r with respect to the (s, t)

coordinates, or metric tensor components of the
(x, y)⟶ (s, t) coordinate transformation, will vary at
every iteration. )erefore, using the chain rule for differ-
entiation, Δ(gC

1
) can be expressed as

Δ gC
1

􏼒 􏼓 � −􏽢J
2 Δrs · rtt + rs · Δrtt − Δ

g12

g22
􏼠 􏼡rt · rtt􏼨

−
g12

g22
Δrt · rtt + rt · Δrtt( 􏼁􏼩,

(53)

and Δ(gC
2
) is given by the following:

Δ gC
2

􏼒 􏼓 � −􏽢J
2 Δrt · rss + rt · Δrss − Δ

g12

g11
􏼠 􏼡rs · rss􏼨

−
g12

g11
Δrs · rss + rs · Δrss( 􏼁􏼩.

(54)

To evaluate equations (53) and (54), every term involving
an update in the grid coordinates, i.e., every term preceded
by a “Δ,” must be expanded further. We begin by evaluating
Δrsi . From equation (17), rsk can be written as follows:

rsi � rξmξm
si . (55)

Assuming that the stretching function derivative terms
ξm

si are held constant, Δrsi can thus be written as

Δrsi � Δrξmξm
si . (56)

)erefore, expanding the vector dot product and col-
lecting terms, Δrsi · rsj can be expressed as follows:

Δrsi · rsj � Δrξmξm
si􏼐 􏼑 · rsj

� Δxl
ξmξm

si􏼐 􏼑x
l
sj

� ξm
si x

l
sj􏼐 􏼑Δxl

ξm .

(57)

Similarly, Δrsi · rsisj can be written as

Δrsi · rsisj � ξm
si x

l
sisj􏼐 􏼑Δxl

ξm . (58)
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To evaluate the rsi · Δrsisj terms, we assume again that the
stretching function derivatives are held constant. )erefore,
using equation (32), Δrsisj can be expressed as follows:

Δrsisj � ΔRξmξnξm
si ξn

sj . (59)

Similarly, evaluating ΔR using equation (31) and
substituting it into equation (59), we obtain the following:

Δrsisj � Δrξmξn + p
k
mnΔrξk􏼐 􏼑ξm

si ξn
sj . (60)

Equating the vector components on both sides of
equation (60), we can write

Δxl
sisj � Δxl

ξmξn + p
k
mnΔx

l

ξk􏼒 􏼓ξm
si ξn

sj . (61)

Similarly, using equation (55), the components of rsi can
be expressed as follows:

x
l
si � x

l
ξmξm

si . (62)

)erefore, taking the dot product of rsi and Δrsisj and
substituting the expressions for Δxl

sisj and xl
si given by

equations (61) and (62), rsi · Δrsisj can be expressed as

rsi · Δrsisj � x
l
si􏼐 􏼑 Δxl

sisj􏼐 􏼑

� x
l
si Δxl

ξmξn + p
k
mnΔx

l

ξk􏼒 􏼓ξm
si ξn

sj

� x
l
siξm

si ξn
sj􏽨 􏽩Δxl

ξmξn + x
l
siξm

si ξn
sj p

k
mn􏽨 􏽩Δxl

ξk .

(63)

From the expression for the metric tensor in equation
(14), Δgij can be expressed as follows:

Δgij � Δrsi · rsj + Δrsj · rsi . (64)

)erefore, the change in the covariant metric tensor
components for the si coordinates can be expressed as
follows:

Δg12 � Δrs · rt + rs · Δrt. (65a)

Δg11 � 2rs · Δrs. (65b)

Δg22 � 2rt · Δrt. (65c)

If we then expand the dot products in equation (64) and
rearrange, Δgij can be expressed as follows:

Δgij � Δxl
si x

l
sj + x

l
siΔxl

sj

� Δxl
ξmξm

si􏼐 􏼑x
l
sj + x

l
si Δxl

ξmξm
sj􏼐 􏼑

� ξm
si x

l
sj + ξm

sj x
l
si􏼐 􏼑Δxl

ξm .

(66)

From the chain rule applied to the differentiation of
quotients, we can write the following:

Δ
g12

g22
􏼠 􏼡 �

Δg12

g22
−

g12

g22

Δg22

g22
. (67a)

Δ
g12

g11
􏼠 􏼡 �

Δg12

g11
−

g12

g11

Δg11

g11
. (67b)

Substituting equation (66) into equations (67a)-(67b),
we then have the following

Δ
g12

g22
􏼠 􏼡 �

1
g22

ξm
s x

l
t + ξm

t x
l
s􏼐 􏼑Δxl

ξm − 2
g12

g
2
22

ξm
t x

l
t􏼐 􏼑Δxl

ξm .

(68a)

Δ
g12

g11
􏼠 􏼡 �

1
g11

ξm
s x

l
t + ξm

t x
l
s􏼐 􏼑Δxl

ξm − 2
g12

g
2
11

ξm
s x

l
s􏼐 􏼑Δxl

ξm .

(68b)

Now, combining equations (58), (63), (67a) and (68a)
into equation (53) and rearranging, we get the following
expression for Δ(gC

1
):

Δ gC
1

􏼒 􏼓 � −
􏽢
J
2⎧⎨

⎩ ξm
s x

l
tt􏼐 􏼑Δxl

ξm + x
l
sξ

m
t ξ

n
t􏼐 􏼑Δxl

ξmξn

+ x
l
sξ

m
t ξ

n
t p

k
mn􏼐 􏼑Δxl

ξk

−
rt · rtt( 􏼁

g22
ξm

s x
l
t + ξm

t x
l
s􏼐 􏼑 −2

g12

g22
ξm

t x
l
t􏼐 􏼑􏼢 􏼣Δxl

ξm

−
g12

g22
ξm

t x
l
tt􏼐 􏼑Δxl

ξm

−
g12

g22
x

l
tξ

m
t ξ

n
t􏼐 􏼑Δxl

ξmξn + x
l
tξ

m
t ξ

n
t p

k
mn􏼐 􏼑Δxl

ξk􏼔 􏼕􏼩.

(69)

After rearranging and collecting terms, we can finally
express Δ(gC

1
) as follows:

Δ gC
1

􏼒 􏼓 � A
1
lmnΔx

l
ξmξn + B

1
lkΔx

l

ξk , (70)

where

A
1
lmn � −

􏽢
J
2ξm

t ξ
n
t x

l
s −

g12

g22
x

l
t􏼠 􏼡, (71)

and

B
1
lk � −

􏽢
J
2

x
l
tt ξk

s −
g12

g22
ξk

t􏼠 􏼡􏼨

+ ξm
t ξ

n
t p

k
mn􏼐 􏼑 x

l
s −

g12

g22
x

l
t􏼠 􏼡

−
rt · rtt( 􏼁

g22
ξk

t x
l
s − 2

g12

g22
x

l
t􏼠 􏼡 + ξk

s x
l
t􏼢 􏼣􏼩.

(72)

Similarly, if we combine equations (58), (63), (67b) and
(68b) into equation (54) and rearrange, we get the following
expression for Δ(gC

2
):
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Δ gC
2

􏼒 􏼓�−
􏽢
J
2 ξk

t x
l
ss􏼐 􏼑Δxl

ξk + x
l
tξ

m
s ξ

n
s􏼐 􏼑Δxl

ξmξn􏼚

+ x
l
tξ

m
s ξ

n
s p

k
mn􏼐 􏼑Δxl

ξk

−
rs ·rss( 􏼁

g11
ξk

s x
l
t +ξk

t x
l
s􏼐 􏼑−2

g12

g11
ξk

s x
l
s􏼐 􏼑􏼢 􏼣Δxl

ξk

−
g12

g11
ξk

s x
l
ss􏼐 􏼑Δxl

ξk

−
g12

g11
x

l
sξ

m
s ξ

n
s􏼐 􏼑Δxl

ξmξn + x
l
sξ

m
s ξ

n
s p

k
mn􏼐 􏼑Δxl

ξk􏼔 􏼕􏼩.

(73)

Rearranging and collecting terms in (73), we can then
write Δ(gC

2
) as follows:

Δ gC
2

􏼒 􏼓 � A
2
lmnΔx

l
ξmξn + B

2
lkΔx

l

ξk , (74)

where

A
2
lmn � −

􏽢
J
2ξm

s ξ
n
s x

l
t −

g12

g11
x

l
s􏼠 􏼡, (75)

and

B
2
lk � −

􏽢
J
2

x
l
ss ξk

t −
g12

g11
ξk

s􏼠 􏼡􏼨

+ ξm
s ξ

n
s p

k
mn􏼐 􏼑 x

l
t −

g12

g11
x

l
s􏼠 􏼡

−
rs · rss( 􏼁

g11
ξk

s x
l
t − 2

g12

g11
x

l
s􏼠 􏼡 + ξk

t x
l
s􏼢 􏼣􏼩.

(76)

Using expressions for Δ(gC
1
) and Δ(gC

2
) from equa-

tions (70) and (74), respectively, Δ(gRp) in equation (52)
can now be expressed as

Δ gR
p

( 􏼁 � Δ gC
1

􏼒 􏼓ξp
s + Δ gC

2
􏼒 􏼓ξp

t

� A
1
lmnξ

p
s + A

2
lmnξ

p
t􏼐 􏼑Δxl

ξmξn

+ B
1
lkξ

p
s + B

2
lkξ

p
t􏼐 􏼑Δxl

ξk .

(77)

We now have all the terms necessary to evaluate (gRp)+

in equation (51).
In Section 2.4.1, the derivation of the linearized grid

generation equations ((49) and (50)) excluded the curvature
terms (gRp). Adding these terms back into equation (27)
and applying the linearization process described in Section
2.4.1, the following additional terms must be added to the
left-hand side of equation (38):

g R
1rξ + R

2rη + R
1Δrξ + R

2Δrη􏼐 􏼑 + Δ gR
1

􏼐 􏼑rξ + Δ gR
2

􏼐 􏼑rη.

(78)
Separating equation (78) into its x and y components

then yields the following expressions:

g R
1
xξ + R

2
xη + R

1Δxξ + R
2Δxη􏼐 􏼑 +Δ gR

1
􏼐 􏼑xξ +Δ gR

2
􏼐 􏼑xη,

(79a)

and

g R
1
yξ + R

2
yη + R

1Δyξ + R
2Δyη􏼐 􏼑 +Δ gR

1
􏼐 􏼑yξ +Δ gR

2
􏼐 􏼑yη.

(79b)

If we now add expression (79a) to the left-hand side of
equation (49) and expression (79b) to left-hand side of
equation (50), and then substitute the expressions for
Δ(gC

1
) and Δ(gC

2
) given by equation (77), we obtain the

following complete linearized grid generation equations
with curvature control functions:
g22Δxξξ−2g12Δxξη+g11Δxξξ

+ P
1
+2 Xηηxξ−Xξηxη􏼐 􏼑+gR

1
􏽨 􏽩Δxξ

+ P
2
+2 Xξξxη−Xξηxξ􏼐 􏼑+gR

2
􏽨 􏽩Δxη

+2 Xηηyξ−Xξηyη􏼐 􏼑Δyξ

+2 Xξξyη−Xξηyξ􏼐 􏼑Δyη

+ A
1
lmnξs +A

2
lmnξt􏼐 􏼑xξΔx

l
ξmξn + B

1
lkξs +B

2
lkξt􏼐 􏼑xξΔx

l

ξk

+ A
1
lmnηs +A

2
lmnηt􏼐 􏼑xηΔx

l
ξmξn + B

1
lkηs +B

2
lkηt􏼐 􏼑xηΔx

l

ξk �−Gx −gR
1
xξ−gR

2
xη.

(80)

and

g22Δyξξ −2g12Δyξη+g11Δyξξ

+2 Yηηxξ −Yξηxη􏼐 􏼑Δxξ

+2 Yξξxη−Yξηxξ􏼐 􏼑Δxη

+ P
1
+2 Yηηyξ −Yξηyη􏼐 􏼑+gR

1
􏽨 􏽩Δyξ

+ P
2
+2 Yξξyη−Yξηyξ􏼐 􏼑+gR

2
􏽨 􏽩Δyη

+ A
1
lmnξs +A

2
lmnξt􏼐 􏼑yξΔx

l
ξmξn + B

1
lkξs +B

2
lkξt􏼐 􏼑yξΔx

l

ξk

+ A
1
lmnηs +A

2
lmnηt􏼐 􏼑yηΔx

l
ξmξn + B

1
lkηs +B

2
lkηt􏼐 􏼑yηΔx

l

ξk �−Gy −gR
1
yξ −gR

2
yη.

(81)

Equations (80) and (81) are the fully linearized equations
that must be solved numerically at each grid point to
compute the x and y coordinates. To facilitate the dis-
cretization of these equations, we now recast them in terms
of the coefficients multiplying each of the increments in the
derivative terms, i.e., the coefficients of Δxl

ξm and Δxl
ξmξn ,

leading to equations of the following form:

C
1
xij
Δxξ+C

2
xij
Δxη+C

3
xij
Δyξ+C

4
xij
Δyη+C

5
xij
Δxξξ

+C
6
xij
Δxξη+C

7
xij
Δxηη+C

8
xij
Δyξξ+C

9
xij
Δyξη+C

10
xij
Δyηη�Rhxij

.

(82)

C
1
yij
Δxξ+C

2
yij
Δxη+C

3
yij
Δyξ+C

4
yij
Δyη+C

5
yij
Δxξξ

+C
6
yij
Δxξη+C

7
yij
Δxηη+C

8
yij
Δyξξ+C

9
yij
Δyξη+C

10
yij
Δyηη�Rhyij

.

(83)

where
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C
1
xij

� P
1

+ 2 Xηηxξ − Xξηxη􏼐 􏼑 + gR
1

+ B
1
11xs + B

2
11xt.

(84a)

C
2
xij

� P
2

+ 2 Xξξxη − Xξηxξ􏼐 􏼑 + gR
2

+ B
1
12xs + B

2
12xt.

(84b)

C
3
xij

� 2 Xηηyξ − Xξηyη􏼐 􏼑 + B
1
21xs + B

2
21xt. (84c)

C
4
xij

� 2 Xξξyη − Xξηyξ􏼐 􏼑 + B
1
22xs + B

2
22xt. (84d)

C
5
xij

� g22 + A
1
111xs + A

2
111xt. (84e)

C
6
xij

� −2g12 + A
1
112xs + A

2
112xt. (84f)

C
7
xij

� g11 + A
1
122xs + A

2
122xt. (84g)

C
8
xij

� A
1
211xs + A

2
211xt. (84h)

C
9
xij

� A
1
212xs + A

2
212xt. (84i)

C
10
xij

� A
1
222xs + A

2
222xt, (84j)

and

C
1
yij

� 2 Yηηxξ − Yξηxη􏼐 􏼑 + B
1
11ys + B

2
11yt. (85a)

C
2
yij

� 2 Yξξxη − Yξηxξ􏼐 􏼑 + B
1
12ys + B

2
12yt. (85b)

C
3
yij

� P
1

+ 2 Yηηyξ − Yξηyη􏼐 􏼑 + gR
1

+ B
1
21ys + B

2
21yt.

(85c)

C
4
yij

� P
2

+ 2 Yξξyη − Yξηyξ􏼐 􏼑 + gR
2

+ B
1
22ys + B

2
22yt.

(85d)

C
5
yij

� A
1
111ys + A

2
111yt. (85e)

C
6
yij

� A
1
112ys + A

2
112yt. (85f)

C
7
yij

� A
1
122ys + A

2
122yt. (85g)

C
8
yij

� g22 + A
1
211ys + A

2
211yt. (85h)

C
9
yij

� −2g12 + A
1
212ys + A

2
212yt. (85i)

C
10
yij

� g11 + A
1
222ys + A

2
222yt, (85j)

and where
Rhxij

� −Gx − gR
1
xξ − gR

2
xη. (86a)

Rhyij
� −Gy − gR

1
yξ − gR

2
yη. (86b)

In equations (84a)–(84j) to (86a)–(86b), the curvature
control functions can be deactivated by setting all the
Rp, A

p

lmn and B
p

lk terms to zero. )e numerical imple-
mentation of equations (82) and (83) is described in detail in
the next section.

3. Numerical Implementation

3.1. Setup of the Matrix Equation. Writing the finite-dif-
ference expressions in (34) in terms of the change in x and y

coordinates from iteration n to n + 1, we have

Δxξ �
Δxi+1,j − Δxi−1,j􏼐 􏼑

2Δξ
. (87a)

Δyξ �
Δyi+1,j − Δyi−1,j􏼐 􏼑

2Δξ
. (87b)

Δxη �
Δxi,j+1 − Δxi,j−1􏼐 􏼑

2Δη
. (87c)

Δyη �
Δyi,j+1 − Δyi,j−1􏼐 􏼑

2Δη
. (87d)

Δxξξ �
Δxi+1,j − 2Δxi,j + Δxi−1,j􏼐 􏼑

Δξ2
. (87e)

Δyξξ �
Δyi+1,j − 2Δyi,j + Δyi−1,j􏼐 􏼑

Δξ2
. (87f)

Δxηη �
Δxi,j+1 − 2Δxi,j + Δxi,j−1􏼐 􏼑

Δη2
. (87g)

Δyηη �
Δyi,j+1 − 2Δyi,j + Δyi,j−1􏼐 􏼑

Δη2
. (87h)

Δxξη �
Δxi+1,j+1 − Δxi+1,j−1 − Δxi−1,j+1 + Δxi−1,j−1􏼐 􏼑

4ΔξΔη
.

(87i)

Δyξη �
Δyi+1,j+1 − Δyi+1,j−1 − Δyi−1,j+1 + Δyi−1,j−1􏼐 􏼑

4ΔξΔη
.

(87j)

In the mesh generation process, the curvilinear coor-
dinates, ξ and η, are the independent variables, and for
convenience, they are set equal to the mesh indices i and j,
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respectively. )is implies that ξ and η vary from 1 to imax

and jmax, respectively, and thus Δξ � Δη � 1 everywhere in
the mesh. )erefore, substituting the finite-difference ex-
pressions from equations (87a)–(87j) into equations (82)
and (83), yields the following:

−
1
4
C
6
xij
Δxi+1,j−1 −

1
2
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2
xij

− C
7
xij
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6
xij
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1
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1
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(88)

and
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(89)

For the ease of presentation, we introduce the param-
eters Jk

xij
and Jk

yij
to represent the coefficients in equations

(88) and (89) as follows:
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(90)

and
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)us, inserting equations (90) and (91) into equations
(88) and (89), respectively, we obtain the following

J
5
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1
xij
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(92)

and
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(93)

Equations (92) and (93) are the complete discretized
forms of the grid generation equations that must be solved at
each grid point of the mesh. As can be seen from these
equations, the second-order finite difference expressions
result in a 9-point stencil surrounding each grid point (i, j),
as illustrated in Figure 3 for a 4 × 4 grid.

Equations (92) and (93) yield a linear system of
equations involving a nonsymmetric Jacobian matrix,
with entries given by the Jk

xij
and Jk

yij
terms. )is matrix is

populated by sweeping the mesh one row at a time along
the i direction, and placing the coefficients multiplying the
x and y coordinates of every point in adjacent rows. )is
ordering of the mesh nodes yields the matrix with the
smallest bandwidth of nonzero entries about the diagonal,
as illustrated by the matrix sparsity pattern shown in
Figure 4. As shown, the matrix consists of three diagonal
bands, each consisting of a block tridiagonal band of 2 × 2
blocks. )e distance of the upper and lower bands from
the diagonal is only 2(jmax - 5) columns, where jmax is the
upper limit of the smaller of the two mesh indices, (i, j).
As shown in Figure 4(a), the total bandwidth of the

(η/j) direction

(i-1, j+1)

(i-1, j-1) (i, j-1) (i+1, j-1)

(i-1, j) (i+1, j)(i, j)

(i+1, j+1)(i, j+1)

(ξ/i) direction

Figure 3: 4 × 4 grid with a 9-point stencil.
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nonzero elements is very small relative to the overall size
of the matrix.

To solve this system, a number of solvers and pre-
conditioners, drawn from the Portable Extensible Toolkit for
Scienti�c Computation (PETSc) library [28], are employed.
�e solution vector obtained from the PETSc solution gives
the changes in the coordinates, Δxi,j and Δyi,j, at each grid
point. �e updated values of the coordinates at iteration n +
1 are then obtained as follows:

xn+1i,j � xni,j + Δx
n+1
i,j ,

yn+1i,j � yni,j + Δy
n+1
i,j .

(94)

3.2. Evaluation of Solvers and Preconditioners. �e PETSc
library is a collection of data structures and routines for the
solution of scienti�c and engineering problems formulated by
partial di�erential equations. It consists of a number of libraries
which contain modules for creating both sequential and
parallel vectors and matrices as well as modules dealing with
linear and nonlinear solvers. It is structured such that each
module can be invoked by a set of calling sequences facilitating
the solution of PDE’s [29]. Once the interface to the PETSc
library is established, all solvers and preconditioners are ac-
cessible. �is approach enables the evaluation of various
solvers and preconditioners for a particular problem to de-
termine the best combination for tackling the problem at hand.

3.2.1. Selected Solvers and Preconditioners. In the applica-
tions presented Section 4, virtually all methods available in
the PETSc library were evaluated, and the set of pre-
conditioners and solvers that turned out to be the most
e�ective were identi�ed as follows:

Preconditioners:

ILU: Incomplete lower-upper (LU) factorization.
SOR: Successive over-relaxation variant of Gauss-
Seidel.

EISENSTAT: SSOR (symmetric successive over-re-
laxation, symmetric Gauss-Seidel) incorporating
Eisenstat’s “trick” to reduce computation.

Solvers:

LU: Direct solver based on lower-upper factorization.
BiCGSTAB: Stabilized version of Biconjugate Gradi-
ent method.
GMRES: Generalized Minimal Residual method,
optionally with accelerated restart.
PIPELINED GCR: Pipelined Generalized Conjugate
Residual method.

3.3. Implementation in Fortran. �e numerical solution of
the grid generation equations with curvature functions was
implemented in a fortran code. �e simpli�ed algorithm
describing the implementation of the solution method is
summarized in Algorithm 1 below.

4. Applications

�e solution process developed herein was applied to the
generation of two C-meshes around a two-dimensional
airfoil. �e �rst mesh is suitable for the solution of the Euler
equations, while the second is a more re�ned mesh suitable
for the Navier–Stokes equations, in which the height of the
�rst layer of cells on the airfoil boundary is set to 10− 6 × c,
where c is the airfoil chord. �e Euler mesh consists of
321× 49 (15,729) points, yielding a matrix with dimensions
[29986 × 29986], while the Navier–Stokes mesh contains
321× 97 (31,137) points, resulting in a matrix with di-
mensions [60610 × 60610]. �ese matrices are very sparse,
with the number of nonzero entries being equal to 530,980
for the Euler mesh, and 1,081,060 for the Navier-Stokes
mesh, such that only approximately 0.06% and 0.03% of the
matrix entries are nonzero, respectively. Figure 5 shows the
initial algebraic mesh and domain boundaries. �e far �eld
regions of the Euler and Navier–Stokes meshes are virtually

0

0

(a)

0

0

0

0

2 (jmax-5)
rows

2x2 blocks
2 (Jmax-5)

columns

(b)

Figure 4: Matrix sparsity pattern. (a) Sparsity pattern. (b) Details of upper-left corner.
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identical, as the meshes only differ in the region close to the
airfoil surface. Figures 6(a) and 6(b) show the two meshes in
the vicinity of the airfoil boundary. )e initial meshes are
generated using transfinite interpolation from the
boundaries.

Both the Euler and Navier–Stokes meshes were gener-
ated with and without curvature control functions, in order
to compare the properties of the meshes as well as the
convergence characteristics of the solution process. In ad-
dition, for the meshes generated without curvature func-
tions, optimizations were done with and without
orthogonality functions. )e reason for this is that meshes
generated with curvature functions are inherently more
orthogonal than meshes generated without them, and for
many applications, including the ones presented here, or-
thogonality functions are not required. )erefore, in the
following figures the effects of turning on and off both the
curvature functions and the orthogonality functions are
presented and discussed.

)e first optimizations were performed on the Euler
meshes and the results are shown in Figures 7 to 10. Figure 7
shows the far field of the Euler meshes optimized without
curvature functions, where 7(a) and 7(b) show the meshes
optimized without and with orthogonality functions, re-
spectively. Closeup views of these meshes are provided in
Figure 8. It is clear from these figures that orthogonality
functions are required to obtain a high-quality mesh in this
case, as is virtually always the case when using a Laplace-
based operator. To highlight the impact of the curvature

functions on orthogonality, Figures 9 and 10 show the Euler
mesh optimized with curvature functions, but without or-
thogonality functions. )ese figures can be compared to
Figures 7(a) and 8(a), respectively, to see the impact of the
curvature functions on the mesh. As can be seen in these
figures, the mesh optimized with curvature functions is fully
orthogonal on the airfoil boundary, without the need for
dedicated orthogonality functions, in contrast to the mesh
optimized without curvature functions. Also, evident in

(1) Read the initial algebraic mesh
(2) Initialize various PETSc variables
(3) For j � 2⟶ (jmax − 1) do
(4) For i � 2⟶ (imax − 1) do
(5) Set the exact no. of nonzeros in each row of the matrix depending on various conditions
(6) End
(7) End
(8) Set up the PETSc matrix and vector
(9) For iter � 1⟶ niter do
(10) For j � 2⟶ jmax − 1 do
(11) For i � 2⟶ imax − 1 do
(12) (1) Calculate derivatives of x and y w.r.t. to ξ and η (equations (87a)–(87j))
(13) (2) Evaluate the metric tensor components (equations (14)–(16))
(14) (3) Calculate the control functions (stretching and orthogonality) (equations (19) and (26a)-(26b))
(15) (4) Evaluate the curvature control terms (equations (10) and (28a)-(28b))
(16) (5) Evaluate the RHS vector components for x and y (equations (86a)-(86b))
(17) (6) Evaluate the coefficients of the linearized equations (equations (92)-(93))
(18) (7) Populate the matrix entries in the nonzero locations
(19) End
(20) End
(21) (1) Assemble the PETSc vector and matrix
(22) (2) Solve the linear system using any of the KSP methods
(23) (3) Extract the solution vector
(24) (4) Update the values of x and y
(25) End
(26) (1) Delete the PETSc objects
(27) (2) Write the output file

ALGORITHM 1: Algorithm for the implementation in Fortran.

Figure 5: Far-field of initial algebraic Euler and Navier–Stokes
meshes.
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Figure 9 is that the mesh optimized with curvature functions
retains the global curvature of the C-mesh topology, as well
as the mesh clustering prescribed via the boundary point
distributions. In contrast, the mesh optimized without
curvature functions concentrates the mesh points near the

airfoil leading edge. )is tendency of Laplace-based oper-
ators can also be seen when comparing Figures 8(a) to 10. In
the latter figure, it can be seen that for the mesh optimized
with curvature functions the height of the first layer of cells
around the airfoil is consistent with the point distribution

(a) (b)

Figure 6: Closeup of initial algebraic meshes. (a) Euler mesh. (b) Navier–Stokes mesh.

(a) (b)

Figure 7: Far-field of Euler meshes optimized without curvature functions. (a) Optimized without orthogonality functions. (b) Optimized
with orthogonality functions.

(a) (b)

Figure 8: Closeup of Euler meshes optimized without curvature functions. (a) Optimized without orthogonality functions. (b) Optimized
with orthogonality functions.

Figure 9: Far-field of Euler mesh optimized with curvature control
functions but without orthogonality functions, showing the impact
of curvature functions when compared to Figure 7(a).

Figure 10: Closeup of Euler mesh optimized with curvature
control functions but without orthogonality functions, showing the
impact of curvature functions when compared to Figure 8(a).
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prescribed on the boundaries (as shown in Figure 6(a)),
whereas for the mesh optimized without curvature functions
this spacing is significantly altered.

Similar conclusions can be drawn for the optimizations
of the Navier–Stokes mesh, as shown in Figures 11 to 14.
Figure 11 shows the far field of the Navier-–Stokes meshes
optimized without curvature functions, with and without
orthogonality functions. Closeup views of these meshes are
provided in Figure 12. Figures 13 and 14 show the
Navier–Stokes mesh optimized with curvature functions,
but without orthogonality functions. )ese figures can be
compared to Figures 11(a) and 12(a), respectively, to see
the impact of the curvature functions on the mesh. Again,
the mesh optimized with curvature functions is fully or-
thogonal on the airfoil boundary and retains the global

curvature of the C-mesh in both the near field and far field
regions.

4.1. Convergence of the Solution Process. )e purpose of the
sample solutions presented herein is to validate the Newton
linearization of the equations and the setup of the system
matrix.)e results presented do not constitute an exhaustive
evaluation of the various solvers and preconditioners that
can be used to solve the system, but rather provide a range of
results illustrating the efficiency of the solution process for
two-dimensional applications. Most available combinations
of preconditioners and solvers in the PETSc library were
tested for the cases presented here; however, only the more
effective combinations are included in the figures. In all

(a) (b)

Figure 11: Far-field of the Navier–Stokes meshes optimized without curvature functions. (a) Optimized without orthogonality functions.
(b) Optimized with orthogonality functions.

(a) (b)

Figure 12: Closeup of the Navier–Stokes meshes optimized without curvature functions. (a) Optimized without orthogonality functions.
(b) Optimized with orthogonality functions.

Figure 13: Far-field of the Navier–Stokes mesh optimized with
curvature control functions but without orthogonality functions,
showing the impact of curvature functions when compared to
Figure 11(a).

Figure 14: Closeup of the Navier–Stokes mesh optimized with
curvature control functions but without orthogonality functions,
showing the impact of curvature functions when compared to
Figure 12(a).
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cases, all internal settings of the various PETSc precondi-
tioners and solvers were set to their default values, except for
the relative tolerance for the stopping criterion for solver
subiterations, which was set to 10− 4. For more information
on the detailed PETSc settings for the various solvers, the
reader if referred to the PETSc manual [29].

�e convergence curves for the generation of the Euler
mesh with curvature control functions are shown in Fig-
ures 15 and 16. Figure 15 shows the convergence as a
function of iteration, while Figure 16 shows the convergence
as a function of time. As shown in Figure 15, no reduction in
the maximum residual was achieved in the �rst 5 iterations,
due to the fact that the curvature functions were activated
progressively in these early iterations, reaching their full
value at iteration 5. In all cases presented here, a gradual
activation of the curvature functions was required to smooth
out any spurious curvatures in the initial algebraic mesh and
ensure convergence. As shown in the convergence plots,
once the curvature functions are fully activated, the solution
converges rapidly.

As shown in Figure 16, the most e�cient solver for the
generation of the Euler mesh with curvature functions is the
direct “LU” solver. �is solver achieved machine accuracy in
only 18 iterations, with an elapsed time of 3 seconds, running
on a single Intel i7-7700K, 4.2GHz core.

�e convergence curves for the generation of the
Navier–Stokes mesh with curvature functions are shown in
Figures 17 and 18. Figure 17 shows the convergence as a
function of iteration, and Figure 18 shows the convergence
as a function of time. Here again, the curvature functions
were activated progressively in the �rst 5 iterations. As
shown in Figure 18, the most e�cient solver in this case is
again the “LU” solver, achieving machine accuracy in 26
iterations, with an elapsed time of 16 seconds. Also inter-
esting in this �gure is the performance of the “EISENSTAT”
preconditioner with the “PIPELINED GCR” solver; al-
though this combination did not achieve machine accuracy,
it achieved what can be considered to be su�cient “engi-
neering” accuracy, and did so in signi�cantly less elapsed
time than the other preconditioner-solver combinations.

Based on these results, the most e�ective overall solver
for the solution of the grid generation equations with
curvature control functions is the “LU” solver, as it per-
formed well for both the Euler and Navier–Stokes meshes.
Hence, using this solver, the meshes were also generated
without curvature control functions to illustrate the impact
of the latter on convergence rates. Figures 19 and 20 show
the comparison of the convergence curves for both the Euler
and Navier–Stokes meshes with and without curvature
functions. Figure 19 shows the convergence as a function of
iteration, and Figure 20 shows the convergence as a function
of time. As shown, the inclusion of curvature functions
reduces the convergence rate and increases the elapsed time
to achieve machine accuracy. However, for practical ap-
plications, where a reduction of 10− 5 in the residual is
typically su�cient, the addition of curvature functions does
not signi�cantly increase the elapsed time.

It is perhaps not surprising that the “LU” solver out-
performs the other solvers in most cases presented here,

given that it is a direct solver. However, it is important to
note that this will not necessarily be the case for large three-
dimensional applications, for which the cost of a direct
solver may be too high. What is also observed in the ap-
plications presented herein is that the curvature functions
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Figure 15: Convergence for the Euler mesh vs. iteration, with
curvature functions.
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Figure 16: Convergence for the Euler mesh vs. time, with curvature
functions.
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degrade the conditioning of the system matrix, as evidenced
by an increase in the condition number. For both the Euler
and Navier–Stokes meshes generated without curvature
functions, the condition number of the matrices does not
exceed O(104) throughout the iterative solution process. In
contrast, for Euler meshes generated with curvature control
functions, the condition number of the matrices increases to
O(105), and for Navier–Stokes meshes the conditions

numbers reach O(106) in some cases. �is indicates that the
very high cell aspect ratios in the boundary layer of the
Navier–Stokes meshes have a more detrimental impact on
the conditioning of the matrix when curvature functions are
included. �is is likely the reason that the “SOR+Bi
CGSTAB”, “SOR+GMRES”, and “EISENSTAT+PIPE
LINED GCR” combinations did not achieve machine ac-
curacy for the Navier–Stokes meshes with curvature func-
tions, as shown in Figures 17, 18 and 20.
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Figure 19: Convergence rates vs. iteration, with and without
curvature functions.
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Figure 20: Convergence rates vs. time, with and without curvature
functions.
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Figure 17: Convergence of the Navier–Stokes mesh vs. iteration,
with curvature functions.
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Figure 18: Convergence of the Navier–Stokes mesh vs. time, with
curvature functions.
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Figure 21 shows the order of convergence achieved for
the Euler and Navier–Stokes meshes, with and without
curvatures functions. �e order of convergence, p, is cal-
culated as follows:

p � limn⟶∞
log Rn+1max/R

n
max

∣∣∣∣
∣∣∣∣

log Rnmax/R
n−1
max

∣∣∣∣
∣∣∣∣
, (95)

where Rnmax is the maximum residual anywhere in the mesh
at iteration n.

As shown, the numerical solutions without curvature
functions achieve quadratic (p � 2) convergence for both
the Euler and Navier–Stokes meshes. �is indicates that the
very high cell aspect-ratios of O(105) in the boundary layer
of the Navier–Stokes mesh do not signi�cantly impact the
convergence of the solution. �is can also be observed in
Figure 19, where the converge rates for the Euler and
Navier–Stokes meshes generated without curvature func-
tions are virtually identical. In contrast, the solutions for the
meshes generated with curvature functions achieve orders of
convergence of only 1.3 to 1.8, with the Euler mesh peaking
at 1.77 and the Navier–Stokes mesh peaking at 1.36.

It should be noted that the convergence curves shown in
Figures 15 to 21 pertain to meshes generated without or-
thogonality functions. �e reason for this is that at the time
of this writing, the implementation of orthogonality func-
tions was not fully integrated with the newly implemented
solution process, and thus the convergence rates for opti-
mizations with orthogonality functions could not be com-
pared to those obtained without orthogonality functions.
Furthermore, since the optimizations with curvature func-
tions did not require orthogonality functions, the latter were
not included in the comparisons of convergence rates in
order to isolate the impact of the curvature functions on
convergence. �us, the di�erences in convergence rates
shown in Figures 19 and 20 are due solely to the addition of
curvature functions. �e proper integration of the orthog-
onality functions with the newly implemented PETSc-based
solution process will be part of future work.

5. Conclusions and Recommendations

In the work presented herein, the grid generation equations
with and without curvature control functions were dis-
cretized using second-order �nite di�erences and linearized
using Newton’s method. To solve the resulting linear system,
a number of solvers and preconditioners available in the
PETSc library were implemented and evaluated. �e e�-
ciency of the solution process was demonstrated with ap-
plications to two-dimensional airfoil meshes, and the impact
of the curvature functions on the overall convergence was
investigated and quanti�ed.

In future work, an investigation will be undertaken to
shed light on the underlying characteristics impacting the
conditioning of the system to further enhance the solution
process. An e�cient methodology will also be developed to
properly integrate the orthogonality functions with the
newly-implemented solution process.

Ultimately the methodology presented in this work must
be generalized to three-dimensional meshes. �e challenges
arising from the latter, in particular the substantial com-
puting resources required to generate large meshes, will need
to be addressed. To this end, a full parallelization of the
solution process must also be implemented, and other so-
lution techniques not included herein, such as multigrid
methods, will need to be evaluated.

Nomenclature

Ci: Grid control term for curvilinear coordinates
(i � 1, 2, 3)

C
i: Grid control term for si coordinates

(i � 1, 2, 3)
gij: Contravariant metric tensor components for ξi

coordinates
gij: Covariant metric tensor components for ξi

coordinates
g: Determinant of the covariant metric tensor for

ξi coordinates
gij: Contravariant metric tensor components for si

coordinates
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Figure 21: Order of convergence for the Euler and Navier–Stokes meshes, with and without curvature functions.
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gij: Covariant metric tensor components for si

coordinates
g: Determinant of the covariant metric tensor for

si coordinates
G: Function defined in equation (40a), where

G � [Gx Gy Gz]T

i, j, k: Coordinate indices
imax, jmax,
kmax:

Maximum values of coordinate indices

􏽢J: Determinant of Jacobian matrix of si-to-ξi

coordinate transformation
K

(i)
1 , K

(i)
2 : Local principal curvatures of ξi

� constant

surface (i � 1, 2, 3)

K
(i)

1 , K
(i)

2 : Local principal curvatures of si � constant

surface (i � 1, 2, 3)

P1, P2: Functions defined in equations (26a) and
(26b), respectively

Rp: General curvature control functions for a mesh
with non-uniform spacing (p � 1, 2, 3)

R: Function defined in equation (31), where
R � [X Y Z]T

r: Vector of physical mesh coordinates,
r � [x y z]T � [x1 x2 x3]T

si: Coordinate functions controlling the mesh
spacing distribution (i � 1, 2, 3)

xi: Physical mesh coordinates (i � 1, 2, 3)

X, Y, Z: Components of R function
x, y, z: Physical mesh coordinates
Γijk: Christoffel symbols of the second kind for ξi

coordinates
Γijk: Christoffel symbols of the second kind for si

coordinates
ξi: Curvilinear coordinates (i � 1, 2, 3)

A1
lmn, B1

lk: Functions defined in equations (71) and (72),
respectively

A2
lmn, B2

lk: Functions defined in equations (75) and (76),
respectively

Ck
xij , Ck

yij : Coefficients defined in equations (84) and (85),
respectively

Jk
xij

, Jk
yij
: Coefficients defined in equations (90) and (91),

respectively.
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