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Our model is based on an Euler-Bernoulli beam clamped at one end and subjected at its free end to a control in displacement and
velocity. In this work, relative of the control parameters, we study the stabilization in displacement and then in energy of the model
using a stable numerical scheme that we implement. �is numerical scheme results from the Crank–Nicolson algorithm for the
discretization in time and from the �nite element method based on the approximation by Hermith cubic functions for the dis-
cretization in space. �e study shows that, compared to the velocity control, the displacement control has an almost negligible e�ect
on the stabilization of the beam.�is result is con�rmed later by a sensitivity study on the control parameters involved in our model.

1. Introduction

We consider an Euler-Bernoulli beam with variable coe�-
cients, clamped at one end and free at the other end. We
subject the free end of the beam whose length is assumed to
be equal to unity, to a control resulting from the linear

combination of its transverse displacement and its velocity
v(t, .). We note, respectively, m(x) and EI(x) the linear
mass and the bending sti�ness of the beam at any point of
abscissa x. �e model resulting from the study of the dy-
namics of the beam is written at any time t.
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(1)

where α and β are positive constants.
Previous studies [1, 2] have focused on the exponential

stabilization of the Euler-Bernoulli beam, using the Riezs
basis approach. �is approach generally makes it possible to

establish the spectrum of the operator associated with the
original problem to analyze its properties. Authors My Driss
and Abderrahman El, in [3], go further by proposing a
numerical study of the operator spectrum to establish the
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influence of the control parameters on the speed of con-
vergence of the energy associated with the model.

In this work, we assume problem (1) is well posed in the
sense of contraction semigroups according to [1]. Starting
from this problem, we implemented an equivalent numerical
model and we established its stability. )is numerical
scheme allows us to analyze graphically the influence of the
control parameters on the stabilization of the beam and on
the asymptotic behavior of the system energy. Results de-
duced from these graphical analysis are then confirmed by a
study of the relative sensitivities of these control parameters
to damping time of the vibrations of the beam.

2. Numerical Approximations of the Model

2.1. Implementation of the Numerical Scheme. Since
v(t, .) � zu(t, .)/zt, the first equation of system (1) can still
be written as follows:

zv

zt
� −

1
m(x)

z
2

zx
2 EI(x)

z
2
u(t, .)

zx
2􏼠 􏼡􏼢 􏼣; 0<x< 1; t> 0.

(2)

If we set Y(t) � (u(t, .); v(t, .)), then we introduce the
functional space

H � H
2
E([0; 1]) × L

2
([0; 1]), (3)

where

H
2
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2
([0; 1])|φ(0) �
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)en, the problem (1) is written as follows:

dY

dt
� A0Y; Y(0) � Y0 � u0; v0( 􏼁, (5)

where A0 is a linear and unbounded operator defined on the
following equation:
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4
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(6)

For a fixed real T> 0, we subdivide the interval [0; T]

into Nt intervals of the same length Δt. We then set at any
point tn � nΔt (0≤ n≤Nt).
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)e time discretization of system (5) by the
Crank–Nicolson scheme gives the following equations:
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For ψ ∈ L2[0; 1] and φ ∈ H2
E[0; 1], problem (8) is written

in the following variational form:
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(9)

We assume that the Euler-Bernoulli beam is the segment
[0; 1] which we subdivide into N + 1 fixed length intervals
[xi; xi+1] (i � 0; . . . ; N). For the discretization in the space
of problem (9), relatively to study [4], we use the finite
element method with the cubic Hermite polynomials
(φk)1≤ k≤ 4 as functions of references from which we build on
[0; 1] polynomials ϕi

1(x) and ϕi
2(x) defined for

i � 1, 2, . . . , N − 1 by the following equation:
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then
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We set, respectively, un
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i the approximate values of
un(xi) and vn(xi), and we set, for n ∈ N∗ the following
equation:
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)en, we get
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which we simply denote in the following (Φi)1≤i≤2N con-
stitutes a basis of dimension 2N of the interpolation space,
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Equalities (14) are then written as follows:
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and variational problem (9) becomes, for all j � 1, 2, . . . , 2N
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2.2. Stability of the Scheme. Assuming the linear mass m �

m(x) and the bending stiffness of the beam (EI) are con-
stants, system (17) is written at any fixed point
xj(1≤ j≤ 2N),
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)e eigenvalues λ1 � 1 and λ2 � b + αc + 2/Δt(2a/Δt
−βc)/b + αc + 2/Δt(2a/Δt + βc) of the amplification matrix
associated with (22) satisfy the Von-Neumann stability
condition,

λi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 1, i � 1, 2. (23)

We then deduce the stability of the numerical scheme
(17).

3. Influence of Control Parameters on the
Beam Stabilization

3.1. Stabilization in Motion. If we set

Mm � 􏽚
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numerical scheme (17) is then written as follows:
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I2N denotes the unit matrix of order 2N.
For the simulation, we set the following numerical values

as follows:

EI � 0, 004725,

m � 0, 78,
(27)

and

N � 10,

T � 1, 5,

Δt � 0, 001,

(28)

for the model parameters. In addition, we note for the initial
conditions as follows:

u0(x) � x
3

− 3x
2
,

v0(x) � 0.
(29)

We also choose different values for each parameters α
and β involved in problem (1), in order to highlight their
influence on the system. )us, the following results are
depicted on MATLAB [5].

3.2. Stabilization inEnergy. Ifwemultiply thefirst equationof
system(1)by the test functionφ ∈ H2

E([0; 1]),weget, after two
integrations by parts, the following variational formulation:
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By replacing in (30) the test function φ by zu(t, x)/zx,
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)en, we deduce from relations (31) and (32) that
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)erefore, the energy E(t) defines a Lyapunov function
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Relative to the Crank–Nicolson scheme used in system
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the associate discrete energy.)enweget the following result.
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Figure 1: Influence of the parameter β on the beam vibrations in x � 0, 5.
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Figure 2: Influence of the parameter α on the beam vibrations in x � 0, 5.

International Journal of Mathematics and Mathematical Sciences 5



For x ∈ [0; 1], we set in the first equation of the varia-
tional problem (9) the following equation:

ψ(x) � m(x) v
n+1

− v
n

􏼐 􏼑. (38)
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Moreover, if we set
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Δt
u

n
dx +

1
2

􏽚
1

0
EI(x)

z
2
u

n+1

zx
2 +

z
2
u

n

zx
2􏼠 􏼡

z
2
u

n

zx
2 dx

+
α
2

u
n+1

(1) + u
n
(1)􏼐 􏼑 +

β
2

v
n+1

(1) + v
n
(1)􏼐 􏼑􏼢 􏼣u

n
(1) � 0.

(42)

By differencing (41) and (42) and relative the fact that

u
n+1

− u
n

�
Δt
2

v
n+1

+ v
n

􏼐 􏼑, (43)

we get

E
n+1

− E
n

Δt
+ λn � 0, for n ∈ N,

where λn � β
vn+1(1) + vn(1)

2
􏼠 􏼡

2

.

(44)

Consequently, we state the following result. □

Corollary 1. For any integer n≥ 1, we get

E
n+1 ≤E

n ≤E
0
. (45)

Finally, we notice that the energy of the discrete system
decreases and is controlled by that of the initial data. For the
numerical simulation of the energy, we deduce from
Proposition 1 the following equality:

E
n+1

� E
n

− β
Δt
4

v
n+1

(1) + v
n
(1)􏽨 􏽩

2
, 0≤ n≤Nt, (46)

where

E
0

�
EI

2
􏽚
1

0
u0″(x)( 􏼁

2
dx +

α
2

u0(1)( 􏼁
2
. (47)

Under initial conditions (29) and relation (35), we set

Δt � 0, 001. (48)

Curves above are depicted on MATLAB [5].

3.3. Results and Discussion. By scrutinizing the curves de-
picted in Figures 1 and 2, we notice that for a fixed value of β
and for different values of α, the vibrations tend to stabilize at
almost the same time. Conversely, if α is fixed, we notice that
for larger values of β the beam stabilizes much more quickly.

Furthermore, the analysis of Figures 3 and 4 shows that
contrary to the parameter α, for increasingly large values of
β, the energy of the system decreases much faster from its
initial value E0 towards 0.

Finally, we deduce from the graphical results that the
velocity control has more impact on the stabilization of the
beam than the displacement control.
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alpha = 120

Figure 3: Influence of the parameter α on the energy.
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4. Sensitivity of Parameters α and β on
the Stability

4.1. Sensitivity Indexes Values of α and β. In this part, we
objectively study the influence of the parameters α and β on
the stability of the Euler-Bernoulli beam. For this purpose,
we note in the table below the damping time δτ of the beam
vibrations, for different values of α and β.

)e first-order Sobol sensitivity index as defined by
McKay in [6] is written as follows:

Si �
Var E δτ|Yi( 􏼁􏼂 􏼃

Var(δτ)
, (49)

where Var(δτ) and E(δτ|Yi) denote, respectively, the var-
iance of δτ and the conditional expectation of δτ obtained by
fixing Yi. From the values of δτ contained in Table1, if we set,
respectively, Yi � α and Yi � β in (49). )en we get the
following indexes of sensitivity of α and β.

Sα ≃ 0, 00016,

Sβ ≃ 0, 58450.
(50)

4.2. Discussion. )e comparison of the sensitivity indexes
obtained in (50) clearly shows that, compared to the pa-
rameter α, the parameter β has more impact on the stabi-
lization time of the Euler-Bernoulli beam.

)en, the conclusion of the analyses deduced from the
graphical results obtained above is therefore confirmed.

5. Conclusion

In this work, we have studied the stabilization of the Euler-
Bernoulli beam clamped at one extreme and subjected at the
other extreme to a linear combination of displacement and
velocity. To do this, we have implemented a numerical stable
scheme. With this numerical scheme, we have studied the
stabilization of our original model in displacement and in
energy, respectively. )e analysis of the graphical results
allowed us to affirm that the control in velocity allows the
beam to stabilize faster than when the control is done in
displacement. )is result, which we confirmed after a sta-
tistical study of the sensitivity of the control parameters,
corroborates that obtained in the numerical study of the
spectrum of the operator associated with the model by
Aouragh and Yebari in [7] and later by Kouassi et al. in [2].
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Figure 4: Influence of the parameter β on the energy.

Table 1: Vibrations damping times δτ of the beam (in seconds).

α
β

0.5 0.85 1.0 2.5 3.5 5.0
50 1.82 1.15 0.90 0.42 0.24 0.22
100 1.85 1.12 0.98 0.40 0.20 0.20
200 1.79 1.15 0.95 0.40 0.20 0.15
250 1.82 1.05 0.90 0.35 0.25 0.20
350 1.80 1.10 0.90 0.35 0.30 0.20
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approximation,” International Journal of Applied Mathematics,
vol. 30, no. 3, pp. 211–228, 2017.

[3] A. My Driss and B. Abderrahman El, “Stabilization of variable
coefficients Euler-Bernoulli beam equation with a tip mass
controlled by combined feedback forces,” Annals of the Uni-
versity of Craiova - Mathematics and Computer Science Series,
vol. 42, pp. 238–248, 2015.

[4] H. Laousy, C. Z. Xu, and G. Sallet, “Boundary feedback sta-
bilization of a rotating body-beam system,” IEEE Transactions
on Automatic Control, vol. 41, no. 2, pp. 241–245, 1996.

[5] J. Kiusalaas, Numerical Methods in Engineering with MATLAB,
Cambridge University Press, Cambridge, UK, 2005.

[6] M. D. McKay, “Evaluating prediction uncertainty,” Technical
Report NUREG/CR-6311, US Nuclear Regulator Commission
and Los Alamos National Laboratory, New Mexico, NM, USA,
1995.

[7] M. D. Aouragh and N. Yebari, “Stabilisation exponentielle
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