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Motivated by the considerable amount of losses in (fnance) industry caused every year by the fast growing number of malicious
cyber events and the need of an insurance against such cyber losses, we propose a general framework of cyber bond, whose main
purpose is to insure (compensate) losses of a cyber attack. Based on a database of publicly available cyber events, we determine
cyber loss distribution parameters and use them to numerically simulate cyber bond price, yield, and other characteristics.We also
study two approaches to cyber bond coupon calculation.

1. Introduction

Cybersecurity risk is an operational risk to information and
technology assets that has consequences afecting the con-
fdentiality, availability, or integrity of information or in-
formation systems [1]. Te problem of cyber risk is highly
relevant today, as hacking techniques advance rapidly (see,
e.g., [2]). New ways of bypassing security and new methods
of fnding vulnerabilities emerge every year. Te number of
cyber incidents grows by 25% and the number of companies
falling victim increases by 22% annually [3].Te outcomes of
such incidents are reputational damage and/or material loss.
More detail on the modern cyber attack techniques and their
consequences can be found in, e.g., [4–7]. We emphasize
that a technical discussion of these cyber attacks is of the
scope of the present paper due to the lack of competence of
the authors in this topic.

With the evolution of hacking methods, cybersecurity
techniques are improving constantly. Tese techniques
are aimed at preventing cyber incidents and safeguarding
companies against potential threats. Te problem,

however, is that cyberattacks are very abrupt and mod-
eling and predicting this type of risk is complicated. Since
the dynamics of cyberattacks are random and varied, full
protection against cyber risk cannot be guaranteed due to
the impossibility of predicting the methods and goals of
an attack and the constant evolution of cyber risk [8].
Besides, there is the so-called zero-day problem when
some new hacking technique emerges and no methods of
defending against it are available. Also, there is no single
universal method of assessing organization cyber security.
Tere are certain models (FAIR, IRAM, CyberVaR),
Global Cybersecurity Index (GCI), and ISO 27000, but no
general standards and ratings have been developed. De-
fciencies in cyber security techniques, lack of observation
data, and complexity of loss assessment are also the factors
that inhibit the development of cyber risk defense
products.

Sincemanaging cyber risk is complicated, a new problem
that needs to be solved emerges. Based in post-defense, the
problem is to soften the efect of cyber incidents and try to
beneft from them. One of the possible ways to handle the
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conditions of the problem is to create a model of risk bonds
for a corresponding event.

Event risk bonds are widely used today. An example of
such securities make weather derivatives (see, e.g., [9–13]).
Tis type of fnancial instruments can be used by organi-
zations or individuals to prevent risk associated with adverse
or unexpected weather conditions as stipulated in the
contract.Tis security is an index-based instrument and uses
weather observation data to create an index that a payout can
be based on. Another type of such securities are catastrophe
bonds, or cat bonds (see, e.g., [14–17]). Tis type of fnancial
instruments helps insurance companies when a major ca-
tastrophe occurs. Such incidents may incur a huge amount
of loss since the afected damage cannot be covered by
investments [18]. Organizations release the above-men-
tioned cat bonds and pay a coupon to the investor if no
catastrophe occurred. Otherwise, an insurance company can
stop coupon payments and, in some cases, take out the
principal and use the obtained resources to pay their claim
holders.

Event risk bonds are usually risky. However, they have
higher coupons. In case of an event stipulated in the cor-
responding contract, the trigger is turned on. Depending on
the amount of loss and the conditions of the contract, the
company can stop coupon payment and take out the con-
tract notional, allowing the company to ofset the potential
losses caused by the corresponding event.

Motivated by the considerable amount of losses in (f-
nance) industry caused every year by the above-mentioned
fast growing number of malicious cyber events and thus the
urgent need of some insurance against these cyber losses, we
propose a general framework of cyber bond, whose main
purpose is to insure (compensate) losses of a cyber attack.
More precisely, in this paper, we explore the issue of cyber
post-defense and suggest a new type of fnancial instruments
where cyber incidents are the triggering events. Some or-
ganizations and banks already use such securities widely as
operational risk bonds that include cyber risk into their
scope. Investors though are interested in having a broad
selection of securities: one wants more gain, another wants
less risk. By restricting the scope of security risk factors to
cyber risk only, we allow investors to get a less risky fnancial
instrument, even though less proftable. In view of the rapid
evolution of cyber risk, we expect that this type of contract
will be highly demanded as a security. Stated diferently, we
strongly believe that our proposed cyber bonds could take a
similar niche with respect to the insurance of cyber losses as
the above-mentioned catastrophe or cat bonds took with
respect to the insurance of catastrophe losses.

Tis paper is structured as follows. Section 2 presents our
proposed general methodology of cyber bonds (e.g., their
pricing) and provides a short cyber bond example. Section 3
considers cyber loss distribution ftting. More precisely,
given a publicly available cyber event database, Section 3
provides the respective cyber loss frequency (interval length
in days to the next loss) and cyber loss severity (actual loss
amount) distributions and their parameters. Te former
appears to be exponential and the latter–log-normal. Finally,
Section 4 provides an extensive example of a cyber bond and

estimates its basic characteristics like, e.g., price, yield, etc.
Tese characteristics appear to depend signifcantly on bond
coupon and notional triggers, which determine whether
bond coupons and notional are paid to the bondholder.
Section 4 also considers two approaches to calculating bond
coupons, based in probability of loss and bond par yield. It
also studies the distributions of two specifc event groups
(cyber-related data breach and cyber-related fraud) and
fnds out that even though the loss severity for both groups
follows the general cyber loss severity distribution (the log-
normal one), the respective loss frequency is diferent, since
it follows the non-central Fisher distribution instead of the
exponential one.

Te authors would also like to observe that a preprint of
the paper has already appeared on “arXiv” [19], which is
freely available to the general public.

2. Methodology of Cyber Risk Bonds

2.1. Preconditions andConcept. Te general concept of event
risk securities includes some trigger that stops coupon
payments partially or completely. A trigger takes some factor
into account and turns on when the factor surpasses a given
threshold. For example, [20] describes the following basic
trigger types:

(i) with an indemnity trigger, coupon payments are
stopped and/or the principal (or its part) is re-
covered in case one or several base events have their
loss amount exceeding the threshold;

(ii) with a modeled loss trigger, coupon payments are
stopped in case one or several base events have their
estimated loss amount exceeding some given
threshold; besides, the estimation can be performed
constantly, while the actual losses are determined
sometime after the incident;

(iii) with triggers indexed to industry loss, coupon
payments are stopped if the total amount of in-
surance industry losses reaches the given threshold,
which is predefned by some competent authority;

(iv) a parametric trigger is related to an actual danger
and turns on if the critical level of certain conditions
is reached, e.g., wind speed or area of a forest fre;

(v) a hybrid trigger combines the features of several of
the triggers above.

Operating principle of a trigger is illustrated in Figure 1.
Not all of the trigger types abovemeet the requirements to be
used with cyber risk securities. Today, estimation of loss
immediately after a cyberattack is impossible. A certain
amount of time is required to determine the damage after the
incident. It follows then that indemnity and industry loss
triggers cannot be used for our securities. Next, due to the
unpredictability of cyberattacks, we have no parameters that
can signify that a cyber incident is imminent or the prob-
ability of its occurrence increases.Tis makes the parametric
trigger inappropriate for the current problem as well.

However, possible losses from a cyber incident can be
modeled using, e.g., Monte Carlo simulation. Tus, the
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modeled loss trigger can be chosen for the model. Besides,
the calculated threshold of expected losses should be
specifed in the contract.

Similarly to cat bonds, the structure of fnancial cyber
risk instruments can be represented as follows. An issuer
produces securities and takes the principal from an investor.
According to the terms of the contract, the issuer then pays
coupons to the investor with a given frequency unless the
trigger is turned on. Also, the terms of the contract specify
whether the principal should be forgiven. If the trigger is not
activated for the whole time until the contract maturity, the
investor takes all the coupons and the principal. Te main
problem is the calculation of a cyber risk contract price. Te
following chapter is dedicated to dealing with this problem.

2.2. Pricing Model. Te classical approach to insurance se-
curities pricing is to consider two distributions: distribution
of events themselves and distribution of the periods between
them.Troughout the paper, we will follow the same scheme
generally, but certain specifc features of cyber bonds in
terms of pricing will be discussed.

In order to construct a procedure of pricing a contract,
we have to.

(i) defne the set of signifcant risk factors;
(ii) develop a model of the risk factors changing in time;
(iii) choose a pricing policy (fair value including risk

premium, prudent valuation, etc.) and price valu-
ation approach (analysis, Monte Carlo, or PDE
solution).

We are going to consider the standard approach to
pricing of event-linked securities, namely, fair value plus
some risk premium.

Te risk factor modeling used in the process of pricing is
based in the following assumptions. Te moments when
cyber incidents of type k occur can be described using time
intervals between the incidents, where each of the intervals
follows the same probability distribution

P τk,r⩽y  � Fk(y), (1)

in which τk,r is the interval of time between incidents r and
(r + 1) of type k. Moreover, losses induced by cyber incident
r can be described by the probability distribution law

P ξk,r⩽x  � Gk(x). (2)

Distributions Fk(y) and Gk(x) are assumed to be
parametric, i.e.,

Fk(y) � Fk(y; θ),

Gk(x) � Gk(x; λ),
(3)

and model risk is limited to the uncertainty of values of
parameter vectors θ and λ. Tis uncertainty is covered by
confdence intervals

θ ∈ θl; θu ,

λ ∈ λl; λu .
(4)

Te price of the contract is defned as the value of the fair
price that is the best (maximum) in terms of parameters,
where fair price is calculated analytically for linear contracts
and using a Monte Carlo method for the nonlinear ones:

Price � maxθ∈ θl;θu[ ],λ∈ λl;λu[ ]FairPrice Fk(·) � Fk(·; θ); Gk(·) � Gk(·; λ)( . (5)

We would like to emphasize that there currently exist
other approaches to cyber bonds as in, e.g., [21]. Generally,
the underlying machinery of cyber bond pricing stems from
the already well-developed technique of pricing the above-

mentioned cat bonds. One can fnd a plentitude of cat bond
pricing methodologies in the literature as in, e.g., [22]. In
particular, the paper in question considers two distributions:
the distribution of loss frequency, i.e., how often do
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Figure 1: Trigger switches on if the basis exceeds the given threshold.
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catastrophic events occur (an analogue of Fk(y) in our case)
and the distribution of loss severity, i.e., how much money
do catastrophic events require to cover the incurred losses
(an analogue of Gk(x) in our case). Te authors fnd the
appropriate distribution laws (e.g., Poisson law for the loss
frequency distribution and, e.g., log-normal law for the loss
severity distribution) as well as estimate the corresponding
distribution parameters. Te respective pricing model then
depends on the obtained distribution laws and their esti-
mated parameters relying, moreover, on a risk-neutral
probability measure. We roughly follow the same path,
where FairPrice in our formula (5) is taken to be the
standard coupon-bearing bond pricing formula (6) of
Subsection 4.1 of the present paper stemming from, e.g.,
[23], [Subsection 14.7.2] (i.e., the sum of the discounted
bond principal and the coupons). What is the role of Fk(x)

and Gk(x) then?. Tey determine, whether the number and/
or total loss of cyber events is such that one should stop
coupon payment and/or forget the payment of the bond
principal (decreasing thus the number of summands in the
bond pricing formula). More detail on our bond pricing
technique can be found in Subsection 4.1.

2.3. Numerical Results. For the purposes of our study, a
Monte Carlo simulation of events and periods between them
was carried out. Based in the distributions ftted below, the
average price of a bond over a number of simulations was
estimated. In addition, Greeks and coupon payment prob-
abilities were calculated.

Our cyber risk security pricing model supports the
following risk factors:

(i) change of a risk-free rate (risk factor to be taken into
account while discounting and valuating the cou-
pons in case it is linked to, e.g., LIBOR or SOFR);

(ii) the moment when a cyber incident happened;
(iii) aggregated fnancial losses (optional, can be con-

sidered as a single risk factor or a sum of separate
risk factors by the source of loss: client payments,
business process interruption, reputational loss,
etc.);

(iv) risk of the “incorrect” valuation of the risk factors
above (model risk, which is signifcant in case the
securities are linked to cyber incidents (insurance or
security) due to unavoidable difculties in
modeling).

Dependence of the bond value on a risk-free rate and
distribution parameters (located on the bounds of conf-
dence intervals) can be assessed using the values of the
corresponding Greeks shown in Table 1.

Presented values are computed using the values of pa-
rameters given in Table 2.

Dependence of the resulting prices on maturity and
trigger values is presented in the following fgures.

Figures 2–4 show strong dependence of cyber bond price
on triggers and maturity, since all the risk can be described
by these parameters.

Using parameters from Table 2, one can plot the
probability of coupon payment, which is depicted in
Figure 5.

Table 1: Values of Greeks for 99% confdence intervals bounds.

Bound dS/dλ dS/dμ dS/dσ dS/dr

Lower −1.464 −10.444 −3.422
Middle −2.723 −11.484 −6.295 −2.62
Upper −3.775 −27.568 −24.438

Table 2: Other parameters used for Greeks calculation.

Parameter Value
Number of MC iterations 5000
Trigger for coupons $5 billion
Trigger for face value $50 billion
Risk-free rate 2.65%
Coupon 30$, every 182 days
Face value 1000$

Maturity 5 years
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Figure 2: Cyber bond price vs. coupon trigger.
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Figure 3: Cyber bond price vs. face value trigger.
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Payment probabilities shown in Figure 5 display a low
survival rate, though it strongly depends on a coupon trigger
value.

3. Example of Distribution Fitting

3.1. Historical Data. According to the previous section, a
cyber risk security price depends on the intervals of time
between the incidents and the resulting material losses. In
this section, we need to estimate the families of distributions
Fk(y|θ) and Gk(x|λ) and their parameters θ and λ, re-
spectively. For this example of estimation, the historical data
was downloaded from [3]. Tis data contains information
about the cyberattacks and cyber incidents that happened
within the period of 2017–2018. Histograms of the data are
shown in Figure 6.

3.2. Estimation and Testing. From the histograms of Fig-
ure 6, we conclude that for the data of time series of both
intervals and losses, we need to ft the distribution defned on

a semi-infnite interval. It was also considered that the
distribution of time intervals should be defned in the zero
value. Tus, Weibull, gamma, χ2, Fisher, and exponential
distributions were selected for ftting.

Te maximum-likelihood estimation procedure is per-
formed to ft the distribution. Te parameters are estimated
using the Nelder–Mead method. Te results and the cor-
responding standard error values are presented in Table 3.

Ten, goodness-of-ft testing should be performed for
each of the chosen distribution parameters. For this purpose,
the Cramér–von Mises test is used [24]. We set the conf-
dence level for the testing to 0.05. According to the results
(Table 3), the exponential distribution fts our data better
than the others. All tested probability distribution functions
are represented in Figure 7.

Since we assume that cyber incidents always cause some
non-zero material losses, we need to take a distribution that
is not defned in the zero value. Also, the corresponding
histogram shows that the data has heavy tails (the value close
to $3 billion). Te log-normal distribution meets all the
requirements. In particular, [8] shows that the log-normal
distribution fts losses data the best. Te estimated param-
eters and goodness-of-ft test results are shown in Table 4.
Te test results show that this distribution satisfes the
corresponding time series of losses. Te results of ftting are
shown in Figure 8. Note that the data is shown in a loga-
rithmic scale, thus the log-normal probability distribution
function visually looks like the normal distribution function.

3.3. Confdence Interval for Estimated Parameters.
Following the idea of prudent valuation methodology [25],
we need to calculate the confdence interval for the estimated
parameters. Te lower and upper bounds for the parameters
were calculated at the 80%, 97%, 99%, and 99.9% confdence
levels. Te values are shown in Table 5.

 . Cyber Bond Example

4.1. General Example Setting. In this section, we consider an
example of cyber bonds related to a concrete (and randomly
chosen) cyber event. As follows from, e.g., [26] in February
2019, a Maltese bank (namely, Bank of Valletta) sufered a
cyber attack which saw EUR13 million transferred out of the
bank through false international transactions. In the wake of
the above event, we assume that the bank wants to insure
itself against such cyber attacks in the future. It recognizes
though that concentrating on information technology se-
curity alone (even though it is an essential protection
component) could not always be enough since cyber attacks
are getting more sophisticated with time. Tus, as a possible
additional preventive, one could issue cyber bonds to cover
losses in the case of a successful cyber attack against the
bank. We consider an example of such a cyber bond.

Motivated by the above-mentioned cyber attack loss, we
will assume that the bond notional is set to $ 15 million
(rounding the result of EUR/$ exchange). US dollars are
chosen over euros for the specifc Federal Reserve (FRED)
databases used in the below bond-related calculations. Te
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bond maturity will be chosen as 3 years (this refects a time-
changing cyber security risk as well as trims large numbers
obtained for longer maturities). We assume that the bond
pays a coupon every half a year. Tere could be up to 6
coupons (we will explain “could” in a moment) during the life
of the bond. From the several possible cyber bond coupon
calculation techniques, two of which are considered in Section

4.4, we choose the par yield approach (described in Section
4.4.2) and set bond coupon percentage to 5.09%, which
amounts to $764, 055.87. Te funding rate for discounting
during bond valuation is set to a 3-year Intercontinental
Exchange (ICE) swap rate based on USD (taken from [27])
which equals 1.52% (as of August 15, 2019). Te above
characteristics of the cyber bond are summarized in Table 6.
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Figure 6: Input data histograms: time intervals between attacks (a) and losses (b).

Table 3: Parameter estimates, standard error, and test results of time interval distribution ftting.

Distribution Parameters Standard error Statistic ω2 P value
Weibull λ � 0.334, k � 4.07 σλ � 0.03, σk � 1.166 3.94 <0.01
Gamma k � 0.233, θ � 27.403 σk � 0.024, σθ � 6.09 29.58 <0.01
χ2 k � 1.02 σk � 0.087 18.04 <0.01
Fisher d1 � 0.392, d2 � 1.334 σd1

� 0.044, σd2
� 0.298 11.7 <0.01

Exponential λ � 0.156 σλ � 0.015 0.23 0.22

Table 4: Parameter estimates and standard error for distributions of loss data.

Distribution Parameters Standard error Statistic ω2 P value
Log-normal μ � 13.639, σ � 2.832 σμ � 0.268, σσ � 0.189 0.038 0.94

Distribution
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Figure 7: Probability distribution functions selected for time interval ftting.
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We use the standard formula for bond price P:

P � 

6

i�1
C · e

− R· di/365( ) + N · e
− R·(d/365)

, (6)

where C is a coupon value, R is a funding rate, di (resp. d) is
the date of the coupon payment (resp. Notional payment) in
days, and N is the notional value. In our case, coupon
payments are on days 182, 365, 547, 730, 912, and 1095. Te
last date also corresponds to the payment of the notional.

With formula (6) in mind, our cyber bond is assumed to
be priced as follows. In the frst step, one simulates cyber
losses for the bond maturity period, i.e., 3 years. Tis sim-
ulation includes a day of the loss and its size (cyber loss
distribution parameters will be discussed in a moment). In
the second step, one uses two triggers, namely, notional and
coupon trigger, to determine whether coupons and notional
will be paid. More precisely, for every coupon (resp. no-
tional) one sums up the simulated losses up to the respective

payment day. If the losses are strictly less than the trigger,
then the respective payment is made; otherwise not. Tis
explains our “could” used to describe the number of coupons
of our proposed cyber bond. Tese triggers are aimed to
refect the state of the industry with respect to cyber attacks.
Coupon trigger is assumed to be less than the notional
trigger and should defne the frst level of danger (payment
of all or part of the coupons is therefore dropped). Notional
trigger represents the second (and highest) level of danger
when measures should be taken to compensate losses
(payment of the notional is thus dropped). It should be
noted, however, that the triggers of other nature are also
possible. For example, one could possibly watch for the
appearance of a certain number of events with certain losses.
One could also watch for the events of a certain nature (e.g.
current ransomware attacks) or a certain sequence of cyber
events refecting some pattern. Tese triggers will not be
considered in this paper since they require a deeper and
case-specifc analysis of an available and comprehensive
cyber event database.

4.2.Cyber LossDistributionParameters. Aword is due to the
distribution of cyber losses used in this section. Following
the results of Section 3, we assume that cyber losses are
characterized by two parameters, namely, the interval in
days to the next loss and actual loss amount. Interval value is
assumed to be distributed exponentially, whereas actual loss
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Figure 8: Probability distribution functions selected for loss ftting (logarithmic scale).

Table 5: Confdence interval for estimates.

Distribution Parameter Std. error Bound 80% 97% 99% 99.9%

Exponential (time intervals) λ � 0.156 σλ � 0.015 Lower 0.137 0.124 0.118 0.107
Upper 0.175 0.188 0.194 0.205

Log-normal (losses)
μ � 13.639 σμ � 0.268 Lower 13.296 13.058 12.950 12.758

Upper 13.982 14.220 14.328 14.519

σ � 2.832 σσ � 0.189 Lower 2.589 2.421 2.344 2.209
Upper 3.074 3.243 3.319 3.455

Table 6: Cyber bond parameters.

Bond parameter Value
Notional $15 million
Maturity 3 years
Coupon rate 5.09%
Coupon value $764, 055.87
Funding rate 1.52%

International Journal of Mathematics and Mathematical Sciences 7



value is assumed to have a log-normal distribution. Te
respective parameters together with the standard errors are
given in Table 7.

We emphasize that the arrival times of the cyber events
are modeled using the exponential distribution. Tis is
similar to the distribution, which underlies models of traded
credit instruments such as, e.g., credit default swaps (CDS)
(see, e.g., [28]).

Te parameters of Table 7 were calculated from our
obtained table of publicly available cyber events. Tis table
contains 328 items, with 136 of them having publicly dis-
closed loss amount. Tese events are ranging from the years
2009–2019. Te motivating event for our considered cyber
bond is taken from this table. Te distribution parameters
themselves were obtained through the maximum-likelihood
method using Nelder–Mead and Broyden–
Fletcher–Goldfarb–Shanno optimization algorithms for one-
and two-parameter distributions, respectively. Moreover, to
estimate the exponential distribution parameter λ, we made
the next two preparatory steps with the available data:

(S1) Te series of cyber event dates was modifed to
contain unique items only.

(S2) Te series of interval lengths between two con-
secutive cyber events was modifed to contain unique items
only.

Table 8 shows the results of the goodness-of-ft (GOF)
tests performed by us to justify the choice of cyber loss
distribution and the respective distribution parameters
(notice that the null hypothesis in each of the tests says that
the true distribution is the onementioned in the frst column
of Table 8 with the respective parameters taken from the
second column of Table 8; to reject the null hypothesis with
signifcance level of 5%, one searches a value less than 0.05 in
the last column of Table 8).

Additionally, Figures 9 and 10 show the histograms of
time interval (in days) to the next loss and actual loss
amount, both with their assumed distributions.

Backed by the results of Table 8 (no rejected null hy-
pothesis) and the visual inspection of Figures 9 and 10 (the
proposed distributions are “reasonably” close to the histo-
grams), we will rely on the cyber loss distributions and the
parameters of Table 7 in the rest of the paper.

Finally, we do not claim to use the all-including table of
losses since many cyber events are not publicly disclosed.We
do believe, however, that this table is comprehensive enough
to provide numerical estimations for our considered ex-
ample of cyber bonds. Moreover, similar to [29], we do
believe that there already exist enough available cyber event
data for the successful treatment of cyber bonds.

4.2.1. Distribution of Cyber Losses of Specifc Type. Tis
section answers the question on whether all cyber event types
in the used database follow the same distribution. More
precisely, we single out two particular cyber event groups
(namely, the two biggest ones in our database) and try to fnd
their respective loss frequency (interval length in days to the
next loss) and loss severity (actual loss amount) distributions.
We will follow the distribution ftting steps of Section 3.

(1) Cyber-Related Data Breaches. Te frst group contains
cyber-related data breaches. We notice that this type of cyber
events is extremely important for fnancial institutions often
storing sensitive client data, which in their turn could be a
lucrative target for cyber criminals. Tere are altogether 70
such events in our available database, with 12 of them having
publicly disclosed loss amount.

We frst concentrate on loss frequency distribution and
its parameters. Table 9 shows possible loss frequency dis-
tributions of cyber-related data breach and their respective
parameters with the standard errors (the reader may recall
that we follow the ftting steps of Section 3 and, thus, the
distributions).

Te distribution parameters of Table 9 were obtained by
the maximum-likelihood method using Nelder–Mead and
Broyden–Fletcher–Goldfarb–Shanno optimization algo-
rithms. Te two preparatory steps from the beginning of
Section 4.2 ((S1), (S2)) were taken to adjust available cyber
event occurrence data.

Table 10 shows our performed GOF tests for the dis-
tributions of Table 9.

Based on the results of Table 10, namely, its last column,
where the value below 0.05 leads to distribution rejection, we
assume that the most suitable loss frequency distributions of
cyber-related data breach are Fisher, Gamma, and Weibull
with the respective parameters. After the visual inspection of
Figure 11, which displays a cyber-related data breach loss
frequency histogram and its assumed distributions, we
conclude that the most suitable cyber-related data breach loss
frequency distribution is Fisher with d1 � 0.66, d2 � 2.0643,
and λ � 10.3834 (where, λ is non-centrality parameter).

We now pay attention to the loss severity distribution
and its parameters. Tables 11 and 12 show cyber-related data
breach loss severity distribution parameters with the stan-
dard errors and the respective GOF tests.

Based on the results of Table 12, namely, its last column,
we assume that the log-normal distribution with the pa-
rameters μ � 15.6826 and σ � 2.6292 is suitable for cyber-
related data breach loss severity. Tis is confrmed by the
visual inspection of Figure 12, which displays a cyber-related
data breach loss severity histogram and its assumed dis-
tribution (notice that the number of events with publicly
disclosed loss is small enough and, thus, the respective
histogram has a rather awkward shape).

(2) Cyber-Related Fraud. Te second group contains cyber-
related fraud events, which are also an important issue for
fnancial institutions (consider, e.g., credit card fraud or
e-mail fraud; the latter is gaining in popularity more and
more). Tere are altogether 96 such events in the available

Table 7: Cyber loss distribution parameters.

Distribution Parameters Std.
error

Exponential (number of days till the next
loss) λ � 0.0211 0.0029

Log-normal (actual loss amount) μ � 14.9179 0.2009
σ � 2.3434 0.1421
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Table 8: Cyber loss distribution GOF tests.

Distribution Parameters GOF test Test statistic P value

Exponential λ � 0.0211 Chi-square 4.1698 0.8415
λ � 0.0211 Kolmogorov–Smirnov 0.1138 0.4642

Log-normal

μ � 14.9179 Chi-square 7.3824 0.8313σ � 2.3434
μ � 14.9179 Kolmogorov–Smirnov 0.057 0.7687σ � 2.3434
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Figure 9: Histogram of time interval (in days) to the next loss and its assumed distribution.
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Table 10: Cyber-related data breach loss frequency distribution of GOF tests.

Distribution Parameters GOF test Test statistic P value

Chi-square k � 24.475 Chi square 59.5 0.0000
k � 24.475 Kolmogorov–Smirnov 0.3479 0.0002

Exponential λ � 0.0151 Chi square 12.5 0.0853
λ � 0.0151 Kolmogorov–Smirnov 0.2743 0.0069

Fisher

d1 � 0.66
Chi square 1.5 0.9927d2 � 2.0643

λ � 10.3834
d1 � 0.66

Kolmogorov–Smirnov 0.0521 0.9999d2 � 2.0643
λ � 10.3834

Gamma

α � 0.5979 Chi square 9.5 0.1473β � 0.0091
α � 0.5979 Kolmogorov–Smirnov 0.1852 0.149β � 0.0091

Weibull

k � 0.6912 Chi square 6 0.4232λ � 48.5039
k � 0.6912 Kolmogorov–Smirnov 0.1385 0.4538λ � 48.5039

Table 9: Cyber-related data breach loss frequency distribution parameters.

Distribution Parameters Standard error
Chi-square k � 24.475 1.1423
Exponential λ � 0.0151 0.0025

Fisher
d1 � 0.66 0.4092

d2 � 2.0643 0.6131
λ � 10.3834 4.3761

Gamma α � 0.5979 0.1179
β � 0.0091 0.0026

Weibull k � 0.6912 0.0832
λ � 48.5039 12.4018
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Figure 11: Cyber data breach loss frequency histogram and its assumed distributions.
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database, with 69 of them having publicly disclosed loss
amount.

We frst study loss frequency distribution and its pa-
rameters. Table 13 shows possible cyber-related fraud loss
frequency distributions and their respective parameters
together with the standard errors.

Te distribution parameters of Table 13 were obtained
through the maximum-likelihood method with the two
above-mentioned optimization algorithms. Te preparatory
steps of Section 4.2 ((S1), (S2)) were taken to adjust the
available cyber event occurrence data.

Table 14 shows GOF tests for the distributions of
Table 13.

Based on the results of Table 14, namely, its last column,
where the value below 0.05 leads to distribution rejection, we
assume that the most suitable cyber-related fraud loss fre-
quency distributions are Fisher, Gamma, and Weibull. After
the visual inspection of Figure 13, a displaying cyber-related
data breach loss frequency histogram and its assumed dis-
tributions, we conclude that the most suitable cyber-related
fraud loss frequency distribution is Fisher with d1 � 0.6983,
d2 � 2.5158, and λ � 10.4261 (non-centrality parameter).

We now concentrate on the loss severity distribution and
its parameters. Tables 15 and 16 show cyber-related fraud
loss severity distribution parameters with the standard er-
rors and the respective GOF tests.

Based on the results of Table 16 (namely, its last column),
we assume that the log-normal distribution with the pa-
rameters μ � 14.6305 and σ � 2.4582 is suitable for cyber-
related fraud loss severity. Tis is confrmed by the visual
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Figure 12: Cyber data breach loss severity histogram and its assumed distribution.

Table 11: Cyber-related data breach loss severity distribution parameters.

Distribution Parameters Standard error

Log-normal μ � 15.6826 0.759
σ � 2.6292 0.5367

Table 12: Cyber-related data breach loss severity distribution of GOF test.

Distribution Parameters GOF test Test statistic P value

Log-normal

μ � 15.6826 Chi square 2 0.5724σ � 2.6292
μ � 15.6826 Kolmogorov–Smirnov 0.1416 0.9424σ � 2.6292

Table 13: Cyber-related fraud loss frequency distribution
parameters.

Distribution Parameters Standard error
Chi-square k � 21.0688 1.0713
Exponential λ � 0.0182 0.0031

Fisher
d1 � 0.6983 0.4044
d2 � 2.5158 0.8009
λ � 10.4261 4.2168

Gamma α � 0.6109 0.1226
β � 0.0111 0.0033

Weibull k � 0.6983 0.0811
λ � 39.494 10.1437
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inspection of Figure 14, which displays a cyber-related fraud
loss severity histogram and its assumed distribution.

In conclusion, we shall notice that even though loss
severity for both the initial database and two checked event
groups can be assumed to follow log-normal distribution,
loss frequency distribution for the initial (exponential)

database difers from that of the two considered event groups
(non-central Fisher). Terefore, a particular attention to the
loss frequency distribution should be paid, when working
with cyber events of a specifc type.

Table 14: Cyber-related fraud loss frequency distribution of GOF tests.

Distribution Parameters GOF test Test statistic P value

Chi-square k � 21.0688 Chi square 56.2857 0.0000
k � 21.0688 Kolmogorov–Smirnov 0.2839 0.0055

Exponential λ � 0.0182 Chi square 11.0286 0.1374
λ � 0.0182 Kolmogorov–Smirnov 0.2634 0.0124

Fisher

d1 � 0.6983
Chi square 1.2571 0.996d2 � 2.5158

λ � 10.4261
d1 � 0.6983

Kolmogorov–Smirnov 0.048 1d2 � 2.5158
λ � 10.4261

Gamma

α � 0.6109 Chi square 8.4571 0.2065β � 0.0111
α � 0.6109 Kolmogorov–Smirnov 0.1846 0.162β � 0.0111

Weibull

k � 0.6983 Chi square 9.4857 0.148λ � 39.494
k � 0.6983 Kolmogorov–Smirnov 0.1291 0.5602λ � 39.494
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Figure 13: Cyber fraud loss frequency histogram and its assumed distributions.

Table 15: Cyber-related fraud loss severity distribution parameters.

Distribution Parameters Standard error

Log-normal μ � 14.6305 0.2959
σ � 2.4582 0.2093

Table 16: Cyber-related fraud loss severity distribution GOF test.

Distribution Parameters GOF test Test
statistic

P

value

Log-normal

μ � 14.6305 Chi square 9.5942 0.2947σ � 2.4582
μ � 14.6305 Kolmogorov-

smirnov 0.0993 0.504σ � 2.4582
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4.3. Cyber Bond Numerical Results. Tis subsection lists the
obtained numerical results on our proposed cyber bond
example. We rely on Monte Carlo simulations, with the
simulation number always being 5,000.

Figure 15 represents quantiles of losses for the maturity
period of the cyber bond, that is, 3 years. Te quantiles are
calculated from Monte Carlo simulations. As can be seen
from Figure 15, using our generated loss distribution pa-
rameters, the losses can reach the level of billion. We use
these obtained loss amounts to test the infuence of bond
coupon and notional triggers on the actual bond parameters
(e.g., price, yield, etc.).

We have already mentioned that a bond coupon
trigger can infuence the number of paid coupons on the
bond. We now calculate a bond coupon survival curve. As

we mentioned before, the bond is assumed to pay a
coupon every 6months. Tus, altogether there are 6
coupons. Figure 16 shows the probability of the payment
of each coupon depending on the coupon trigger. Recall
that a coupon is not paid as soon as the total losses up to
the coupon payment date exceed a specifc amount (bond
coupon trigger). Coupon payment probability is calcu-
lated as follows. In the frst step, Monte Carlo simulations
give a series or 0 s and 1 s depending on whether the
respective coupon was paid or not. In the second step, one
calculates the probability of coupon payment as the
number of 1 s divided by the number of simulations. As
can be seen from Figure 16, the coupon trigger of $2.04
billion, which corresponds to about 90% quantile as per
Figure 15, gives a “reasonable” coupon payment proba-
bility close to 1. Te lines in Figure 16 correspond to 10%
–90% loss quantiles with the uniform step chosen between
them.

Similar to the coupon survival curve, we now show a
notional survival curve for our proposed cyber bond. As
mentioned before, the bond notional is paid back provided
that the total loss up to the payment date does not exceed the
bond notional trigger. Figure 17 shows the probability of a
notional payment for diferent notional triggers. Te cal-
culation methodology follows the one for the bond coupons.
Notional triggers correspond to loss 10%–99% quantiles.
Following Figures 15 and 17, losses above $ 2 billion (i.e.,
above 90% quantile) show a “reasonable” notional payment
probability (above 90% as per Figure 17). In general, it is up
to a risk-taker to decide which notional payment probability
and, therefore, which notional trigger to choose for the issue
of a cyber bond.
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Figure 14: Cyber fraud loss severity histogram and its assumed
distribution.
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In the next step, we are going to show our proposed
cyber bond yield curve, which allows one to judge the
proftability of the proposed bond. A bond yield Y is cal-
culated by the following formula:

Y �
C

P
· 100%, (7)

where C is the bond coupon and P is the bond price.
Figure 18 shows a cyber bond yield curve depending on both
notional as well as coupon triggers. At least two things can be
seen from the fgure. First, a bond yield is not much
infuenced by a coupon trigger except for very small notional

and coupon triggers. Second, starting from the notional
trigger of about billion (corresponding roughly to 90%
quantile as per Figure 15), the bond yield stabilizes around
5% with the exception of a relatively small coupon trigger of
billion, for which the yield stays strictly above 5%, i.e., almost
triples our assumed funding rate.

For the reader’s convenience, Figure 19 shows our
proposed cyber bond yield spread, i.e., the diference be-
tween the cyber bond yield and the funding rate used in the
bond estimate (recall that the assumed funding rate amounts
to 1.52%) depending on both coupon and notional triggers.
As can be seen from the fgure, the beneft of investing into
our proposed cyber bond is about 3% (under “reasonable”
assumptions on bond triggers).

Finally, we present our proposed cyber bond price curve.
Figure 20 shows that for “reasonable” coupon and notional
triggers the bond price stabilizes somewhere around $ 17
million. We notice that the standard bond price (calculated
by formula (6)), i.e., omitting both a coupon and a notional
trigger, is $18, 797, 813.26.

4.4.CyberBondRiskPremium. Tis section considers several
approaches to calculating our proposed cyber bond risk
premium, namely, a bond coupon, to account for possible
coupon (or even the notional itself ) loss. It is up to the
ultimate issuer of the cyber bond to choose the most suitable
technique or invent a new one if necessary.

4.4.1. First Alternative: Probability of Loss. As the frst ap-
proach to calculating cyber bond coupons, we take the
analogy of catastrophe bonds (cat bonds for short) studied
in, e.g., [30], since a cyber attack could be considered as a
kind of catastrophe. A general coupon calculation formula
for cat bonds can be written as follows:

Couponrate(%) � LIBOR(%) + Riskpremium(%), (8)

where the risk premium should hedge the exposure of in-
vestors (into the bonds) to catastrophe risk (notice that
following the current trend (see, e.g., [31]), LIBOR rate could
be replaced by an alternative reference rate (ARR)). Te
above-mentioned risk premium could be then determined as
follows:

Riskpremium(%) � Constant(%)

+ Lossmultiplier · Expectedloss(%),
(9)

where the expected loss is a percentage of the notional
expected to be lost during the bond maturity period, the
constant is the rate of return requested by investors, and the
loss multiplier refects the uncertainty related to the expected
loss. For example, following the results of [30], [p. 1491],
which are based on catastrophe bonds issued during the
years 2006–2012 and covering earthquake risks, the constant
amounts to 3.35% and the multiplier amounts to 1.4817.
Additionally, as follows from the results of [32], [p. 168]
based on the US catastrophe bonds issued during the years
1998–2008 and covering wind risks, the constant (resp.
multiplier) amounts to 3.33% (resp. 2.4).
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Figure 17: Cyber bond notional survival curve for 3 years.
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To simplify the setting, we assume that the constant (the
loss multiplier, respectively) in formula (9) is equal to 0
(resp. 1) since these parameters are highly dependent on
investors. Moreover, following [15], [p. 817], we assume that

expected loss EL is related to probability of loss PL and
percentage of notional lost PNL given the loss occurs as
follows:

EL(%) � PL · PNL(%). (10)

In our cyber bond setting, PNL always amounts to 100%,
since the notional is either paid back or not paid at all (cases
of the partial repayment of the bond notional, despite the
fact that they are possible, are not considered in this paper).
Tus, in our considered case of cyber bonds, formula (8)
simplifes to

Couponrate(%) � LIBOR(%) + PL(%). (11)

Moreover, it is clear that PL of our proposed cyber bond
depends on the notional trigger. Te lower is the trigger, the
more probable it is that the notional will not be paid back.
Since this paper does not specify a specifc trigger but rather
considers trigger infuence on bond characteristics, we
calculated the average probability of not getting back no-
tional from the notional survival curve of Figure 17.Tus, we
obtain 11.58% (notice that according to [30], [p. 1490], for
catastrophe bonds issued during the years 1999–2012 and
covering earthquake risks, mean, maximum, and minimum
risk premiums are 5.63%, 14.5%, and 1.5%, respectively, with
the standard deviation being 2.70%. Terefore, our obtained
number is in line with, e.g., earthquake risk). Te average
was taken over all the loss quantiles considered in the fgure
(see Section 4.3 for more details). For convenience of the
reader, Figure 21 shows PL for diferent notional triggers. As
can be seen from the fgure, for low notional triggers PL
could exceed 80%.

Altogether, taking into account that 6-month LIBOR on
USD (taken from, e.g., [27] on August 15, 2019) is 2.05% and
that our proposed cyber bond pays a coupon every 6months,
the total bond coupon resulting from the frst coupon
calculation technique (i.e., according to formula (11)) is
13.63%.

4.4.2. Second Alternative: Par Yield. As the second approach
to cyber bond coupon calculation, we consider the concept
of a bond par yield. Recall from, e.g., [33], [p. 85] that a bond
par yield is a coupon rate for which the bond price equals its
par value, namely, the notional value. It is easy to see (taking
into consideration formula (6)) that the bond coupon C for
par yield can be calculated as follows (keeping in mind that
N is bond notional):

C �
N · 1 − e

− R·(d/365)
 


6
i�1 e

−R· di/365( )
. (12)

Te respective par yield PY is then derived as

PY �
C

N
· 100% �

1 − e
− R·(d/365)

 


6
i�1 e

−R· di/365( )
· 100%. (13)

Te obtained par yield PY is then set to be the bond
coupon rate.

20

Bond yield spread

15

10

5

0 2
Notional trigger in billion USD

4 6 8

Bo
nd

 y
ie

ld
 m

in
us

 fu
nd

in
g 

ra
te

Coupon trigger
2.04 bn USD
Coupon trigger
1.67 bn USD
Coupon trigger
1.3 bn USD

Coupon trigger
0.93 bn USD
Coupon trigger
0.56 bn USD
Coupon trigger
0.19 bn USD

Figure 19: Cyber bond yield spread.

15

Bond price curve

10

5

0 2
Notional trigger in billion USD

4 6 8

Bo
nd

 p
ric

e i
n 

m
ill

io
n 

U
SD

Coupon trigger
2.04 bn USD
Coupon trigger
1.67 bn USD
Coupon trigger
1.3 bn USD

Bond standard
price

Coupon trigger
0.93 bn USD
Coupon trigger
0.56 bn USD
Coupon trigger
0.19 bn USD

Figure 20: Cyber bond price curve.

International Journal of Mathematics and Mathematical Sciences 15



In the case of our proposed cyber bond, some of the
coupons and even the notional itself may not be paid back to
the bondholder, which depends on the actual cyber losses.
Tus, we frst simulate cyber losses for the bond maturity
period and then calculate cyber bond PY by formula (13),
where now some of e−R·(di/365) and even e−R·(d/365) may be
taken 0 depending on whether the respective item is paid to
the bondholder or not.

Figure 22 shows the obtained par yield curves depending
on both notional and coupon triggers. Since none of the
triggers (both depending on the actual bond issuer) is fxed

in this paper, we calculate the fnal coupon percentage as the
average par yield over all the obtained curves getting thus
5.09% (recall from Section 4.1 that this amounts to as per
assumed bond notional of million).

In order to be more aggressive in bond coupons, one
could increase the parameters of Table 7, namely, the loss
frequency (severity) parameter λ (resp. μ). As an example,
Figures 23 and 24 show par yield curves for 25% (resp. 5%)
increase of λ (resp. μ) value. Te resulting cyber bond par
yields are then 6.52% and 10.92%, respectively. One could
tune both parameters increase according to the needs of
the bond issuer. It is also easy to see that the unreasonable
increase of the loss severity parameter μ could badly
infuence a bond coupon rate (namely, in the current
cyber bond setting, 5% increase of μ almost doubles the
coupon rate obtained through 25% increase of λ ).

Notice that increasing the cyber loss frequency or se-
verity parameter will infuence other cyber bond charac-
teristics as well. For example, Figures 25–27 show cyber
bond spreads (namely, bond coupon percentage minus
funding rate) for initial λ and μ as well as their increased
values for 25% and 5%, respectively.

Additionally, Figures 28 and 29 show the bond notional
survival curves for loss frequency (λ) and loss severity (μ) in
the intervals λ ± λ · 25% and μ ± μ · 5%, respectively. It can
be easily seen from Figure 29 that 5% loss severity parameter
increase visibly reduces notional payment probability with
the set of current possible notional triggers.

Finally, Figures 30 and 31 show the probability of
(notional) loss PL for diferent notional triggers for loss
frequency (λ) and loss severity (μ) in the intervals λ ± λ ·

25% and μ ± μ · 5%, respectively. Tese two fgures just
mirror the results of Figures 28 and 29.

4.5. Simple Result Analysis. Te numerical results of Section
4.3 show that the choice of notional and in some cases,
coupon trigger could signifcantly infuence our proposed
cyber bond parameters. For example, as follows from Fig-
ure 18, under the small notional and coupon triggers, the
cyber bond yield could reach double-digits. Such a high bond
yield, however, comes from a rather low bond price as per
Figure 20. It is additionally infuenced by the bond risk
premium, which should be tuned to the needs of a specifc
investor. Under the “reasonable” notional and coupon trig-
gers, as follows from Figure 19, the beneft of investing into
our proposed cyber bond over relying on the funding rate is
about 3%. Since we propose a general cyber bond framework
only, it is up to the actual risk-taker to decide which notional
and coupon trigger should be deemed reasonable. Moreover,
other trigger types (instead of just summing up losses up to a
certain date) could be explored in case it is necessary for the
bond issuer as mentioned at the end of Section 4.1.

Te two techniques to calculate a cyber bond coupon rate
considered in Section 4.4 could provide an entry point for
the actual calculations done by the bond issuer.Te expected
loss approach (taken from the setting of cat bonds) provides
a higher coupon rate in comparison with the par yield
approach (13.63% versus 5.09%, respectively). Te latter
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Figure 21: Cyber bond probability of loss for the period of 3 years.
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Figure 23: Cyber bond par yield curve for loss frequency parameter
λ increase of 25%.
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Figure 24: Cyber bond par yield curve for loss severity parameter μ
increase of 5%.
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Figure 25: Cyber bond spread.

50

Bond spread for frequency parameter increase of 25 (%)

40

30

20

10

0

0 2
Notional trigger in billion USD

4 6 8

C
ou

po
n 

pe
rc

en
ta

ge
 m

in
us

 fu
nd

in
g 

ra
te

Coupon trigger
2.04 bn USD
Coupon trigger
1.67 bn USD
Coupon trigger
1.3 bn USD

Coupon trigger
0.93 bn USD
Coupon trigger
0.56 bn USD
Coupon trigger
0.19 bn USD
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International Journal of Mathematics and Mathematical Sciences 17



50

40

60

Bond spread for severity parameter increase of 5 (%)

30

20

10

0

0 2
Notional trigger in billion USD

4 6 8

C
ou

po
n 

pe
rc

en
ta

ge
 m

in
us

 fu
nd

in
g 

ra
te

Coupon trigger
2.04 bn USD
Coupon trigger
1.67 bn USD
Coupon trigger
1.3 bn USD

Coupon trigger
0.93 bn USD
Coupon trigger
0.56 bn USD
Coupon trigger
0.19 bn USD

Figure 27: Cyber bond spread for loss severity parameter μ in-
crease of 5%.
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Figure 28: Cyber bond notional survival curve for 3 years for λ in
the interval λ ± λ · 25%.
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Figure 29: Cyber bond notional survival curve for 3 years for μ in
the interval μ ± μ · 5%.
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Figure 30: Cyber bond probability of loss for 3 years for λ in the
interval λ ± λ · 25%.
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rate, however, could be easily increased through changing
the cyber loss frequency and loss severity parameters (to
6.52% and 10.92%, respectively). Changing those parameters
though could lead to a signifcant worsening of other cyber
bond characteristics, e.g., increasing the probability of the
notional loss for the notional trigger.

Finally, we would like to emphasize that due to lack of
properly developed cyber bond framework in the literature, we
are unable to make a proper comparison of our setting with
some other main-stream techniques. For example, Xu and
Zhang [21] rely on the setting of cat bonds to deal with the
insurance of losses of a cyber-related data breach. In particular,
they develop a multi-period pricing model for data breach cat
bonds by combining data breach risks and fnancial market
risks based in the equilibrium pricing theory. Te main ad-
vantage of our approach is two-fold: it is simple and also
sufciently general to be applied to any type of cyber-related
loss. For instance, we can easily switch from cyber-related data
breach to cyber-related fraud, both of which were considered
in this section. Moreover, while calculating the coupons of a
cyber bond, we do not only follow the classical cat bond
approach but also present an alternative par yield technique,
which could be more suitable for cyber bonds, since cyber
events are essentially diferent from the classical catastrophe
events (like, e.g., hurricanes) in terms of, e.g., that the actual
loss caused by a cyber event is not always seen immediately.

5. Conclusion

Tis paper presented a general setting of cyber bonds and
considered a specifc and extensive cyber bond example,
including a bond price, yield, risk premium, etc. Te setting
appears to be convenient to use and could be easily tuned to
the needs of the bond issuer. Moreover, we showed that the

publicly available cyber loss event databases provide enough
information to estimate the cyber loss severity and frequency
distributions. Finally, two important points arose from our
investigation. First, the proposed cyber bond characteristics
are heavily infuenced by coupon and notional triggers
(determining the payment of bond coupons and notional,
respectively). Second, the loss frequency distribution of
specifc cyber event groups can be diferent from that of the
whole cyber event database. Both points should be neces-
sarily cared about by the bond issuer.

For several years, several fnancial institutions have been
using operational risk securities that specifcally cover cyber
risk.Temateriality of these securities is growing constantly,
and the separation of their scope is a matter of time. Te
proposed new type of fnancial instruments based on cyber
risk allows satisfying the investors’ demand for the range of
available products and extend the range of potential returns
and risks. On the other hand, issuers will be able to decrease
coupon payments as compared to operational risk securities
and mitigate the damage from cyberattacks.

Te proposed fnancial instrument factors in the acci-
dental occurrence of cyber incidents and unexpected losses
after such events. It is considered that losses cannot be
defned promptly. Tus, the modeled loss trigger is used to
catch the moment of a potential cyberattack.

Te proposed cyber risk securities are the instruments of
current interest since it is complicated to predict the un-
derlying risk. Furthermore, we currently have no methods to
assess the potential damage from a cyberattack as far as the
real damage immediately after the incident.

Further research is aimed at fnding a method that will
allow assessing losses from a cyber incident immediately.
Tus, we will be able to use an indemnity trigger in the
corresponding fnancial instrument.
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