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The permanent is important invariants of a graph with some applications in physics. If G is a graph with adjacency matrix
A = [a;;], then the permanent of A is defined as perm (A) = ¥ s []i-, @j(;)» where S,, denotes the symmetric group on # symbols.
In this paper, the general form of the adjacency matrices of hexagonal and armchair chains will be computed. As a consequence of
our work, it is proved that if G[k] and H [k] denote the hexagonal and armchair chains, respectively, then perm (A (G[1])) = 4,
perm (A(G[k])) = (k+ 1)%,k>2,and perm (A (H[k])) = 4% with k> 1. One question about the permanent of a hexagonal zig-zag

chain is also presented.

1. Introduction

Throughout this paper, all graphs are simple and finite.
Suppose X is such a graph and V (X) = {uy,u,,...,u,} is the
set of all vertices of X. Two vertices of X are assumed to be
adjacent, if there is an edge connecting them. Define a zero-
one matrix A = A(G) = [aij] in such a way that a;;=1 ifand
only if there is an edge connecting v; and v;. The adjacency
matrix is a very important tool for introducing a graph to a
computer. It records all information regarding the graph
under consideration. We refer to the famous book of Biggs
[1] for important properties of this matrix.

A perfect matching of a simple graph X is a subset
LCE (X) such that end vertices of all edges in L are different,
and they coincide with the vertex set of X [2].

Suppose G is a graph with an adjacency matrix A = [a;;].
The permanent of A is defined as perm (A) = ¥ cs [T o (>
where S, denotes the symmetric group on n symbols. In a
recent interesting paper, Bohra and Reddy [3] computed the
number of matrices M for which perm (M) = x (modn),
where x is a given integer. By permanent of a graph, we
consider the permanent of its adjacency matrix.

A 2-connected graph is a connected graph with this
property that at least two vertices must be removed to make it

disconnected. Following Xu and Zhang [4], a hexagonal chain
is a connected plane graph with no cut vertices in which every
interior region is bounded by a regular hexagon such that two
hexagons are either disjoint or have exactly one common
edge, no three hexagons share a common vertex, and each
hexagon is adjacent to two other hexagons, with the exception
of exactly two terminal hexagons to which a single hexagon is
an adjacent. For more information about hexagonal systems
and its applications in chemistry, we refer interested readers
to consult the famous book of Cyvin and Gutman [5].

In this paper, we consider the hexagonal chain G[k],
Figure 1, the armchair chain H [k], Figure 2, and a zig-zag
hexagonal chain I[2k + 1], Figure 3, where G[k] and H[k]
have exactly k hexagons and the zig-zag hexagonal chain
I[2k + 1] has exactly 2k + 1 hexagons. The adjacency ma-
trices and permanents of G[k] and H [k] are computed, but
we obtained a recurrence relation of order 2 for the zig-zag
hexagonal chain I[2k + 1] which is not solvable. We refer
our interested readers to consult the paper [6] for more
information about hexagonal chains.

Our notations here are standard, and the readers can
consult the famous book of Biggs [1] for more information
on this topic. We refer the interested readers to study [7, 8]
for counting perfect matchings of hexagonal systems.
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FiGure 2: The armchair chain H [k]
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FiGure 3: The zig-zag hexagonal chain I[2k + 1].

2. Adjacency Matrix and Permanent of G [k]

It is easy to see that G[k] has exactly n =6 + 4(k — 1) ver-
tices. Suppose A(G[k]) = [a; ]-] is the adjacency matrix of the
graph G[k]. In our labeling of G[k], the vertex i is adjacent
with the vertexi + 1,1 <i<n - 1, and the vertex 1 is adjacent
to the vertex n. Moreover, the vertices i and j such that i +
j =n+ 1 will be adjacent. In a simple form, the vertices i and
j are adjacent if and only if |i — j| =1 ori+ j = n+ 1. Note
that by adding one hexagon to G[k], the number of vertices
will be increased by 4. The form of the adjacency matrix of
Glk] is as follows:

[01000.0000O0 17
10100.00000
01010.00100
00101.00000
00010.10000
AGIEKD)=|. . . . ... ... .| (1)
00001.01000
00000.10100
00100.01010
00000.00101
L10000.0001 0]

To compute the permanent of this matrix, we need to
calculate the permanent of two matrices E,,,n>3,and F,,,,
n>5. In both of these matrices, n is assumed to be an odd
number. In the matrix E,,,, the entries in the positions (i, 7)
for 1<i<n, (i+1,i) for 1<i<n-1, and (i,n+1—-1) for
1 <i<mn+ 1/2 are equal to one, and other entries are 0. In the

matrix F,_,, the entries in the positions (i,7) for 1<i<n,
(i,i+1)forl<i<n-1l,and (n+1-1i,i)for (n+1)/2<i<n
are equal to one, and other entries are 0. These matrices have
the following forms:

[1 0 0 .0 17
110 ...10
01... 100
Ean= >
00 1 10
L0 0 O 1 1] @)
[ 1 0 0 07
01 1 00
00 1 00
Fan:
0 10... 011
[ 1 0 O 0 1.

Lemma 1. perm(E,,,) = (n+1)/2, n is odd.

Proof. We proceed by induction on n with step 2. If n =3
then a simple calculation shows that perm (E,,;) = 2. By our
inductive  assumption,  perm (E,_y(n-2) = (n—1)/2,
whenn > 5. We now expand the matrix E,,,, through the first
row to obtain two matrices A and B as follows:

1 0 . 107
1 1... 100
A= )
0 1 10
L 0 .1 1] 3)
rt 1 0 17
01 1 0
B=
0 0... 11
LO 0 0 ... 1]

Since # is odd, perm(E,,,) = perm(A) + perm (B). The

matrix B is unitriangular, and so its permanent is 1. We now
expand the matrix A through the last column to obtain
another matrix A" with the same permanent. Therefore, A =
E (-2)x (n-2)> and by inductive assumption, perm (E, ) = (n —
1)/2 +1 = (n+ 1)/2, proving the lemma. O
Lemma 2. perm(F,,,) = (n+1)/2, n is odd.
Proof. Similar to the proof of Lemma 1, we proceed by
induction with step 2. By an easy calculation, perm (F5,s) =
3. By our inductive assumption, perm (F ,,_5).(,-5) = ((n—
2)+1)/2 = (n—-1)/2,n>7. We now expand the matrix F,,
through the first row to obtain two matrices C and D as
follows:



International Journal of Mathematics and Mathematical Sciences 3

(1 1 .0 07
0O ... 100
C= >
10 0 11
L 0 .0 1] @
[ 1 0 07
0 1 1...00
D=

0 0... 0 11
0 1]

If we expand the matrix D through its first column, we will
have a triangular matrix with permanent one, and if expand the
matrix C through its last row, then we will have another matrix
C'" which is equal to F, 3, (, 5. Therefore, perm(F,,,) =
perm (C) + perm (D) = (n—1)/(2) + 1 = (n+1)/(2), prov-
ing the lemma. U

Lemma 3. Supposen = 2 (mod 4) is a positive integer greater
than or equal to 10. Then, perm (A (G[k])) = perm (A(G[k —
1])) -n/2 - 4.

Proof. Expand the matrix A(G[k]) through the first row to
obtain two matrices in which the first matrix is related to the
second column, and another one is related to the n-th
column. These matrices have the following form:

'1100.0000O0T
0010.00100
0101.00000
0010.10000

L= ,
0001.01000
0000.10100
0100.01010
0000.00101
[1000.0001 0]
r10100.0000T )
01010.0010
00101.0000
00010.1000

M = .
00001.0100
00000.1010
00100.0101
00000.0010

L10000.000 1.

Our main proof will consider the methods for com-
puting the permanent of L and M. O

2.1. Computing the Permanent of L. To compute perm (L), we
expand the matrix L through its first row to construct
matrices B and C as follows:

(01 0.001007
101.00000

B=|000.10100]|
100.01010
000.00101
L0000 . 00010
[010.0010 07 (©)
001.00000
010.10000

C=

000.00101
L100. 0001 0/

Since B has a unique nonzero entry in the last row, we
expand B through its last row to obtain a new matrix B'. The
matrix B' has a unique nonzero entry in its last column, and
by expanding it through this column, the matrix A(G[k -
1]) will be obtained. For the matrix C, we first expand it
through the first column and next expand the new matrix
through its last column to find the matrix C" as follows:

710.0010]7
01.0000
10.1000
c'=|....... .| (7)
01.0100
00.1010
(00 .010 1]

Note that C' is a matrix of size (n—4) x (n —4), and by
our assumption, it can be assumed that n = 4k — 2. We now
prove that perm (C') = perm (E 5, _yxt_1))» k=2. To do
this, we proceed by induction with step 4. We start by n = 10.
By our algorithm for constructing the matrix C', it can be
easily seen that
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000

100

010
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101

010

01
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— O O O o o
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0
0
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0

We now expand C’ through its second row, the new
matrix through its third row, and the resulting matrix
through its fourth row to construct the matrix.

101
C'"=E;y;=|110] (9)
011

With permanent 2 = perm (C'). Suppose that n = 4k — 2.
By our discussion above, C' has the size (4k — 6) x (4k — 6).
We do the following operations on C' to construct

E k1)< 2k-1)> K 2 2.
(a) Expand the matrix C' through its second row to
construct the matrix C,

(b) Expand the matrix C, through its third row to
construct the matrix C;

(c) Expand the matrix C,;_, through its 4k — 8-th row to
construct the matrix Cy_g¢

This algorithm constructs the matrix
Cuk—s = Eak-1)x (2k-1)- We now apply Lemma 1 to deduce
that perm (C) = perm (E,_j,1—1) = K, k> 2.

2.2. Computingthe Permanent of M. In a similar argument as
(1), we expand the matrix M and its resulting matrices are as
follows:

(a) Expand the matrix M through its second column to
construct the matrix D,

(b) Expand the matrix D, through its third column to
construct the matrix D;

(c) Expand the matrix D,;_, through its 2k — 2-th col-
umn to construct the matrix D,;

It can be seen that D, = F 51,3)x(2k+3)> and by Lemma 2,
perm (M) = perm(F(zkH)x(zkH)) =k+1, k>2 (10)
Therefore, perm (A (G[k])) = perm (A (G[k - 1])) +

perm (L) + perm (M) = perm (A(G[k])) + (n/2) + 4.  This
completes the proof.

Theorem 1. perm(A(G[1])) =4 and perm(A(G[k])) =
(k +1)%, where k>2.

Proof. By a simple calculation, one can see that
perm(A(G[1])) =4. By Lemma 3, perm(A(G[k])) =
perm (A (G[k —1])) + 2k + 1, and by solving this recursive
equation, perm (A (G[k])) = (k + 1)%, where k >2. O

3. Adjacency Matrix and Permanent of H [k]

The aim of this section is to calculate the adjacency matrix
and permanent of H[k], Figure 2. It is easy to see that this
graph has exactly n = 6k vertices. The adjacency matrix of
H[k] is denoted by A(H[k]) = [bij].

We first calculate the general term of the adjacency
matrix. From Figure 2, one can see thatb,,,,,;) = 1, 1 <i<n—
1, other than all values of i with i#6t -3 with 1<t<k.
Furthermore, b 36y =1 and b(g 562 = 1, where
1 <t <k. Since the adjacency matrix is symmetric, if b;; = 1,
then b; = 1. In other cases, b;; = 0. Therefore, the adjacency
matrix of H[k] is as follows:

0 101000.0000 0]
1010000.00000
0100010.00000
1000100.00000
0001010.00000
0010101.00000
AHIKD=|. . . . . . . . . .. . (11)
0000010.10100
0000001.01000
0000000.10001
0000001.00010
0000000.00101
(10000000 .0101 014

Lemma 4. Suppose A(H [K]) is the adjacency matrix of H [k]
with n =6k vertices. Then, perm(A(H[1]))=4 and
perm (A (H [k])) = 4perm (A(H [k — 1])), where k > 2.

Proof. Our proofis by induction on k. The case of k = 1,2 are
trivia, and we have perm(A(H[1]))=4 and
perm (A (H[2])) = 16. So, we proceed by induction and as-
sume that k > 3 is a natural number. Suppose perm (A (H [k -
1])) = 4perm (A (H [k — 2])). In the first row of the matrix
A(H[K]), there are two nonzero entries which are b,, and b, ,.
To calculate the permanent, we expand the matrix through the
first row. Then, we will have two new matrices B; and B, such
that perm (A (H [k])) = perm(B,) + perm(B,). We first
calculate perm (B, ). Note that B, has a unique nonzero entry
on its second row and so by expanding it through this row, it
is enough to calculate the permanent of this new matrix. The
new matrix has a unique nonzero entry on the third row that
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to simplify our calculations, we expand again this new matrix
through this row. The resulting matrix D is as follows:

(1100 .0000 07
1010.00000
0111.00000

1 1

0
(12)
1.0
0.1
1.0
0.0
0

o O o o o
o O o o ©
S O O o o o

— o O O = O

00
000
001
010
101

L0 00O . 010

If we expand D through the first row, then we will find
two matrices B and C. These matrices can be written as
follows:

r010. 0000 07
111.00000
000.10100
B=/001.01000|
000.10001
001.00010
000.00101
LO0OO0O. 010104
r110.0000 07 (13)
011.00000
000.10100
C=({001.01000
000.10001
001.00010
000.00101
LOO0OO0O. 010104

By expanding B through its first row and expanding the
new matrix through its first column, the resulting matrix will
be A(H [k — 1]). On the other hand, by expanding the matrix
C through its first column and expanding the new matrix
through its first column, the resulting matrix will be again
A(H [k — 1]). Therefore, perm (D) = perm (B) + perm (C) =
perm (A (H [k — 1])) + perm (A (H [k — 1])).

We are now ready to calculate perm(BZ), The second
column of B, has a unique nonzero entry, and by expanding

it through this column and then expanding this new matrix
through its third row, we obtain again the matrix D. This
proves that perm (A (H [k])) = 4perm (A (H [k — 1])). O

Theorem 2. perm(A(HIk])) = 4%, where k> 1.
Proof. Induct on k. O

4. Concluding Remarks

In this paper, the adjacency matrices and permanents of a
hexagonal and armchair chain were computed. At the end of
this section, a zig-zag hexagonal chain I[2k + 1], k > 1, with
exact 2k+1 hexagons and n=8k+6 vertices, is
investigated.

To calculate the form of the adjacency matrix A (I[2k +
1] = [cij], we will determine all unit entries Cij such that
i< j, and then, all entries will be calculated based on the
condition that ¢;; = ¢;;. Suppose that ¢ = [n/8] + 1. By the
labeling of this graph given in Figure 3, one can see that
Cig+1) = 1, where 1<i<n-—1. Furthermore, ¢;, = 1. It is

also clear from our figure that ¢ @iz =1
i=1,2,...,t—1. The final set of our unit entries is cor-
responding to the pairs (4i—3,n— (4i—4)), where
i=2,3,...,t. Based on these calculations, the form of the
adjacency matrix of I[2k + 1] is as follows:
01 000000. 00O00O0 17
10100000.00000O0
01010000.000O00O
00101000.00010
00010100.10000
00001010.00000
00000101.00000O0
A(I2k+1]) = .
00000010.000O0O
00001000.01000O0
00000000.10100
00000000.01010
00010000.00101
10000000 .00O01O0J
(14)

Our calculations with Mathematica [9] and some ar-
guments as Theorems 1 and 2 suggest the following
conjecture:

Conjecture 1. perm (A(I[2k +1])) =
(3+y/perm (A(I([2k — 11))) — +/perm (A(I[2k - 3])) )
, Where n>22.
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Moreover, by our calculations with Mathematica on
adjacency matrices of small dimensions, we calculate that
perm (A (I[3])) = 25, perm (A (I[5])) = 169, perm (A(I
[7])) = 1156,  perm(A(I[9])) =7921, perm(A(I
[11])) = 54289, and perm (A (I[13])) = 372100. We
could not solve the equation of Conjecture 1, but it is
possible to apply some techniques in numerical analysis to
obtain approximately the permanent. We end this section
with the following question:

Question 1. What is the exact value of perm (A(I [2k +
1])).
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