Brief reminders and demonstration

We begin our study of the behaviour of the measures Mgk, OR and ORy,, in this section by using
the 21 properties already identified in the work of |Grissa(2013)Grissa] which are recalled below.

N

Intelligibility or comprehensibility of the measure
e If the interpretation of m is difficult, then P;(m) =0 ;

e If m is reduced to usual quantities, then P;(m) =1 ;

e If m can be explained by a sentence, then P;(m) = 2.

It is important that a measurement is intelligible in order to interpret the results obtained.

1. In fact, we admit that Mgk (X — Y) is the rate of growth of probability of Y under the presence
of X.

2. And, the Odds-Ration (OR) measure and the normalized Odds-Ratio (ORp,,) are the eventual
odds ratio of Y under the presence of X.

Therefore, we have : ’Pl(MGK) = Pi(OR) = Pi(ORy,;,,) =2 ‘

N

Ease of setting a threshold for acceptance of the rule

e f determining the threshold is problematic, then Py(m) =0 ;

e If the determination of the threshold is immediate, then Py(m) = 1.

This property is proposed in order to keep interesting rules without having to classify them. And
also intelligible, standardised and statistical measures lend themselves well to the determination of this
threshold (|Grissa(2013)Grissa]).

1. Since the decision taken from the Mgk measure is based entirely on a critical value, the deter-
mination of the acceptance threshold of a rule by this measure is immediate.

2. Secondly, the Odds-Ratio measure is an intelligible and statistical measure but not standardised,
so determining the threshold is problematic.

3. And, the ORp, measure is an intelligible, standardised and statistical measure, so the determi-
nation of the acceptance threshold of a rule is immediate.

Therefore, we have : ’PQ(MGK) = P(OR}p,) =1 and P2(OR) =0 ‘

N

- Measure non-symmetrical
o If m is symmetrical, i.e. if V(X = Y), m(X = Y)=m(Y — X) , then P3(m)=0;

o If m is non-symmetrical, i.e. if (X — Y) such that m(X — Y) # m(Y — X) then
=1.

It is preferable for a measure to evaluate the rules X and Y differently since the premise and
conclusion have distinct rationale. Nevertheless, in some cases, the orientation of the link between
X and Y may not provide additional information to the user, i.e., whether the applied measures are
symmetrical or not, it will not change anything in the obtained results (|Grissa(2013)Grissal).

The propositions below show the measures OR, OR,,;, are symmetrical

Proposition 1. Let X and Y be two patterns, we have the relation :
OR(X —-Y)=0R(Y — X). (1)
Proposition 2. Let X and Y be two patterns, we have the relation :

ORnh(X — Y) = ORnh(Y — X) (2)



According to [Feno(2007)Feno|, the proposition below shows that the measure Mg, are symmetric,
while Mé 1S non-symmetric.

Proposition 3. (a) If X favours Y, we have the relationship :

MEX V) = 1 = D MY = X) )

(b) If X disfavours Y, we have the relationship :
Mgy (X =Y) = Mgg(Y — X) (4)

Demonstrations :
Let A and B be two patterns,

1. Pour Mgk :
In the work of [Feno(2007)Feno|, pages: 73, we have well shown that MéK(A — B) # M(J;K (B —
A) and M&, (A — B) = Mg (B — A)
Hence the favouring Mgk measure is non-symmetric and the unfavouring Mgk measure is sym-
metric.

2. For Odd-Ratio :

OR(A — B) — OR(B — A) — P(ANB)P(ANB) P(BNAP(BNA)
~ PAANB)P(ANE) P(BNAP(BNA)
_ P(AnB)P(AnB) P(BNAPANDB)
" PANB)P(ANB) P(ANB)P(ANB)
= 0.
Hence the Odd-Ratio measure is symmetrical
3. For OR,;, : Indeed
_ Pa(B) — P(B)
ORuA = B)=ORu(B = 4) = 5 56 b(a) p(B) - PABIP(A))
Pp(A) —P(4)
Pp(A)(1 - P(BIQ » P;(A) +Pp(A)P(A))
_ c — P(B)
S - P(An B) - FEPR(B) + Pl
by — P(A)
PG —p(An B) — BEp(4) + El2E)
B P(AN B) — P(A)P(B)
~ P(ANnB)(1—-P(A)—P(B)+P(ANB))
P(AN B) — P(A)P(B)
P(ANB)(1—P(A) - P(B) + P(AN B))

= 0.

Therefore Oth is symmetrical.



For

PA(B) - P(B
OR},(A— B) — ORj, (B — A) = 1- PA(B))((P )B) —(Pj(B)P(A)) -
Pp(A) — P4
(1— PB(;{( A)mg)(A) — Pp(A)P(B))
B P(A) _P(B)
(1- 2G2(P(B) — P(AN B))
" P

(1 - 55 (P(A) — P(AN B))

B P(AN B) — P(A)P(B)
~ (P(A)—P(ANB))(P(B)—P(ANB))
P(AN B) -~ P(A)P(B)
(P(A) —P(AN B))(P(B) — P(ANB))

Therefore ORgh is symmetrical.
Hence we have : | P3(Mg&;) = P3(OR) = P3(OR.,) = P3(OR%,) = 0 and Ps(ML,) =1|

N

non-symmetrical measure in the sense of negation of the conclu-
sion
o If m is symmetrical in the sense of the negation of the conclusion, i.e. if
VX -Y),mX —=Y)=m(X -Y), then P,(m)=0;

e If m is non-symmetric in the sense of the negation of the conclusion, ie. if 3(X — Y)
such that m(X — Y) # m(X — Y) then Py(m) = 1.

The following propositions show that the measures Mgk, OR and O Ry, are not symmetric measures
in the sense of the negation of the conclusion.

Proposition 4. According to [Feno(2007)Feno], let X and Y be two positive patterns. We have the
following equality : o
Meg(X -Y)=—-Mgg(X —=Y). (5)

Proposition 5. Let X and Y be two positive patterns. We have the following equality :

OR(X > 7) = OR&M' (6)

Proposition 6. Let X and Y be two positive patterns.
(a) If X favoursY, we have the following equality :
OR} (X -Y)=—OR},(X »Y) (7)
(b) If X disfavours Y, we have the following equality :
OR{. (X =Y)=—OR[ (X =) (8)
Demonstrations :

1. For the measure Mgk B
In the work of |Feno(2007)Feno|, pages : 75, we have well shown that MéK(X - Y) =

ML (X = Y)# ML (X > Y)and Mg (X - Y) = —M& (X - Y) # Mé (X = Y).
Therefore Mgk is not symmetric in the sense of the negation of the conclusion.



2. For the OR measure
Indeed

OR(X —-Y) =

O|DD|D
Si=XIx=I

We obtain : OR(X —Y) # OR(X —Y)
So OR is not symmetric in the sense of the negation of the conclusion.

3. For the measure ORy,,
Indeed

Px(Y) - P(Y)
Px(Y)(1-P(X) -~ P(Y) +Px(Y)P(X))
x( +

OR] (X »Y) =

(1=Px(Y))(1 —P(X) =14 P(Y) + (
P(Y'/X )
(1- X/

P(Y'/X")
= -OR¢ (X —Y)

So OR] (X —+Y)#OR] (X —Y)
And
Px(Y)-P(Y)
1-Px(Y)(P(Y) - Px(Y)P(X))
1-Px(Y)—-1+P))
(1 =1+ Px(Y))(L~-P(Y) — (1~ Px(Y))P(X))
PY'/XT) = P(Y')
(Y’/X’)( — P(X') = P(Y") + P(Y'/X")P(X"))
= —OR S(X =Y)

So OR (X -Y)#OR: (X »Y)
Hence O Ry, is not symmetric in the sense of the negation of the conclusion.
Hence we have : ’P4(MGK) = P4(OR) = Py(OR;) =1 ‘

OR} (X =»Y) =

- MMeasure evaluating (X — Y) and Y — X in the same way in
the case of logical implication
e If 3(X — Y) such that Px(Y) =1 and m(X —Y) # m(Y — X), then Ps(m) =0 ;

\

e If V(X — Y), such that Px(Y) =1 = m(X = Y)=m(X — Y) then P5(m) = 1.

The following propositions show that Mg/, OR and OR},, are implicative measures, while Mqx?
is not an implicative measure.

Proposition 7. (a) According to [Feno(2007)Feno], if X favours Y, we have the equivalence
relation of the two contraposed rules :

MGK(? — Y) = MGK(X — Y). (9)
(b) If X disfavours 'Y, we have the following relationship :

PX)P(Y)
(1-P(X))(1 = P(Y))

Mgk (Y = X) = Mgk(X —Y). (10)
Proposition 8. Let X and Y be two patterns, we have the equivalence relation of the two contraposed
rules :

OR(YY - X)=0R(X —Y). (11)



Proposition 9. Let X and Y be two patterns, we have the equivalence relation of the two contraposed

rules :
ORpn(Y = X) = ORpp(X — Y). (12)

Demonstrations :
Let A and B be two patterns and VA — B € K(P;C, R),

1. For the measure Mgk
In the work of [Feno(2007)Feno|, pages: 74, we have well shown that M(J;K(A — B) = MéK (B —
A) and Mg, (A — B) # M&, (B — A)
Therefore M, é K is an implicative measure and Mg is not an implicative measure. If P4(B) = 1,

we have M{, (A — B) = ML, (B — 4) = Tigg; =1.
And for the case of MgK
- — 1
If Po(B) =1, we have M¢,,(B - A) = —————— # M, .(A— B
A(B) , we have M@ (B — A) Mg;K(A—>B)7E Grx(A— B)
2. For the OR measure
By definition L
— P(BNAPBNA
OR(B— A) = (:ﬂi) (7ﬁ:)
P(BNAP(BNA)
_ P(BNAP(BNA)
~ P(BNAPBNA)
~ P(AnB)P(ANB)
"~ P(ANB)P(ANB)
= OR(A— B).
So OR is an implicit measure.
If P4(B) =1, we have OR(B — A) = OR(A — B) = +
3. For the measure ORy,,
Indeed _ _
ORtpnoa) = = P —PA)
Pp(A)(1 - P(B) — P(A) + P5(A)P(B))

_ _ - EE(Z) -
P5(A)(1 — P(B) — P(A) + P5(A)P(B))
1 _ _1=P(4)
__P(ANB)
_ P(B)
P(ANB) |, P(AnB)P(B)
PA) = 5 + =50

P A(B)P(A)“P(A)P(B)
T=P(A)-P(B)+P A(B)P(A)
PA(B)P(A)-P 4 (B)P(AP(B)
—P(B)
Pa(B) —P(B)
P4(B)(1—P(A) - P(B) + Pa(B)P(4))
— OR/, (A= B).

So OR%n is an implicit measure.
PR f 1-P(B)
If P4(B) = 1, we have OR; , (B —+ A) = OR; (A — B) =

S



At the end

— P (A4) — P(A)
OR? (B— A) = — B/ E—
(B = 4) (1 Po(A) (P(A) —PE(SLP(EB))
) ) P(A) — 53@) )7 )
(PR (e 2 B
P(A) — P<A);_P;g§;P<A>
= (p(A)iS((g))p(A)> (P(B) CP(A) + P(A)IES((g))P(A) _ P(A)P(B)f;((BB))P(A)P(B))
B (1—P(4)) (Pa(B) - P(B))
(1 =PA(B)P(A))(1—P(B))(P(B) — Pa(B)P(A))
PA(B) - P(B)

Therefore OR;im is an implicit measure.
If P4(B) =1, we have OR%, (B — A) = OR%, (A — B) = +0

Hence we have : P5(MéK) = P5(OR) = Ps(ORy;) = 1 and Ps(ME&,) = 0. |

‘ e If m is not increasing as a function of nxy, then Ps(m) =0 ;

Increasing measure according to the number of examples

e If m is increasing as a function of nxy, then Ps(m) = 1.

The following propositions show that the measures Mgk, OR and ORfm are increasing measures

as a function of nxy, while ORin is not an increasing measure as a function of nxy.

1
Proposition 10. (a) If X favours Y, and nxy the variable, with a = ——— > 0 and
nx(n —ny)

b= —%, we have the following function :
nx(n —ny)
Mer(X = Y) =anxy +b. (13)
(b) If X disfavours Y, and nxy the variable, with a = ny?ny > 0, we have the following function
MGK(X — Y) =anxy — 1. (14)

Proposition 11. If X favours Y, and nxy the variable, with a = fraclny.ny > 0, we have the
following function :

OR(X — Y) =a.nxy. (15)

Proposition 12. (a) Let X andY be two patterns of the context K and the variable nxy , with
a=n—nx —ny and b= ny, we have the following function :

1 b

ORh(X = Y) = — . (16)

nxy +a nxy(nxy +a)

1
(b) If X disfavours Y, and nxy the variable, with a = > 0 and

- (’I’L.’I’LX — an)(ny — nxy)
b= — XY , n.nx # nxy and ny # nxy ; we have the following
(n.nX — an)(ny — an)
function :

OR (X = Y) =anxy +b. (17)



Hence we have : | Pg(Mgx) = Ps(OR) = Ps(OR%,) =1 and Ps(OR!,) = 0.|.

Demonstrations :

1.

Let X and Y be two patterns of the context K, such that nx.ny # 0, we define : MéK(X —-Y)=

nxy —nxn 1 nxn

Y XY By posinga= —— and b = —L, we have: Mgg(X —=Y) =
nx(n —mny) nx(n—ny) nx(n—ny) )
anxy—+b. Asnx,ny € N*and n > ny, then we have: nxy(n—ny) >0anda = ——— > 0.

nx(n —ny)

Therefore Mé ) 18 an increasing function of nxy.

In the end, we have : MéK = —a.nyy +anx +b. By posing ¢ = a.nx + b, we have :

MéK(X —Y) = —a.nyy + ¢ which is a decreasing function of n 5.

nxy —nxny

Then, Mg (X = Y) = . By fixing the value of nx and ny we obtain :

nx.ny
MgK(X —Y) =anxy — 1. Since ny, ny € N*, then a = ny%ny > 0.
Therefore MgK(X — Y) = a.nxy — 1 is increasing by nxy. Moreover, we have : nyxy =
nx — nyy. Therefore Mg (X — Y) = —anyy +anx — 1. It comes Mg (X — V) =

—a.nyy + A,with A = a.nx — 1, is a decreasing function of n yv-.

. Then, OR(X —»Y) = XY IRY. As ngy,ngy,nyy € N, asa = "Xy > 0.
Xy Xy Xy Xy
Therefore OR(X — Y) = a.nxy is increasing by nyy. Moreover, we have OR(X — Y) =
—a.nyy +anx. We obtain OR(X —Y) = —a.nyy + 8 with 8 = a.nx is a decreasing function
of nyv.
nXY .,
After, OR/, (X - V) = nx
%XY(TL—HX — Ny +Tlxy)

Therefore, OR{;h(X —=Y) = nXy Y .

nxy(n —17”LX —ny +nxy) .
It comes ORih(X —-Y) = - n = -

nxy +n—nx —ny nxy(nxy+n-—nx—ny) nxy-+ta

b

—— witha=n—nx — ny and b = ny is not increasing as a function of nxy.
nxy(nxy + a)

nxy

—ny
Then, OR%, (X - Y) = nx
en nh( ) (n—%)(ny—%nx)

nxy —nxny

Therefore, OR%, (X - Y) =
i ) (n.nx —nxy)(ny —nxy)

) 1 nxny
We obtain, OR?, (X = Y) = — =
¢ obtan nn ) (nl-nx —nxy)(ny — nXY)nXY (n.nx —nxy)(ny —nxy)
anxy +0b, with a = and b = — nxny is increas-
(n.nX — nxy)(ny — an) (n.nX — an)(ny — an)

ing as a function of nxy.
Finally, ORZh(X —Y) = —anyy +anyx +b. By posing : ¢ =a.nx + b, we have :
ORY, (X —Y) = —a.nyy + c which is a decreasing function of n .

1

Increasing measure as a function of the size of the learning set

e P;(m) =0, sif m is not increasing as a function of n;

e Let P;(m) =1, if m is increasing as a function of n.

LThe following propositions show that the measures Mgk, OR and ORp,, are increasing measures
as a function of n.

nxy

Proposition 13. (a) If X favours Y, and n is a variable with 0« = —————
nx(n —ny)

>0, 6=



nx.ny

———— and n # ny ; we have the following function expression :
nx.(n —ny)

Meg(X -Y)=an—p. (18)

(b) If X disfavours Y, and n is a variable with © = % > 0, we have the following function
expression :
MGK(X — Y) =0.n-—1. (19)

Proposition 14. Let X and Y be two patterns, the variable n with a = nxy >0

(ny —nxy)(nx —nxy)

(nxy —nx —ny).nxy

and b = , Ny #nxy, nx # nxy, we have the following function :
(ny —nxy)(nx — nxy)
OR(X —-Y)=an+0. (20)
Proposition 15. (a) If X favours Y, and n is a variable with o = nxy(ninzxj’nﬁnxy) >0
and f = — xy , then we have the following function expressions :
an(n —nx — Ny + nxy)
ORpp (X - Y) =a.n+p. (21)
‘ . ‘ . nxy
(b) If X disfavours Y, and n is a variable with n = >0 and
) (nx —nxy)(ny —nxy)
L= — I , ny # nxy, nx # nxy, we have the following function
(nx —nxy)(ny —nxy)
ETPTesSsion :
ORpn(X = Y)=nn+t. (22)
Demonstrations :

1. For M@k, In effect

nxy _ ny nxy
d _ nx n _ nx _ . . nxy
n n
Therefore, M¢,;. is an increasing measure as a function of n. Moreover, MéK(X —-Y) =
nxy
nyx— X nxy nx.ny . nxy
Xn” = n— = an—pf, witha = ————— > 0 and 8 =
1—=r nx(n —ny) nx.(n —ny) nx(n —ny)
nx.ny

nx.(n —ny)
Therefore Mg x 1s an increasing measure of n.

m( —nhx _ ny MM)
_ nx n n nx n
2. Then, OR(X —Y) = (@_mu)(l_m)
n nx n nx
Simplifying this expression, we obtain :
OR(X - Y) = nxy (nxy —nx —ny).nxy
(ny —nxy)(nx —nxy)  (ny —nxy)(nx —nxy)
So OR(X —»Y) = an+b with a = nyy > 0 and b = XY MXNY)NXY_which

(ny—nxy)(nx—nxy) (ny—nxy)(nx—nxy)’

is increasing in function of n.

3. Then, for ORy,;,, we have :

f nxy _ nx
n n

OR;, (X =Y) = nxY (] — x AT + BXY BX)

nx n n nx ' n
After the simplification, it comes :

2

OR] (X »Y) = Xy n— 7XY

nxy(n —nx —ny +nxy) nxy(n —nx —ny +nxy) )

f _ : _ _ "Xy

Therefore OR; (X —Y) = an+fwitha = nxy(n_n’;’(_”ny+nxy) and f = —

nxy(n—nx —ny +nxy)’



is an increasing measure as a function of n.

nxy _ nx
In the end, ORY (X —Y) = = M’S)ELY ey ]
nx n nx ' n

After simplification, we obtain :

2

nxy n
OR? (X »Y) = n— X
i ) (nx —nxy)(ny —nxy)"  (nx —nxy)(ny —nxy)

nxy
(nx —nxy)(ny —nxy)

So OR (X —Y) = nn+, with n = and
2
n5 . . :
L= — is an increasing measure of n.
(nx —nxy)(ny —nxy)

Hence we have : ‘P7(MGK) = P;(OR) = P;(OR,,) =1 ‘

o

Decreasing measure depending on the size of the consequent or
the size of the premise
e SIf m is not decreasing according to ny i.e. if 3(X; — Y7),3(Xe2 — Y3), such that
nx, = nx, and ny,y, = nx,y, and ny; < ny, and m(X; — Y1) < m(X2 — Y2); then
Pg(m) = 0;

e If m is decreasing as a function of ny ie. if V(X; — ¥7),V(X2 — Y2)

(nx, = nx, and nx,y, = nx,y, and ny; < ny,) = m(X; = Y1) > m(X2 — Y2)

and 3(X; — Y1),3 (X2 — Y3), such that ny, = nx, and nx,y, = nx,y, and ny; < ny,
and m(X; — Y1) > m(Xy — Ya), Ps(m) = 1.

The following proposition shows that MéK and OR,’:n are not decreasing measures of the size of
the consequent or premise, while Mg x» OR and ORfm are decreasing measures of the size of the
consequent or the premise.

Proposition 16. (a) If X favours Y, (X1 — Y1), (X2 — Y2) two rules, such that nx, = nx,

n.n
XY S 0, we have the
nx

and nx,y, = nx,y, and ny, < ny, and the variable ny with v =
following inequality :
MGK(Xl — Yl) < MGK(XQ — YQ). (23)

(b) If X disfavours Y, (X1 — Y1), (X2 — Ya) two rules, such that nx, = nx, and nx,y, =
nx,y, and ny, < ny, and the variable ny or nx with 6 = % >0o0rf= % >0, we
have the following inequality :

MGK(X1 — Yl) > MGK(X2 — YQ). (24)

Proposition 17. Let X andY be two patterns, (X1 — Y1), (X2 — Y2) two rules, such that nx, = nx,
and nx,y, = nx,y, and ny, < ny, and the variable ny or nx with o = nxy(n —ny +nxy) > 0 ou
B =nxy(n—nx +nxy) >0, we have the following inequality :

OR(Xl — Yl) > OR(X2 — Y2) (25)
Proposition 18. (a) If X favours Y, (X1 — Y1), (X2 — Y2) two rules, such that nx, = nx,

and nx,y, = nx,y, and ny, < ny, and the variable ny witha =n > 0,8 =n—nx+nxy >
0,\= n@fy > 0, we have the following inequality :

OR}m(Xl — Yl) < ORhn(XQ — YQ). (26)
(b) If X disfavours Y, (X1 — Y1), (X2 — Ya) two rules, such that nx, = nx, and nx,y, =
NX,Y, and nyl < ny, and the vamable ny or nx with a = % > Qoub = % >

0,8 = g nxy > Qoul = T nxy > 0, we have the following inequality :
OR}m(Xl — Yl) > ORhn(XQ — YQ). (27)



Demonstration :

n.nxy nx.ny _ ¥ ny

1. Indeed, M/, (X - Y) = - = - ith
ndeed, M ( ) nx(n—ny) mnx(n—ny) n—ny n—ny
v = nIXY > 0. Therefore, as ny grows tending to n, the measure Mé ) also grows. Hence
nx
Mé ) does not verify property 8.
. 0
Then, Mg (X —Y) = XY -7 = P , with § = BX°% oy § = BXY-R Therefore,
nx.ny nx ny —1 nx ny

as nx or ny increases, the measure Mg x decreases to the limit -1. Hence M IGK is decreasing
with the size of the consequent or the size of the premise.

2. Then, OR(X —Y) = nxy(n —nx —ny +nxy) _
| | (ny —nxy)(nx —nxy)

(0% nxy.nx
(ny —nxy)(nx —nxy) (ny —nxy)(nx —nxy)
nxy.ny

= — , with @ = nxy(n —ny +nxy) > 0 or
(ny —nxy)(nx —nxy) (ny —nxy)(nx —nxy)
B =nxy(n—nx +nxy) > 0. Thus, as nx or ny increases, OR decreases to 0. Hence OR is

decreasing with the size of the consequent or the size of the premise.

nxy ny
 n n.nxy —nx.ny
3. After, OR! (X —»Y) = nx n -
il ) RAY (] - mX B 4 RXY) nyy(n—nx —ny —nxy)
Therefore, OR} (X —Y) = n - nx-ny - ¢
hn n—ny —ny —nxy nxy(n-—nx —ny —nxy) B —ny

A
5 ny ,witha=n>0,=n—nx +nxy >0,A= n%; > 0. So the more ny tends to 3, the

—ny
more ORin grows. Hence ORin does not verify property 8.

nxy
- nnxy — ny.nx
Then, OR% (X —»Y) = oX n =
W) = o mn @ m T )y — )

Therefore, ORY (X —Y) = nIXY — RXTY = @ -
(nx —nxy)(ny —nxy) (nx —nxy)(ny —nxy) ny —nxy

B.ny 0 Anx .
= — Wltha:%>00r9:%>0,ﬁz
ny —nNxy nx —Nxy nx —Nxy
nx > Qor A = ny > 0; Therefore, the more nx or ny grows, the more OR%  de-
nx-—nxy ny —nxy ’ ’ X Yy 8 ’ hn

creases and has limit -1. Hence ORflm is decreasing as a function of nx or ny.

Hence we have : | Pg(MZ,) = Ps(OR) = Ps(OR%,) = 1and Pg(MéK) = Pg(ORZLh) =0|

1
™

Measure admitting a fixed value in the case of independence

e If m does not admit a fixed value in the case of independence i.e. if Ya € R, 3(X — Y),
such that Px(Y) = P(Y) and m(X — Y') # a; then Py(m) = 0;

e If m admits a fixed value in the case of independence i.e. if 3Ja € R, V(X — Y'), such that
Px(Y)=PY)=m(X —-Y) =a, then Py(m) = 1.

The following propositions show that the measures Mgk, OR and O Ry, admit a fixed value in the
case of independence.

Proposition 19. Let X and Y be two patterns, V(X — Y), such that Px(Y) = P(Y), we have the
following value
MGK(X — Y) =0. (28)

Proposition 20. Let X and Y be two patterns, ¥(X — Y), such that Px(Y) = P(Y), we have the
following value
OR(X - Y) =1. (29)
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Proposition 21. Let X and Y be two patterns, ¥(X — Y), such that Px(Y) = P(Y), we have the
following value
ORpp(X = Y)=0. (30)

Théoréme .1. (a) A probabilistic quality measure mu admits a fived value at independence if,
and only if, for any association rule XtoY , the following condition is verified at the reference
situation : Wing # 00, if (Himp, Wind, Hinc) € R

(b) All normalizable and normalized affine measures and homographies are allowed a fixed value
of independence.

Preuve :
(1) if (fimps finds fine) € @3, and fi;,q # 00, it is indeed sufficient to use property 9 (ii) above ;
(i) if (fimp, Minds Minc) € @3, following the process of normalization of the measure values between
[-1;1] and following the definition of normalized measures, it is enough to use on property 9 above.
Hence the stated theorem.

Demonstrations :

Px(Y)—P(Y)
1—P(Y)
Px(Y) = P(Y), we get ML, (X = Y) = 0 € R (fixed value). And for Mg, (X — Y) =
Px(Y) - P(Y)
P(Y)

is a measure admitting a fixed value at independence.

1. In fact, V(X — Y) € K(P,C,R), MéK(X —Y) = So, at independence

. Similarly, at independence, Mg (X — Y) = 0 € R(valeur fize). Hence Mgy

_ P(Y/X)(1 - P(X) — P(Y) + P(Y/X).P(X))
2. Then, ¥(X = Y) € K(P,C,R), ORI = Y) = =050 o5 3911~ v X))

Then, at independence for Px(Y) =P(Y), on a OR(X — Y) =1 € R (fixed value). Hence OR
is a measure admitting a fixed value at independence..

3. After, V(X —Y) € K(P,C,R),
PY'/X")— P(Y")
(X —>Y)=
Ot X = Y0 = POy 1 = PO — POV + POVTX PO
At independence, OR%n(X —Y) =0 € R(valeur fixe).
PY'/X") - P(Y")

And f d(X =Y) = :
el for O = 10 = By (oY) — POV X X))
dence ORY (X — Y) = 0 (fixed value). Hence ORy,, is a measure admitting a fixed value at

independence.

Similarly, at indepen-

Hence we have : ‘Pg(MGK) = Py(OR) = Py(OR,) =1 ‘

o

Measure admitting a fixed value in the case of logical implica-
tion
e If m does not admit a fixed value in the case of the logical implication i.e. if Vb € R, 3(X —
Y), such that Px(Y) =1 and m(X — Y) # b; then Pig(m) = 0;

e If m admits a fixed value in the case of the logical implication i.e. if 3b € R,V(X — Y),
such that Px(Y) =1= m(X —Y) = b, then Pio(m) = 1.

The following propositions show that the measures MéK, OR£n admit a fixed value in the case
of logical implication, while MgK,OR and ORzn do not admit a fixed value in the case of logical
implication.

Proposition 22. (a) If X favours Y, for Px(Y) =1, we have the following value :

MGK(X — Y) =1 (31)
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(b) If X disadvantages Y, for Px(Y) =1, we have the relation :

Mer(X =Y) = 1;(f;/()Y) (32)
Proposition 23. Let X and Y be two patterns, for Px(Y) = 1, we have the following value :
OR(X =»Y) =4 (33)
Proposition 24. (a) If X favours Y, for Px(Y) =1, we have the following value :
ORpp(X - Y) =1 (34)
(b) SIf X disadvantages Y, for Px(Y) = 1, we have the following value :
ORpp(X = Y) =400 (35)

Théoréme .2. All normalisable affine measures and normalisable homographies are allowed o fized
value at the logical implication.

Proof :
if (fimps Winds ine) € @3, following the process of normalization to bring back the values of measure
between [-1;1] and according to the definition of normalized measures, and to use there on the property
10 above. Hence the stated theorem Demonstration :

Px(Y)-PY
1. Indeed, we have MéK(X —=Y)= Xl(—)P(Y)()'SO’ at the logical implication Px(Y) = 1, we
Px(Y)—-P(Y
get M{, (X = Y) =1 € R which is a fixed value. And for Mg, (X — Y) = X(P)m()
1-P()

Similarly, by logical implication, Mg k(X =Y)= which is not a fixed value for any

P(Y)
pattern Y of a context K .

PY/X)1-P(X)-PY)+P(Y/X).P(X))
(P(Y) — P(Y/X).P(X))(1 - P(Y/X))
we have Px(Y') =1, il vient OR(X — Y') = 400 which is a nonfixed value.

2. Then, OR(X —Y) =

. At the logical implication,

pPY'/X") = P(Y')
Y7/ XN (1 = P(X") — P(Y') + P(Y'/X")P(X"))
plication, it comes a Px(Y') = 1, we obtain OR}{H(X — Y) =1 qwhich is a fixed value.
P(Y'/X") — P(Y")
In the end, OR{, (X = Y) =
n the ends OB (X = V) = G p(yv ) (POv) — PV X POX)
cation, it comes OR$ (X — Y') = 400 which is not a fixed value.

3. Then, OR] (X = V) = e . At the logical im-

. At the logical impli-

Hence we have : | P1o(Mg&y) = Pio(OR) = Pio(OR%,) = 0and Pio(M{,) = Pio(OR!,) = 1|.

'@' Measure admitting a fized value in the case of equilibrium
e If m does not admit a fixed value in the case of equilibrium i.e. if Ve € R,3(X — Y), such
that Px(Y) = 299 and m(X — Y) # ¢; then Pyy(m) = 0;

e If m has a fixed value in the case of equilibrium, i.e. if 3¢ € R,V(X — Y), such that

Py(Y) =& o (X = V) = ¢, then Pyy(m) = 1.

The situation of equilibrium is another situation of reference other than independence and log-
ical implication. We have a situation of equilibrium when the rule has as many examples as the
counterexamples|Grissa(2013)Grissal.

The following propositions show that the measures Mgk, OR and O Ry, do not admit a fixed value
in the equilibrium case.
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Proposition 25. (a) If X favoursY, and Px(Y) = @, we have the following relationship :

P(X) —2P(Y)
(b) If X disadvantages Y, and Px(Y') = @,we have the following relationship :
_ P(X)-2P(Y)
Mek(X =»Y) = T oY) (37)

Proposition 26. Let X and Y be two patterns, if Px(Y') = P(QX), we have the following relationship :

P(X)(2 — 2P(X) — 2P(Y) — P%(X))
(2P(Y) — P(X))(2 — P(X))

OR(X —»Y) = (38)

Proposition 27. (a) If X favours Y, and Px(Y) = @, we have the following relationship :

2(P(X) —2P(Y))

B X =Y) = o b —ap() + P2 (39)
(b) SIf X disadvantages Y, and Px(Y) = @, we have the following relationship :
2(P(X)—- P(Y
ORpp (X —-Y) = (P(X) (¥)) (40)

(2 - P(X)(2P(Y) - P*(X))

Théoréme .3. All affine and homograph normalisable measures and normalised measures do not admit
of a fized value in the case of equilibrium.

Proof :
if (Wimps inds fine) € R3 following the process of normalization of the measurement values between
[-1;1] and following the definition of normalized measurements, all its measurements only admit values

that at the reference situation(gimp = 1, fting = 0, ftine = —1),0f which it is enough to use on property
11 above. Hence the stated theorem.
Demonstration :
Px(Y)-PY
1. Indeed, we have M(J;K(X —Y) = X()P(Y)() At equilibrium, if Px(Y) = P(2X)7 on obtient
P P(Y) _ P(X) - 2P(Y)
ML (X 5Y)=—2 = hich i fi lue.
(X =Y) =P 20— P(Y)) which is not a fixed value
Y)-P
And for, Mg, (X - Y) = x( P)(Y) . At equilibrium, Px (Y) = @, it comes Mg, (X —
PO _pPry) PX)-2PY
Y)= 2 P(Y)( ) = ( Q)P(Y) ) which is not a fixed value too. Hence Mg is not a mea-

sure admitting a fixed value at the equilibrium situation.

2. Then, OR(X —Y) = PY/X)(1 = P(X) — P(¥) —(’— P(Y/(X) P(X)>. At equilibrium, if Px (Y') =

(P(Y )P( o (Y/X) P(X))(1-P (/))())
PO (1 = P(X) — P(V) + "G P(X))
>, we have OR(X —Y) = (PV) — P p(x))(1 - w)
P(X)(2 - 2P(X) — 2P(Y) — P?(X))
. o @P(Y)-P(X))(2-P(X)
OR is not a measure admitting a fixed value at the equilibrium situation.

It comes OR(X —Y) = which is not a fixed value. Hence

PY/X) - P(Y)
P(Y/X)(1 - P(X) - P(Y) + P(Y/X)P(X))’
PX) _ p(y)
P& (1 - p(x) - P(Y) + 20 p(x))

3. Then, OR! (X —»Y) = At equilibrium, if Px (Y) =

@, on obtient ORﬁn(X —-Y)=
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So ORf N X =Y) = 5 2PE§() )= ?5)(}/);2( which is not a fixed value at equilibrium.
n the en d PY/X) - PY) equilibrium, we have
In the end, OR;, (X = Y) = A= PO X)) (P(Y) = PY/X)PX))’ At equilib , we h
OR} (X —-Y) = % PY) .
" (1= FEH(P(Y) - BFP(X))
2(P(X) — P(Y))

Therefore ORY, (X — Y) = which is not a fixed value at equilib-

(2 - P(X)(2P(Y) — P*(X))

rium. Hence ORyp,;, is not a measure admitting a fixed value at the equilibrium situation.

Hence we have : ‘PH(MGK) = P11(OR) = P11(OR,p,) = 0‘_

N

Measure admitting identifiable values in case of attraction

between X and Y
o If m does not admit identifiable values in case of attraction between X and Y i.e. if

Va € R,3(X — Y), such that Px(Y) > P(Y) and m(X — Y') < a; then Pja(m) = 0;

e If m admits identifiable values in case of attraction between X and Y i.e. if 3a € R, V(X —
Y'), such that Px(Y) > P(Y) = m(X — Y) > a, then Pja(m) = 1.

The following propositions show that the measures Mgk, OR and ORy,, admit identifiable values
in case of attraction between X and Y.

Proposition 28. If X favours Y, and ¥(X —Y) and Va € R~ C R for Px(Y) > P(Y), we have the
following inequality :
MGK(X — Y) > a. (41)

Proposition 29. Let X and Y be two patterns, V(X — YY), Vb €] —00,1] C R for Px(Y) > P(Y), we
have the following inequality :
OR(X > Y) > b. (42)

Proposition 30. If X favours Y, and ¥(X — Y), Ve € R~ C R for Px(Y) > P(Y), we have the
following inequality :

OR, (X »Y)>c (43)

Demonstration :

Px(Y)-PY
1. Indeed, we have M{, (X — Y) = Xl(—)P(Y)()
Va € R~ C R such that in case of attraction between X and Y, if Px(Y) > P(Y), we have
MéK(X —Y) €]0,1] and MéK(X —Y) > a. Hence Mgk admits identifiable values in case of
attraction between X and Y.

€ [0,1]. It is obvious that V(X — Y) and

PY/X)(1-P(X)—-PY)+PY/X).P(X))
2. Then, OR(X = Y) = € [0;400[. Donc V(X —Y)
(P(Y) = P(Y/X).P(X))(1 - P(Y/X))
and Vb €] — 00,1] C R in case of attraction between X and Y, if Px(Y) > P(Y), we have
OR(X = Y) €]1,400[ and OR(X — Y) > b. Hence OR admits identifiable values in case of
attraction between X and Y.

PY/X) - P(Y)

. In th T (X = Y) = 1. Th
3. In the end, OR; (X — Y) P X)( = P(X)— P(Y) + PY/X)P(X)) € [0,1] us
V(X — Y) and Ve € R™ C R such that in case of attraction between X and Y, if Px(Y) > P(Y),
we have ORin(X —Y) €]0,1] and OR,{n(X —Y) > ¢. Hence OR},, admits identifiable values
in case of attraction between X and Y.

Hence we have : ‘Plg(MGK> = P15(OR) = P12(OR,p) =1 ‘
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N

Measure admaitting identifiable values in case of repulsion

between X and Y
e If m does not admit identifiable values in case of repulsion between X and Y ie. if

Va € R,3(X — Y), such that Px(Y) < P(Y) and m(X — Y') > a; then Pj3(m) = 0;

e If m admits identifiable values in case of repulsion between X and Y i.e. if 3a € R,V(X —
Y), such that Px(Y) < P(Y) = m(X - Y) < a, then Pi3(m) = 1.

The following propositions show that Mgk, OR and ORyp, admit identifiable values in case of
repulsion between X and Y.

Proposition 31. If X disadvantages Y, and V(X — Y) and Ya € RT C R for Px(Y) < P(Y), we
have the following inequality :
MGK(X — Y) < a. (44)

Proposition 32. Let X and Y be two patterns, and V(X — YY) and Vb € [1,+00[C R for Px(Y) <
P(Y), we have the following inequality :

OR(X —Y) <b. (45)

Proposition 33. If X disadvantages Y, and V(X — Y) and Ve € RT C R for Px(Y) < P(Y), we
have the following inequality :
OR} (X -Y) <e. (46)

Demonstration :

Px(Y) - P(Y)
P(Y)

that in case of repulsion between X and Y, Px(Y) < P(Y), we have Mg (X — Y) €]—1,0[ and

M (X —Y) < a. Hence Mgk admits identifiable values in case of repulsion between X and Y.

1. Indeed Mg (X - Y) = € [-1,0]. Therefore V(X — Y) and Va € Rt C R such

PY/X)1-P(X)-PY)+P(Y/X).P(X))
2. Then, OR(X — Y) = € [0; +-00[. Thus ¥(X — V)
(P(Y) = P(Y/X).P(X))(1 - P(Y/X))
and Vb € [1,400[C R in case of repulsion between X and Y, if Px(Y) < P(Y), one has
OR(X —Y) €]0,1][ and OR(X — Y) < b. Hence OR admits identifiable values in the case of
the repulsion between X and Y.

PY/X) - P(Y)
€ [-1,0]. Thus V(X —»Y)
(1=P/X)(PY) - PY/X)P(X))
and Ve € RT C R such that in case of repulsion between X and Y, Px(Y) < P(Y), we have
OR} (X —Y) €]—1,0[ and ORY (X — Y) < c. Hence ORp,, admits identifiable values in case
of repulsion between X and Y.

3. In the end, ORﬁlm(X —-Y)=

Hence we have : ‘P13<MGK) = P13(OR) = P13(OR,;,) =1 ‘
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1

Measure capable of tolerating the first counterexamples
A measure is able to tolerate the first few counterexamples if it decreases slowly as few coun-
terexamples appear, and then more rapidly until it reaches a minimum or zero value. That is,
at fixed nx and ny margins, the evolution function of the measure m, as a function of nxy, has
a concave shape.

e If m is a convex function of nxy, i.e. IMincons € [0;1]
VXl — H,VXQ — Yé,V)\ S [0, 1];71X1y1 > minc(mfnxl and NX5Ys > minconan2
impliquent fmmxy (AnX1Y1 + (1 - )‘)nX2Y2) < /\fmmxy (nXlYl + (1 - A)anYQ) ; alors
P14(m) = 0,(rejection) ;

e If m is a linear function o nxy ie. Pia(m) # 0 and Piy(m) # 2 , then Pyy(m) = 1
(indifference) ;

e If m is a concave function of nxy ie. Imincnr € [0,1],VX; — Y1,VXy — Yo,VA €
[07 1];nX1Y1 > minconanl and NXx,Ys > minconanz imply fm,nxy()\nXlYl + (1 -
MNx,vs) = AMmnxy (xv; + (1 — A)nx,y, ), then Piy(m) = 2 (tolerance).

The notation fy, ., corresponds to the function of evolution of the measure m as a function of
nxy when the numbers nx, ny and n remain constant.

We saw in the proof of property 6 that the measures Mé K Mg x» OR and ORzn are linear measures
as a function of nxy. Therefore, these are measures that are indifferent to the first counterexamples.
And the measure ORin is a decreasing measure as a function of nxy. Therefore, it is a convex measure

as a function of nxy. Hence ORin is the measure rejected by the first counterexamples.

Hence we have : |P14(Mgg) = Pi4(OR) = P14(0Rih) = 1land P14(OR{Lh) =0/

1
™

Invariant measure in case of dilation of certain numbers
o If 3(k1, k2) € N*2, 3X) = V1, 3Xp = Yo, (nxyv; = kinx,y, andny v, = kiny,y, and
nx,y, = kanx,y, andng v, = kang, v, andm(X1 — Y1) # m(Xz — Ya))

or (nXIYI = kanx,y, and nyy, = kan2?2 and nxy, = k1ny2y2 and ¥, v,
kaQVQ and
m(X; — Y1) # m(Xa — Y3)); then Pi5(m) = 0 (variance) ;

o If V(ki, ko) € N*2 VX1 = Y1, VXo = Yo, (nx,v; = kinx,v, andny v = kiny, v, and
nx,y, = kenx,y, andnyg v, = kang, v, and = m(X1 — Y)) =m(Xe — Yg))
and (nXIYI = konx,y, and Ny, v, = klnX2?2 and n¥,y, = k:znygy2 and nx, v, = klnYQVQ
= m(X; — Y1) + m(Xy — Y3)); , then Pi5(m) =1 (invariance).

The following propositions show that OR, OR with the 2" expression, ORp,, are not measures
that vary with the growth of some numbers, while OR with the 2" expression is a measure that is
invariant with the expansion of some numbers.

Proposition 34. Let X and Y be two patterns, VX1 — Y1, VXo — Ya, and¥(ky, k2) € N*2| such that
nx,y, = kinx,y, and Ny, v, = k‘lnX272 and
nx,y, = kanx,y, andng v = kenxy y,, we have the following relationship :

MGK(Xl — Yl) 75 MGK(X2 — YQ) (47)

For OR(X —»Y) = PXNY)PXAY) _ nxvngy
P(XNY)P(XNY) nxgyiyy

Proposition 35. Let X and Y be two patterns, VX1 — Y1, VXo — Yo, and¥(ky, ka) € N*2, such that
nx,y; = kKinx,y, and Ny, v, = klnX272 and
nx,y, = kanxg,y, andng v = kanx,y,, we have the following relationship :

OR(Xl — Yl) = OR(X2 — Yg). (48)
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PY/X)1-P(X)-PY)+P(Y/X).P(X))
(P(Y) - P(Y/X).P(X))(1 - P(Y/X))
Proposition 36. Let X and Y be two patterns, VX1 — Y1, VXo — Ya, and¥(ky, k2) € N*2| such that

nx,y, = kinx,y, and Ny, v, = kl”xg?z and
nx,y, = kanx,y, andng v = konxg,y,, we have the following relationship :

For OR(X —»Y) =

OR(Xl — Yl) 75 OR(X2 — Yz). (49)

Proposition 37. Let X and Y be two patterns, VX1 — Y1, VXo — Ya, and¥(ky, k2) € N*2| such that
nx,y, = kinx,y, and Ny, v, = klnxz)?z and
nx,y, = kanx,y, andng v = kang,y,, we have the following relationship :

OR}m(Xl — Yl) 7é ORhn(XQ — YQ) (50)
Demonstration :
1. In effect
Let nxy =nx —nyy and nxy = ny — nxy
So
Px(Y)-P(Y) 5 -
ML (X =Y = "X
Gr(X =) 1-P(Y) 1- o
nnxy —nx.ny n.nxy — (nxy + nyy)(nxy + nxy)

nnx —nx.ny  n.(nxy + nyy) — (ixy +nyy)(nxy + nxgy)
nnxy — n?)(y —nXy . Nxy — Nxy-Nxy

2 . B
n.nxy + nnyy — Ny — XY Nxy — Nxy-Nxy

1 . *2 _ o B
Therefore, if V(k1; k2) € N*, nx,y; = kinx,y, andny v = kiny,y, and
nx,y, = k2nx,y, andny vy, = konx,y,, we have :

2,2
f k1.nnx,y, — klnX2Y2 kl'kQ'nXQYTanYQ kl'kZ'”XQYQ-”XQYQ
ar (X ) k —k? 2): — ki.k < k1.ko.n+ .7
1.n.nX2y2+k1_n_nX 7, 1n 2Ya 1-R2.M XY, T 2Ye 1.-R2.M 2Y2.n 2Y o

TL.?”LX2Y2 — klnX2Y2 — k’Q.TLX2Y2.7’LY2Y2 — kg.nyﬂé.nXQ?Z

- 2 — - — _ _
nNXoYadnny,y, ~ KNy, — k2nxeye MR,y — k2%, y, X, 7,

2 __  — —
NNX,Y, — Nx,y, — nXQYZ.nX2Y2 nXng'nXng

2 _ M —
n‘nX2Y2+n~nX2?2 - anYQ - nX2Y2'nX2Y2 nXQYQ'nXQYQ

= MéK(XQ — Y3)

Hence Mé 5 1s a measure that varies with the growth of certain numbers.

And for
Px(Y)-P(y) Hr--r
MgJK(X R Y) — P(Y) — anfy n
n
_ Xy —nxny XY — (nxy + nyy)(nxy + nxy)
nx.ny (nxy +nyy)(nxy + nygy)

2
nnxy —Nxy — TLXY.TLYY — ’I’LXV’I’LYY
- = —X )
nxy tnxy -Nxy + nxy nxy

; . *2 — . — _ _ — _
Therefore, if V(k1;k2) € N2, nx,y; = kinx,y, andny v, = kiny,y, andng v, = kanx,y, and
nx, v, = k:gny272, then we have :

2
kl.n.nX2Y2 — kl.nX2y2 — kl.kg.nXQYQ.nyﬁ,Q — kl.kg.ny2y2.nX2?2

Me (X1 —Y)) =
GK\1 1
k‘%.TLXQYQ + kl.kQ.TLXQYQ.TLX2Y2 -+ kl.kg.nX2Y2.nX272

n.Nx,v, — k1.Mx,v, — k:g.nx2y2.nygy2 — kg.nYQYQ.n)Q?Q

kinx,y, + kg.nXQYQ.nYQYQ + kz.nyﬂQ.nXQ?Q
NNXyYs — NXoYs — NXoYo MK, v, — X,y VX,V d

NXyYs + NX,Ys 'nYQYQ + nY2Y2 'nX2?2

Hence Mé 5 is a measure that varies with the growth of certain numbers.
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2. Then, the very strange situation on the Odd-Ratio measure, Grissa in his work |Grissa(2013)Grissal,
on the 15%™¢ property, concerning the measure m(X — Y) invariant in case of dilation of some
numbers is in function nxy, ny, nyyandnyy. This means that on the Odd-Ratio measure, we
have a choice of using one of the two expressions of this measure. This leads to another problem

. ¢ .
e Using the 1" expression, we have :

i . *2 — N — — - —
Therefore, if V(k1; k2) € N2, nx,y; = kinx,v, andny v, = kiny,y, andng v, = kanx,y, and
nx,y, = kenx,y,. we have :

kl .TLX2y2 .kQ.nY2?2

OR(X1—>Y1) = [ 2 —
2.nX2Y2. 1.nX2Y2
nXZYQ.ny2?2

ZYQYQ 'ZEQZZ
= 2RI Xs _ OR(X, - Vd)

nYz Ys 'nX2?2

From this result, it was concluded that the measure OR is a measure that invariates with
the growth of some number of people.

e Now, using the 2¢*" expression :

P(Y/X)(1 - P(X) - P(Y) + P(Y/X).P(X))
(P(Y) ~P(Y/X).P(X))(1 — P(Y/X))

i Sk )

(T = =) = G xynx)
nnxy —nx.nxy —ny.nxy + Tl%(Y
nx.ny —ny.nxy —nNx.nxy -+ n§(Y

n.nxy —(nxy+nyy) nxy —(nxy+ngy ) nxy +nky
(nxy+nyvy).(nxy+ngy)—(nxy+ngy ) nxy —(Rxy +nyy) nxy +n%y
nnxy — nXY — TLXY.TLX? — ’I?,XY.’I’LYY

ORX —=Y) =

Nxy-"xy

: . 2 _ _ _
Therefore, if V(k1; k2) € N**, nx,y, = kinx,y, and Ny, v, = klnxg?g and ¥y, = anYZYQ and
¥y, = k:gny272, we have :

]{}1 n.n *]{32 TL2 —ki1.n kiny v —kin ko.n+
LTV XY, 17X, Y- 1.1 XoYe -1 T x v 1.1 X5Yo -R2-T0%7 v,
OR(;(]_ >}1) — 222 2-2 272

) kl.nX2?2.]€2.TLY2Y2
n.nx,y, — k1.n%,y, — kl-nX2Y2~nX272 — /74,‘2.1”LX2y2.nyzy2

k‘g .TLX2?2 .ny2y2

2 _ .
L NNXLY, — N,y T XY N,y T XY Mgy, OR(X = V)

Ny 272'nX72Y2

From this result, it was concluded that the OR measure is a measure that varies with the
growth of certain numbers..

However, Grissa stated in her work that the Odd-Ratio(OR) measure varies according to
the growth of certain numbers. Indeed, she used the oith expression of this measure. But
the question arises, why did she not use the first expression (fundamental expression of
Odd-Ratio) 7
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3. Then,

OR! (X —Y)

Therefore, if V(k1; ko) € N*2,
Ny, vy, = kanz?z’ we have :
OR/ (X; = V1)

k1.nnx,y, — k%.n§(2y2

P(Y/X) - P(Y)
P(Y/X)(1 - P(X) — P(Y) + P(Y/X)P(X))
nxy _ Ny
nx n
)
nnxy —nx.ny
nnxyy —nx.nxy —ny.nxy -+ n?XY
nnxy — (nXY + nxy).(nxy + nyy)
nnxy — (nXY + nX?).nxy — (nxy + nyy).nxy + n?XY
nnxy — nky — Xy Mgy — MXY - Nyy — Nxy -5y

2
nnxy —Nyy —NxXy Nyy —NXy -Nyxy

nx,y, = Kinx,y, and Ny, v, = klnX272 and nx,y, = k:gnyﬂz and

— kl.nxzyz.kg.nyz}/Q — k:l.nX2y2.k:1.nX272 — kl’”Xg?g’kQ’nY2Y2

2
n.Nx,v, — k:l.nX2Y2 —

2.2
kin.nx,y, — kl.nX2Y2 — k:l.nXQYQ.kl.nX272 — k:l.nXQYQ.k:g.ny2y2

kQ.nXQYQ.ny2Y2 — kl.nXQYQ.n)Q?Q — k2'nX2?2'”Y2Y2

OR} (X »Y) =

4

2 . _
n‘nQXQYQ B kl.nXZYQ - kl’nXQYQ‘nXQYQ kz'nX2Y2‘nX2Y2
nN.Nx,v, — TZX2Y2 — TZXQYQ.TZX72Y2 — TZXQYQ.TLXQT2 — TZXQE.TLEY2

2 — —
nN.Nx,Ys — nX2Y2 — nXng'nX2Y2 nXng'nX2y2

Hence ORIme is a measure that varies with the growth of certain numbers.
In the end,

PY/X) - PY)
(1= PY/X))(P(Y) - P(Y/X)P(X))

nx ny
_ nx n
(=) — =)

nnxy — nx.ny

2
nx.ny —Nx.nxy —ny.nxy + nyy
nnxy — (nxy + nxy)-(nxy + nyy)

= OR] (X5 = Ya).

nnxy —nNxy — TLXY.TLYY — TLXY.TLX? — nyy.nX?

(nxy + nyy)-(nxy + ngy) — (nxy + nyy).nxy — (nxy + ngy).nxy + nky

"Xy -Nxy

: . *2 _ . — _ _ — __
Therefore, if V(k1;k2) € N, nx,y; = kinx,y, andny v, = kinyg,y, andnyg vy, = kang,y, and

nx, v, = kgny2?2, we have :
ORZn(Xl — Y1)

2,2 _ _ . _ —
kl.n.nX2y2 — kl.nX2Y2 — kl.nx2y2.k2.nX2Y2 kl.nX2y2.k1nX2Y2 kg.nX2Y2.k1.nX2Y2

k’Q.ﬂan .k‘l .nXQVQ

2 _ _ _ _
n.nNx,y, — kl.nX2Y2 — kz.nX2y2.nX2Y2 — k:l.nx2y2.nX2Y2 — kQ.nX2Y2.TLX2Y2

) k‘g .ny2Y2 .TLX272
NNXYs = Nx,y, — XY -Nxoy, — XY Mx, v, — XLy, U X, Vs

#+

XY M X0Ys

= ORj, (X2 = Y2)

Hence ORfm is a measure that varies with the growth of certain numbers.

Hence we have : ’P15(MGK) = P15(OR) = Pi5(ORun) =0 ‘

\

and X — Y according to a relation of opposition
‘ e If 3IX = V,m(X = Y) # —m(X —Y), then Pig(m) = 0;

e fVX - YV,m(X -Y)=-m(X = Y), then Pig(m) = 1.

The following propositions show that the measures Mgg, OR and ORy,, are not measures capable
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of differentiating between X — Y and X — Y rules according to an opposition relation..

Proposition 38. Let X and Y be two patterns and VX — Y € K, we have the following relationship :

~ P(X)
Meg(X =2Y)=—Mgg(X = Y) x —————. 1
cx(X =Y) K (X — )Xl—P(X) (51)
Proposition 39. Let X and Y be two patterns and VX — Y € K, we have the following relationship :
— 1
ORX —=Y)= ———. 52
X =Y) = R 57 (52)

Proposition 40. (a) If X favours Y and VX — Y € K, we have the following relationship :
ORuy(X - Y)=—-OR (X - Y). (53)

(b) If X disfavours Y and VX — Y € K, we have the following relationship :

ORm(X = Y)=—OR!] (X =Y). (54)
Demonstration :
1. Indeed, VX — Y € K,
P(XNY) _
- P -PY)  hm PV R(X)PY) - PY) + P(X)P(Y)
Mawe(X 7)) = );1 O N R IR
- X1 “Ply) 1-pPX) ~Mlg(X =Y) x 1- P(X)

a —M(J;K(X —Y)

Hence Mé ) 1s not a measure capable of differentiating between X — Y and X — Y the rules
according to a relation of opposition.

And for
P(XNY) _
_ Py -P(Y) PV R X@)P(Y) - P(Y)+ P(X)P(Y)
M (X —Y) = ); 1(3}%/) P(y)— p%) = =P P
- PY X pex) = Mex(X oY) < p s

vl gl'K(X —Y)
Hence Mg;K is not a measure capable of differentiating between X — Y and X — Y rules
according to a relation of opposition.
2. Then, VX - Y € K,

OR(X —»Y) = P/

PO)-PXOY) (p(X) — P(Y) + P(Y) — P(X NY))

Y)+P(XNY))(1- %(%m)
— P(Y/X).P(X))(1 - P(Y/X))

1-P(X)-P(Y) +P(Y/X) P(X))

£

=
|

T

Hence OR is not a measure capable of differentiating between X — Y and X — Y rules according
to a relation of opposition.
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3. In the end, VX — Y € K,

OR] (X »Y) =

Poa (PO = POY) + PR P(X))
P(Y)—-P(XNY)—P(Y)+ P(X)P(Y)
(P(Y)—P(XNY))(P(

PY/X) -
(1= PY/X))(P(Y) - P(Y/X)P(X))
= —OR} (X =Y)

# —OR[, (X =Y)

Hence OR{H is not a measure capable of differentiating between X — Y and X — Y rules
according to a relation of opposition. And for

ORL (X —7) — P(Y/X) = P(Y)
" (1= PN — PY/R)P()
_ P(X) - P(Y)
(1= PR (P(v) - PSR P(X)

PY)-P(XNY)—P(Y)+ P(X)P(Y)
(1-P(X)-PY)+P(XnN Y); (P(XNY))
P(Y/X)—-P(Y
- P(Y/X)(1- P(X) - P(Y) + P(Y/X)P(X))
—~OR] (X =)
~OR! (X —Y)

Sl

Hence ORfm is not a measure capable of differentiating between X — Y and X — Y rules
according to a relation of opposition.

Hence we have : ’P16(MGK) = Pig(OR) = Pis(OR,,) =0 ‘

N

A measure capable of differentiating between the rules X —Y
and X —Y according to an oppositional relationship
e f IX - V,m(X = Y)# -m(X —Y), then P7(m) = 0;

e fVX - Y,m(X -Y)=-m(X —=Y), then P7(m) = 1.

The following propositions show that the measures Mgg, OR and O Ry, are not measures capable
of differentiating between the rules X — Y and X — Y according to an opposition relation..

Proposition 41. (a) According to [Feno(2007)Fenof, if X favours Y and VX — Y € K, we
have the following relationship :

Mog(X =»Y) = Mg (X = Y). (55)
(b) If X disfavours Y and VX — Y € K, we have the following relationship :
Mog(X »Y) = —M} (X > Y). (56)

Proposition 42. Let X and Y be two patterns andvX — Y € K, we have the following relationship :

- 1

OR(X »Y) = RE ST (57)
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Proposition 43. (a) If X favours Y and VX — Y € K, we have the following relationship :
ORpp(X -Y)=—-0R} (X -Y). (58)
(b) If X disfavours Y and VX — Y € K, we have the following relationship :
ORp(X = Y)=-OR] (X = Y). (59)

Demonstration :

1. In fact, VX — Y € K,

Px(Y)-PY) 1-Px(Y)-1+P(Y)
1-PY) 1-1+P(Y)
—Px(Y)+P(Y)
P(Y)
~ME (X = Y)
# _Mé‘K(X —Y)

ML (X -Y) =

Hence Mé ) 1s not a measure capable of differentiating between the rules XtoY and X toY ac-
cording to an opposition relation.

And for
M, (X >Y) — PXO;)(;)P(Y) _ 1= le(}:)p_()l/;_ P(Y)
_ —Px(Y)+P(Y)
B 1-P(Y)
= ML (X >Y)

£ _MgK(X —Y)

Hence Mg; , is not a measure capable of differentiating between the rules X — Y and X — Y
according to an opposition relation.

2. Then, ¥X — Y €K,

P(Y/X)(1 -P(X) — P(X))

(P(Y) - P(Y/X).P(X))(1-P(Y/X))
(1-P(Y/X))(1-P(X) - 1+P(Y ) P(X) - P(Y/X).P(X))
(1-P(Y) - P(X) + P( Y/X ) —1+P(Y/X))
(1-PY/X))(P(Y) - Y/X X)
(1=P(¥) = P(X) + P(Y/X) P(X ( /X))

P(Y)+P(Y/X).

OR(X -Y) =

OR(X —Y)
# —OR(X —=Y)

Hence OR is not a measure capable of differentiating between the rules X — Y and X — Y
according to a relation of opposition.

3. Then, VX — Y € K,

P(Y/X) - P(Y)
P(Y/X)(1- P(X) — P(Y) + P(Y/X)P(X))
—P(Y/X) -1+ P(Y)
(1-P(Y/X))(1- P<X) — 1+ P(Y) + P(X) - P(Y/X)P(X))
—P(Y/X)+ P(Y)
(1-P(Y/X))(P(Y)-P(Y/X)P(X))
—OR¢ (X —Y)
~OR] (X =)

OR] (X »Y) =

T
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Hence OR;lm is not a measure capable of differentiating between the rules X — Y and X — Y
according to an oppositional relationship.

At the end
o P(V/X) - P(Y)
ORjn(X=Y) = = PP~ PITX)PX))
_ Py/x) " 14 P(Y)
T PR FY)- PR £ TR
ZP(Y/X) + P(Y)

(
(P(Y/X))(1 = P(Y) - P(X) + P(Y/X)P(X))
~OR] (X =)
—OR{ (X —=Y)

Ol

Hence ORin is not a measure capable of differentiating between the rules X — Y and X — Y
according to an opposition relation.

Hence we have : ’PN(MGK) = P17(OR) = P17(ORup) =0 ‘

o

Measure evaluating th X — Y and X — Y rules in the same
way
e If IX = V,m(X = Y)# -—m(X —Y), then Pig(m) = 0;

e fVX - Y,m(X -Y)=-m(X =Y), then Pig(m) = 1.

The following propositions show that the measures Mgy, OR and ORy,, are measures evaluating
in the same way the rules X — Y and X — Y.

Proposition 44. (a) If X favours Y and VX — Y € K, we have the following relationship :

S P(X)
Mar(X 5Y)=ME (X 5Y) x ——2 . 60
6 (X = 7) = Mix(X = ¥) x T (60)
(b) If X disfavours Y and VX — Y € K, we have the following relationship :
- = P(X)
Mex(X = Y) =ML (X 5 V) x ——2 . 1

Proposition 45. Let X and Y be two patterns and VX — Y € K, we have the following relationship :
OR(X -Y)=0R(X —Y). (62)

Proposition 46. Let X and Y be two patterns and VX — Y € K, we have the following relationship :

OB (X — T) = ORpn(X — V). (63)
Demonstration :
1. Indeed,
o Po(Y)—P(Y) 1-P(Y)—1+P(Y)
M (X =¥) = == PT) C 1-1+DP0)

Py +PY) e FRY)

- PY) - P(Y)

| R AP0 Py -PY) | PX)

- P(Y) TPy S 1-PIX)

P(X)

= M (X —=Y)x

1-P(X)
£ ML )
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Hence Mé K 1s not a measure evaluating in the same way the rules X — Y and X =Y.
Then,

P SR MR
_ —Px(Y)+P(Y) —ng%/) +P(Y)
N 1-PY) 1-P(Y)
C REERGEELLP(Y) py(v)-PY)  P(X)
- 1-P(Y) T 1-PY) C1-PX)
= Ml(X =Y)x ﬂf&)
# ME(X —=Y)

Hence Mg 5 1s not a measure evaluating in the same way the rules X — Y and XY

2. Then,

- o PY/X)(1-PX)-PY)+P(Y/X)PX))
ORE=Y) = @) —p/m.PX) (1 - PT/T)

_ (1=PY/X) (1 - 1+ P(X) — 1+ P(¥) + (1 = P(¥/X)).(1 - P(X)))
(1 ;(;(3:)) -1 P(gf(é(X% (1 (5(5))}))2)({% —1+P(Y/X))
_ (- )PV - 55 + 5 7)
(—=P(Y)+P(X) - Pg(fgﬂ (XmY>.P<x>)(pg(c%/))

P(X)
(1-PX)-PY )+Px(Y) (X)) (1 - P(X)).Px(Y)P(X)
P(X) - P?(X) - Px(Y)P ( )+ (Y)PQ(X))(P(Y) Px(Y)P(X))

1 -P(X) - P(Y) + Px(Y)P(X)) (1 - X)) Px(Y)P(X)
P(X)(1-P(X) )(1 —Px(Y) )5 x(Y)P(X))
P(

P(Y/X)(1 - P(X) - P(Y) + P(Y, X))
/X))

(P(Y) - P(Y/X).P(X))(1 -
OR(X —Y)
—OR(X —=Y).

ol

Hence OR is not a measure evaluating in the same way the rules X — Y and X - Y

3. And after
R P(Y/X) - P(¥)
ORuX=Y) = s&mn- @-P( Y) + PV/X)P(X))
P(Y/X) =1+ P(Y)

(1-PY/X))(1-1 +£(X) —1+PY)+(1-PY/X))(1-P(X)))
-PY/X)+ P(Y)

(1-P(Y/X)) (PLY) - P(Y/X)+ P(Y/X)P(X))
P(XNY)
~rm TP
P(XNY) P(XNY) P(XNY)
(1= m) O~ 5 + rrormg)
Px (Y)P(X)-P(X)P(Y)
1-P(X)
(I=PE=PI P (V)PEX) y Px (N P P(X))
1-P(X 1-P(X
P(Y/X) - P(Y)
P(Y/X)(1-P(X)—-P(Y)+ P(Y/X)P(X))
OR} (X -Y)
~OR] (X = Y).

N
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Hence ORin is not a measure evaluating in the same way the rules X - Y and X —Y

In the end,

P(Y/X) - P(Y)
(
1

OFi(X=Y) = T pw/x)Pm) - POOPD)
L P(Y/X) =1+ P(Y)
(14 PO/X)) (L P(Y) (1 P(Y/X))(1_ P(X)

P(XNY)
~ o P

P(XnNY P(XnY P(XnY
(P ))(—P(Y)+P(X) ;(%)— ED(%)P(X))

) —
(P(Y) — Py Y)) (1- P(X )1P(PX()X x (Y))

(()Rd ()(( —-Y)
_ORI (X > Y)

Ol

Hence ORfm is not a measure evaluating in the same way the rules X - Y and X - Y

Hence we have : ’P18<MGK) = Pis(OR) = Pig(ORup) =0 ‘

N

Measurement having a size the random premise

A measure m necessarily has a random premise size if it is based on one of these probabilistic
models: normal, binomial, poisson or hypergeometric distribution.

e If m is not based on a probabilistic model, then Pjg(m) = 0 (taille fixe);

e If m is based on a probabilistic model, then Pjg(m) = 1.

In effect
The measures Mgg, OR and O Ry, are not based on one of the models: normal, binomial, poisson or
hypergeometric distribution.
Hence Mgk, OR and O Ry, are not based on any probabilistic models

Hence we have : ’Plg(MGK) = Plg(OR) = Plg(ORnh) =0 ‘

N

Mesure statistique
Une mesure m est dite statistique si elle est sensible (croissante) a 'augmentation des don-
nées, par contre, elle est dite descriptive si elle est invariante & la croissance du nombre
d’enregistrements.

e SiVk € N*VX; — Y1,VXy — Ys, tel que (nx,y, = knx,y, et ny,y, = kny,y, et
nx,y, = knx,y, et nx v, = kng,y,) = m(X1 — Y1) = m(Xz = Y2), alors Py(m) =0
(descriptive);

e Si dk € N*,3X; — Y1,3Xs — Ys, tel que (nx,y, = knx,y, et ny,y, = kny,y, et
nylyl = k'nyzyz et nylyl = k.nYZVQ) et m(X1 — Yl) 7é m(XQ — YQ) alors PQ()(m) =1
(statistique).

The following propositions show that the measures Mgg, OR and ORy,, are statistical measures.

Proposition 47. Let X and Y be two patterns, Vk € N* and VX — Y € K, we have the following

relation :
MGK(XI — Yl) 7é MGK(X2 — YQ) (64)
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Proposition 48. Let X and Y be two patterns, Vk € N* and VX — Y € K, we have the following

relation :
OR(Xl — Yl) 75 OR(X2 — YQ). (65)

Proposition 49. Let X and Y be two patterns, Vk € N* and VX — Y € K, we have the following
relation :

ORpp (X1 — Y1) # ORpp (X2 — Y2). (66)
Demonstration :
1. Indeed
Mi(X =Y) = PXf):)p_(;( -

2 . —
nnxy — Ny —NXy . Nxy Nxyy-Nyy

2 . IS
n.nxy + nnyy — Ny — XY -Nyy — Nxy-Nyxy

: . * — P — R
So, if we have : Vk € N*, nx,y; = k.nx,v, andnxly1 = l{:.nxzy2 andnyﬁy1 = k.nX2Y2 analnxly1 =
k.n~ 3., donc on a:

XoY oo

2 2 2 _ 2, _

f vy — knnx,y, — k*.n%,y, — k*.nx,v, nx,y, — kK nx,y, Nx,v,
ax (X )= k.n.n — k2n2 —k2.n Nv v —k2nv v Ny o
T X2Y2+k.n.nx27 XoYs XY VX, Y, XY XY o

Nn.Nx,Y, — k.nX2Y2 — /{:.nXQyQ.nXﬁ/2 - k.n72y2.nX2?2

_ 2 _ _ _ _ _

NNXyYatnny, 3, k.nX2Y2 k.nXQYQ.nX2Y2 k.nXQYQ.nXQY2
2 o _

n'nXQYQ - nXQYQ - nXQYZ'nX2Y2 nXQYQ'nXQYQ

_ Y\Tf
_ 2 _ o — GK<X2 20
n-nXQYz-i-n.nX??Q nXQYQ nX2Y2'nX2Y2 nX2Y2'nX2Y2

So 3k € N*,3X; — Y1,3Xs — Yo, ML, (X1 = Y1) # ML, (Xo = Ya)

Hence Mé i 18 a statistical measure.

Then,
Px(Y)—P(Y)

P(Y)
nnxy —Nxy — TLXY.TLYY — ’I’LXv.nyy

MgK(Xl — Yl) =

5 — .
Nxy + Xy -Nxy + nxy nxy

: . * S L — . _ — — . —
So, if we have : Vk € N* nx,y, = k.nx,v, cmanlY1 = k.nX2Y2 anan1Y1 = k.nX2Y2 andnxly1 =
k.n< 3., donc on a:

271 2

k:nn —k2’l’l —k:2n N~ —]{32771* N~ 37
NN XY, MNX5Ys MNX5Ys- . .
Z\Td (Xl ; Yl) XoYs XoYs " XYy

2 2 — 2, _
k NX,Y, T k NX5Ys TX,y, +k N, v, X, T
n.nx,v, — knx,y, — k-anYz-nYQYQ - k‘”ngg'nXQVQ

k.nx,v, + k.nXQYQ.nyQY2 + k'nszQ‘nXQYQ

NNX,Y, — NXoYy — NXoYs Nxye — Mpoys -Mox 37
XaYo XoYp "XoYy MgK(X2 N Yz)

NX,Y, T NX5Y2 X, Yy, + N, y, VX,V

So 3k € N*,3X; — Y1,3Xs — Yo, ML (X1 = Y1) # ML (X2 — Ya)
Hence Mg i 1s a statistical measure.

2. After
P(Y/X)(1 = P(X) — P(Y) + P(Y/X).P(X))

+
(P(Y) — P(Y/X)P(X))(1 - P(Y/X))
nAXY — Myy = XY xy = XY Ky

OR(X —Y)

Nxy Nxy
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. . «
Therefore, if we have : Vk € N*, nx,y, = k.nx,y, andny 3, = kny,y, andny y, = k.ng,y, andng v
k.n+. v, therefore, we have:

XoYo? ’

2 2 2 _ 2 _
knnx,y, — k*.n% v, — k*.nx,v, nx, v, — k*nx,v, nx,y,

OR(X1 = Y1) = 2o — n—
9 P X0Y 2 " X0 Ys
nNx,y, — kNx,y, — Enx,v, Ny, v, — Enxovs Nx,y,

k.nX272 .nyz Yo

2 _ .
o = LY Ty, ~ XY ¥, — MR TGN _ oR(X, — Y)

U’ 272'nX72Y2

So dk € N*, 94X, — Y7,3dXo — YQ,OR(Xl — Yi) 75 OR(X2 — Yé)
Hence OR is a statistical measure.

3. Then,

P(Y/X)— P(Y)
P(Y/X)1—-P(X) - P(Y)+ P(Y/X)P(X))
Xy T Ny T XYYy T XY Xy T Mxy Ry

OR] (X »Y) =

2
nnxy — nXY — nxy.nxy — an.nyY

: . * - . - . . J— _ o S
So, if we have : Vk € N*, nx,y; = k.nx,v, andnxly1 = k.nX2Y2 ananlY1 = k.nX2Y2 andnxly1 =
k.n< 3., therefore, we have:

272

2,2 2 _ _ 12 .2 — M
knnx,y, — k*.n%,y, — k*nx,v, nx,y, — E*nx,v, Ny, v, — K° Ny, v, M,y

k2n2 o k2 — k2 _
knnx,y, — k*.n%,y, — k*nx,y, nx,y, — k°nx,v, nx,y,

2
nnx,y, — knk y, — knx,v, Ny y, —knx,v, Ny y, — kny v Ny vy
ORin(XI%YI) _ 2Y2 2Y2 2Y 2 2Y 2 2Y2

2 — _ —
NNX,Y, — k:.nX2Y2 — k:.nX2y2.nX2Y2 k'”XzYz'nngg

2
NNX,Y, — N — NX, Y Moy, — NXoYe My v7 — Ny 7 N
7& 2Y2 XoYo - 212" XoYo 212" XoYo XoYs " XoYo — OR}{n(XQ N }/2)
NNX,Y, — Ny, — NXaYe - Mx, 75 — NXaY2 -3y,
So 3k € N*,3X; — Y1,3Xs — Y5, OR], (X1 — Y1) # OR] (X2 — Y2)

Hence ORin is a statistical measure.

At the end

P(Y/X) - P(Y)
(1= PY/X)(P(Y) = P(Y/X)P(X))
nnxy — Nyy — NXy.Nxgy — NXY Nxy — Nxy -Nxy

OR} (X —»Y) =

Xy Nxy

: . * _ —_ — J—
So, if we have : Vk € N*,nx,yv;, = k.nx,v, ananlfyl = k.nX2fY2 cmdny(ly1 = k:.anY2 and nxg,yv, =
k.nw s, therefore, we have:
XoY o ?

2 2 2 g2 12 -
knnx,y, — k*.n%,y, — k*.nx,v, nx,y, — k> nx,vany, v, =k nx,y, Ny, v,

2 —
k MKy, XV

2
nnx,y, —knkx y, — knNxove Ny y, — KNXovaliy. v, — K.y, Ny v
OR%n()fl Yl) _ 2Y2 XaYs X2Y o XY " XoY o

) k‘.nyzyz.anyz
7£ n'nX2Y2 - anYQ - nXZYQ'nYQYQ - nX2Y2.nX272 - nEYQ'nXQE

= ORd (X2 — YQ)
U es TR Y o
So 3k € N*,3X; — V1,3Xs — Y5, ORY (X1 — Y1) # ORY, (X2 — Ya)
Hence ORfm is a statistical measure.

Hence we have : ‘PQO(MGK) = Py(OR) = Poo(OR,p,) =1 ‘
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Discriminating measure

A measure m is said to be discriminative if it is able to distinguish rules of interest as the size
of the training set n increases. In other words, a measure is able to return distinct values to the
rules for different levels of involvement.

e If 3n € N*,Vn > n,VX; — Y1,VXy — Y3 such that (Px, (Y1) > P(Y1)and Px,(Y2) >
P(Y3)) = m(X; — Y1) &= m(X2 — Y3), then P»;(m) =0 (non-discriminant);

o If Vn € N*,In > n,3X; — Y7,3X2 — Y5 such that (PX1(Y1) > P(Y1)and Px,(Y2) >
P(Y3)) = m(X1 — Y1) # m(Xa — Y3), , then Py;(m) = 1(discriminante).

Théoréme .4. (a) A probabilistic quality measure p is a discriminating measure if, and only if,
for any association rule X — Y, the following condition is verified at the reference situation

5 Himp 7é Kind 7é Minc'

(b) All normalisable and normalised measures (affine or homograph) are discriminating mea-

sures.

Proof :
Following the process of normalization of the measurement values between [-1 ;1] and following the
definition of normalized measurements, it is obvious that normalizable and normalized measurements
(affine or homographies) are discriminating measurements.

Demonstration :
It is obvious that the measures Mgk, OR,and ORy,, are discriminating, because they are admitted
different values to the independence and to the logical implication (mnq(X — Y) # Mimp(X — Y)).
This means to attraction or Px, (Y1) > P(Y1)and Px,(Y2) > P(Y2), 3X;1 — Y1,3X2 — Y3 such that
m(X1 — Yl) 7'5 m(X2 — Yg)

Hence we have : ‘Pgl(MGK) = P51(OR) = P»1(OR,,) =1 ‘
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