Brief reminders and demonstration

We begin our study of the behaviour of the measures M_{GK}, OR and $O R_{h n}$, in this section by using the 21 properties already identified in the work of Grissa(2013)Grissa which are recalled below.

- If the interpretation of m is difficult, then $P_{1}(m)=0$;
- If m is reduced to usual quantities, then $P_{1}(m)=1$;
- If m can be explained by a sentence, then $P_{1}(m)=2$.

It is important that a measurement is intelligible in order to interpret the results obtained.

1. In fact, we admit that $\mathrm{M}_{\mathrm{GK}}(X \rightarrow Y)$ is the rate of growth of probability of Y under the presence of X.
2. And, the Odds-Ration (OR) measure and the normalized Odds-Ratio $\left(O R_{h n}\right)$ are the eventual odds ratio of Y under the presence of X.

Therefore, we have : $\mathrm{P}_{1}\left(\mathrm{M}_{\mathrm{GK}}\right)=P_{1}(O R)=P_{1}\left(O R_{h n}\right)=2$.

```
- '~'Property \(2\left(P_{2}\right)\) : Ease of setting a threshold for acceptance of the rule
- f determining the threshold is problematic, then \(P_{2}(m)=0\);
- If the determination of the threshold is immediate, then \(P_{2}(m)=1\).
```

This property is proposed in order to keep interesting rules without having to classify them. And also intelligible, standardised and statistical measures lend themselves well to the determination of this threshold (Grissa(2013)Grissa|).

1. Since the decision taken from the M_{GK} measure is based entirely on a critical value, the determination of the acceptance threshold of a rule by this measure is immediate.
2. Secondly, the Odds-Ratio measure is an intelligible and statistical measure but not standardised, so determining the threshold is problematic.
3. And, the $O R_{h n}$ measure is an intelligible, standardised and statistical measure, so the determination of the acceptance threshold of a rule is immediate.

Therefore, we have : $\mathrm{P}_{2}\left(\mathrm{M}_{\mathrm{GK}}\right)=P_{2}\left(O R_{h n}\right)=1$ and $P_{2}(O R)=0$.
-Property $3\left(P_{3}\right)$: Measure non-symmetrical

- If m is symmetrical, i.e. if $\forall(X \rightarrow Y), m(X \rightarrow Y)=m(Y \rightarrow X)$, then $P_{3}(m)=0$;
- If m is non-symmetrical, i.e. if $\exists(X \rightarrow Y)$ such that $m(X \rightarrow Y) \neq m(Y \rightarrow X)$ then $P_{3}(m)=1$.

It is preferable for a measure to evaluate the rules X and Y differently since the premise and conclusion have distinct rationale. Nevertheless, in some cases, the orientation of the link between X and Y may not provide additional information to the user, i.e., whether the applied measures are symmetrical or not, it will not change anything in the obtained results ($($ Grissa(2013)Grissa $)$).
The propositions below show the measures OR, $O R_{n h}$ are symmetrical
Proposition 1. Let X and Y be two patterns, we have the relation:

$$
\begin{equation*}
O R(X \rightarrow Y)=O R(Y \rightarrow X) . \tag{1}
\end{equation*}
$$

Proposition 2. Let X and Y be two patterns, we have the relation :

$$
\begin{equation*}
O R_{n h}(X \rightarrow Y)=O R_{n h}(Y \rightarrow X) \tag{2}
\end{equation*}
$$

According to Feno(2007)Feno, the proposition below shows that the measure $M_{G K}^{d}$ are symmetric, while $M_{G K}^{f}$ is non-symmetric.

Proposition 3. (a) If X favours Y, we have the relationship :

$$
\begin{equation*}
M_{G K}^{f}(X \rightarrow Y)=\frac{1-P(Y)}{1-P(Y)} \frac{P(X)}{P(Y)} M_{G K}^{f}(Y \rightarrow X) \tag{3}
\end{equation*}
$$

(b) If X disfavours Y, we have the relationship :

$$
\begin{equation*}
M_{G K}^{d}(X \rightarrow Y)=M_{G K}^{d}(Y \rightarrow X) \tag{4}
\end{equation*}
$$

Demonstrations :

Let A and B be two patterns,

1. Pour M_{GK} :

In the work of Feno(2007)Feno , pages: 73 , we have well shown that $M_{G K}^{f}(A \rightarrow B) \neq M_{G K}^{f}(B \rightarrow$ $A)$ and $M_{G K}^{d}(A \rightarrow B)=M_{G K}^{d}(B \rightarrow A)$
Hence the favouring M_{GK} measure is non-symmetric and the unfavouring M_{GK} measure is symmetric.
2. For Odd-Ratio :

$$
\begin{aligned}
O R(A \rightarrow B)-O R(B \rightarrow A) & =\frac{\mathrm{P}(A \cap B) \mathrm{P}(\bar{A} \cap \bar{B})}{\mathrm{P}(\bar{A} \cap B) \mathrm{P}(A \cap \bar{B})}-\frac{\mathrm{P}(B \cap A) \mathrm{P}(\bar{B} \cap \bar{A})}{\mathrm{P}(\bar{B} \cap A) \mathrm{P}(B \cap \bar{A})} \\
& =\frac{\mathrm{P}(A \cap B) \mathrm{P}(\bar{A} \cap \bar{B})}{\mathrm{P}(\bar{A} \cap B) \mathrm{P}(A \cap \bar{B})}-\frac{\mathrm{P}(B \cap A) \mathrm{P}(\bar{A} \cap \bar{B})}{\mathrm{P}(A \cap \bar{B}) \mathrm{P}(\bar{A} \cap B)} \\
& =0
\end{aligned}
$$

Hence the Odd-Ratio measure is symmetrical
3. For $O R_{n h}$: Indeed

$$
\begin{aligned}
O R_{n h}^{f}(A \rightarrow B)-O R_{n h}^{f}(B \rightarrow A)= & \frac{\mathrm{P}_{A}(B)-\mathrm{P}(B)}{\mathrm{P}_{A}(B)\left(1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}_{A}(B) \mathrm{P}(A)\right)}- \\
& \frac{\mathrm{P}_{B}(A)-\mathrm{P}(A)}{\mathrm{P}_{B}(A)\left(1-\mathrm{P}(B)-\mathrm{P}(A)+\mathrm{P}_{B}(A) \mathrm{P}(A)\right)} \\
= & \frac{\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}-\mathrm{P}(B)}{\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)}-\mathrm{P}(A \cap B)-\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A)} \mathrm{P}(B)+\frac{\mathrm{P}^{2}(A \cap B)}{\mathrm{P}(A)}}- \\
& \frac{\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}-\mathrm{P}(A)}{\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}-\mathrm{P}(A \cap B)-\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \mathrm{P}(A)+\frac{\mathrm{P}^{2}(A \cup B)}{\mathrm{P}(B)}} \\
= & \frac{\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)}{\mathrm{P}(A \cap B)(1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A \cap B))}- \\
= & \frac{\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)}{\mathrm{P}(A \cap B)(1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}(A \cap B))}
\end{aligned}
$$

Therefore $O R_{n h}^{f}$ is symmetrical.

For

$$
\begin{aligned}
& O R_{n h}^{d}(A \rightarrow B)-O R_{n h}^{d}(B \rightarrow A)= \frac{\mathrm{P}_{A}(B)-\mathrm{P}(B)}{\left(1-\mathrm{P}_{A}(B)\right)\left(\mathrm{P}(B)-\mathrm{P}_{A}(B) \mathrm{P}(A)\right)}- \\
&= \frac{\mathrm{P}_{B}(A)-\mathrm{P}(A)}{\left(1-\mathrm{P}_{B}(A)\right)\left(\mathrm{P}(A)-\mathrm{P}_{B}(A) \mathrm{P}(B)\right)} \\
&\left(1-\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(A) \cdot(A)}-\mathrm{P}(B)\right. \\
&\mathrm{P}(\mathrm{P})(B)-\mathrm{P}(A \cap B)) \\
& \frac{\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}-\mathrm{P}(A)}{\left(1-\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}\right)(\mathrm{P}(A)-\mathrm{P}(A \cap B))} \\
&= \frac{\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)}{(\mathrm{P}(A)-\mathrm{P}(A \cap B))(\mathrm{P}(B)-\mathrm{P}(A \cap B))}- \\
&= \frac{\mathrm{P}(A \cap B)-\mathrm{P}(A) \mathrm{P}(B)}{(\mathrm{P}(A)-\mathrm{P}(A \cap B))(\mathrm{P}(B)-\mathrm{P}(A \cap B))}
\end{aligned}
$$

Therefore $O R_{n h}^{d}$ is symmetrical.
Hence we have : $\mathrm{P}_{3}\left(M_{G K}^{d}\right)=P_{3}(O R)=P_{3}\left(O R_{n h}^{f}\right)=P_{3}\left(O R_{n h}^{d}\right)=0$ and $P_{3}\left(M_{G K}^{f}\right)=1$.

Property $4\left(P_{4}\right)$: non-symmetrical measure in the sense of negation of the conclu-

 sion- If m is symmetrical in the sense of the negation of the conclusion, i.e. if $\forall(X \rightarrow Y), m(X \rightarrow Y)=m(X \rightarrow \bar{Y})$, then $P_{4}(m)=0 ;$
- If m is non-symmetric in the sense of the negation of the conclusion, i.e. if $\exists(X \rightarrow Y)$ such that $m(X \rightarrow Y) \neq m(X \rightarrow \bar{Y})$ then $P_{4}(m)=1$.

The following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ are not symmetric measures in the sense of the negation of the conclusion.

Proposition 4. According to Feno(2007)Fenol, let X and Y be two positive patterns. We have the following equality :

$$
\begin{equation*}
M_{G K}(X \rightarrow \bar{Y})=-M_{G K}(X \rightarrow Y) . \tag{5}
\end{equation*}
$$

Proposition 5. Let X and Y be two positive patterns. We have the following equality :

$$
\begin{equation*}
O R(X \rightarrow \bar{Y})=\frac{1}{O R(X \rightarrow Y)} \tag{6}
\end{equation*}
$$

Proposition 6. Let X and Y be two positive patterns.
(a) If X favours Y, we have the following equality:

$$
\begin{equation*}
O R_{h n}^{f}(X \rightarrow \bar{Y})=-O R_{h n}^{d}(X \rightarrow Y) \tag{7}
\end{equation*}
$$

(b) If X disfavours Y, we have the following equality:

$$
\begin{equation*}
O R_{h n}^{d}(X \rightarrow \bar{Y})=-O R_{h n}^{f}(X \rightarrow Y) \tag{8}
\end{equation*}
$$

Demonstrations :

1. For the measure M_{GK}

In the work of Feno(2007)Feno, pages : 75, we have well shown that $M_{G K}^{f}(X \rightarrow \bar{Y})=$ $-M_{G K}^{f}(X \rightarrow Y) \neq M_{G K}^{f}(X \rightarrow Y)$ and $M_{G K}^{d}(X \rightarrow \bar{Y})=-M_{G K}^{d}(X \rightarrow Y) \neq M_{G K}^{d}(X \rightarrow Y)$.
Therefore M_{GK} is not symmetric in the sense of the negation of the conclusion.
2. For the $O R$ measure Indeed

$$
\begin{aligned}
O R(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}(X \cap \bar{Y}) \mathrm{P}(\bar{X} \cap \overline{\bar{Y}})}{\mathrm{P}(\bar{X} \cap \bar{Y}) \mathrm{P}(X \cap \overline{\bar{Y}})} \\
& =\frac{\mathrm{P}(X \cap \bar{Y}) \mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X} \cap \bar{Y}) \mathrm{P}(X \cap Y)} \\
& =\frac{1}{O R(X \rightarrow Y)} .
\end{aligned}
$$

We obtain : $O R(X \rightarrow \bar{Y}) \neq O R(X \rightarrow Y)$
So $O R$ is not symmetric in the sense of the negation of the conclusion.
3. For the measure $O R_{h n}$ Indeed

$$
\begin{aligned}
O R_{h n}^{f}(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{X}(\bar{Y})-\mathrm{P}(\bar{Y})}{\mathrm{P}_{X}(\bar{Y})\left(1-\mathrm{P}(X)-\mathrm{P}(\bar{Y})+\mathrm{P}_{X}(\bar{Y}) \mathrm{P}(X)\right)} \\
& =\frac{1-\mathrm{P}_{X}(Y)-1+\mathrm{P}(Y)}{\left(1-\mathrm{P}_{X}(Y)\right)\left(1-\mathrm{P}(X)-1+\mathrm{P}(Y)+\left(1-\mathrm{P}_{X}(Y)\right) \mathrm{P}(X)\right)} \\
& =-\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{\left(1-P\left(Y^{\prime} / X^{\prime}\right)\right)\left(P\left(Y^{\prime}\right)-P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)} \\
& =-O R_{h n}^{d}(X \rightarrow Y)
\end{aligned}
$$

So $O R_{h n}^{f}(X \rightarrow \bar{Y}) \neq O R_{h n}^{f}(X \rightarrow Y)$
And

$$
\begin{aligned}
O R_{h n}^{d}(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{X}(\bar{Y})-\mathrm{P}(\bar{Y})}{\left(1-\mathrm{P}_{X}(\bar{Y})\right)\left(\mathrm{P}(\bar{Y})-\mathrm{P}_{X}(\bar{Y}) \mathrm{P}(X)\right)} \\
& =\frac{1-\mathrm{P}_{X}(Y)-1+\mathrm{P}(Y)}{\left(1-1+\mathrm{P}_{X}(Y)\right)\left(1-\mathrm{P}(Y)-\left(1-\mathrm{P}_{X}(Y)\right) \mathrm{P}(X)\right)} \\
& =-\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{P\left(Y^{\prime} / X^{\prime}\right)\left(1-P\left(X^{\prime}\right)-P\left(Y^{\prime}\right)+P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)} \\
& =-O R_{h n}^{f}(X \rightarrow Y)
\end{aligned}
$$

So $O R_{h n}^{d}(X \rightarrow \bar{Y}) \neq O R_{h n}^{d}(X \rightarrow Y)$
Hence $O R_{h n}$ is not symmetric in the sense of the negation of the conclusion.
Hence we have : $\mathrm{P}_{4}\left(M_{G K}\right)=P_{4}(O R)=P_{4}\left(O R_{n h}\right)=1$.

Property $5\left(P_{5}\right):$ MMeasure evaluating $(X \rightarrow Y)$ and $\bar{Y} \rightarrow \bar{X}$ in the same way in the case of logical implication

- If $\exists(X \rightarrow Y)$ such that $\mathrm{P}_{X}(Y)=1$ and $m(X \rightarrow Y) \neq m(\bar{Y} \rightarrow \bar{X})$, then $P_{5}(m)=0$;
- If $\forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=1 \Longrightarrow m(X \rightarrow Y)=m(\bar{X} \rightarrow \bar{Y})$ then $P_{5}(m)=1$.

The following propositions show that $\mathrm{M}_{\mathrm{GK}}{ }^{f}, O R$ and $O R_{h n}$ are implicative measures, while $\mathrm{M}_{\mathrm{GK}}{ }^{d}$ is not an implicative measure.

Proposition 7. (a) According to Feno(2007)Feno, if X favours Y, we have the equivalence relation of the two contraposed rules :

$$
\begin{equation*}
\mathrm{M}_{\mathrm{GK}}(\bar{Y} \rightarrow \bar{X})=\mathrm{M}_{\mathrm{GK}}(X \rightarrow Y) \tag{9}
\end{equation*}
$$

(b) If X disfavours Y, we have the following relationship :

$$
\begin{equation*}
\mathrm{M}_{\mathrm{GK}}(\bar{Y} \rightarrow \bar{X})=\frac{P(X) P(Y)}{(1-P(X))(1-P(Y))} \mathrm{M}_{\mathrm{GK}}(X \rightarrow Y) \tag{10}
\end{equation*}
$$

Proposition 8. Let X and Y be two patterns, we have the equivalence relation of the two contraposed rules :

$$
\begin{equation*}
O R(\bar{Y} \rightarrow \bar{X})=O R(X \rightarrow Y) \tag{11}
\end{equation*}
$$

Proposition 9. Let X and Y be two patterns, we have the equivalence relation of the two contraposed rules :

$$
\begin{equation*}
O R_{h n}(\bar{Y} \rightarrow \bar{X})=O R_{h n}(X \rightarrow Y) \tag{12}
\end{equation*}
$$

Demonstrations :

Let A and B be two patterns and $\forall A \rightarrow B \in \mathbb{K}(P ; C, R)$,

1. For the measure M_{GK}
$\underline{\text { In }}$ the work of $\overline{\text { Feno(2007)Feno }}$, pages: 74 , we have well shown that $M_{G K}^{f}(A \rightarrow B)=M_{G K}^{f}(\bar{B} \rightarrow$ $\bar{A})$ and $M_{G K}^{d}\left(\overline{A \rightarrow B) \neq M_{G K}^{d}(\bar{B} \rightarrow \bar{A}), ~(\bar{A}}\right.$
Therefore $M_{G K}^{f}$ is an implicative measure and $M_{G K}^{d}$ is not an implicative measure. If $\mathrm{P}_{A}(B)=1$, we have $M_{G K}^{f}(A \rightarrow B)=M_{G K}^{f}(\bar{B} \rightarrow \bar{A})=\frac{1-\mathrm{P}(B)}{1-\mathrm{P}(B)}=1$.
And for the case of $M_{G K}^{d}$
If $\mathrm{P}_{A}(B)=1$, we have $M_{G K}^{d}(\bar{B} \rightarrow \bar{A})=\frac{1}{M_{G K}^{d}(A \rightarrow B)} \neq M_{G K}^{d}(A \rightarrow B)$
2. For the $O R$ measure

By definition

$$
\begin{aligned}
O R(\bar{B} \rightarrow \bar{A}) & =\frac{\mathrm{P}(\bar{B} \cap \bar{A}) \mathrm{P}(\overline{\bar{B}} \cap \overline{\bar{A}})}{\mathrm{P}(\overline{\bar{B}} \cap \bar{A}) \mathrm{P}(\bar{B} \cap \overline{\bar{A}})} \\
& =\frac{\mathrm{P}(\bar{B} \cap \bar{A}) \mathrm{P}(B \cap A)}{\mathrm{P}(B \cap \overline{\bar{A}}) \mathrm{P}(\bar{B} \cap A)} \\
& =\frac{\mathrm{P}(\bar{A} \cap \bar{B}) \mathrm{P}(A \cap B)}{\mathrm{P}(A \cap \bar{B}) \mathrm{P}(\bar{A} \cap B)} \\
& =O R(A \rightarrow B) .
\end{aligned}
$$

So $O R$ is an implicit measure.
If $\mathrm{P}_{A}(B)=1$, we have $O R(\bar{B} \rightarrow \bar{A})=O R(A \rightarrow B)=+\infty$
3. For the measure $O R_{h n}$

Indeed

$$
\begin{aligned}
O R_{f_{n h}(\bar{B} \rightarrow \bar{A})} & =\frac{\mathrm{P}_{\bar{B}}(\bar{A})-\mathrm{P}(\bar{A})}{\mathrm{P}_{\bar{B}}(\bar{A})\left(1-\mathrm{P}(\bar{B})-\mathrm{P}(\bar{A})+\mathrm{P}_{\bar{B}}(\bar{A}) \mathrm{P}(\bar{B})\right)} \\
& =\frac{\mathrm{P}_{\bar{B}}(\bar{A})\left(1-\frac{\mathrm{P}(\bar{A})}{\mathrm{P}_{\bar{B}}(\bar{A})}\right)}{\mathrm{P}_{\bar{B}}(\bar{A})\left(1-\mathrm{P}(\bar{B})-\mathrm{P}(\bar{A})+\mathrm{P}_{\bar{B}}(\bar{A}) \mathrm{P}(\bar{B})\right)} \\
& =\frac{1-\frac{1-\mathrm{P}(A)}{1-\frac{\mathrm{P}(A \cap \bar{B})}{\mathrm{P}(\bar{B})}}}{\mathrm{P}(A)-\frac{\mathrm{P}(A \cap \bar{B})}{\mathrm{P}(\bar{B})}+\frac{\mathrm{P}(A \cap \bar{B}) \mathrm{P}(B)}{\mathrm{P}(\bar{B})}} \\
& =\frac{\frac{\mathrm{P}_{A}(B) \mathrm{P}(A)-\mathrm{P}(A) \mathrm{P}(B)}{1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}_{A}(B) \mathrm{P}(A)}}{\frac{\mathrm{P}_{A}(B) \mathrm{P}(A)-\mathrm{P}_{A}(B) \mathrm{P}(A) \mathrm{P}(B)}{1-\mathrm{P}^{(B)}}} \\
& =\frac{\mathrm{P}_{A}(B)-\mathrm{P}(B)}{\mathrm{P}_{A}(B)\left(1-\mathrm{P}(A)-\mathrm{P}(B)+\mathrm{P}_{A}(B) \mathrm{P}(A)\right)} \\
& =O R_{n h}^{f}(A \rightarrow B) .
\end{aligned}
$$

So $O R_{h n}^{f}$ is an implicit measure.
If $\mathrm{P}_{A}(B)=1$, we have $O R_{n h}^{f}(\bar{B} \rightarrow \bar{A})=O R_{n h}^{f}(A \rightarrow B)=\frac{1-\mathrm{P}(B)}{1-\mathrm{P}(B)}=1$.

At the end

$$
\begin{aligned}
O R_{h n}^{d}(\bar{B} \rightarrow \bar{A}) & =\frac{\mathrm{P}_{\bar{B}}(\bar{A})-\mathrm{P}(\bar{A})}{\left(1-\mathrm{P}_{\bar{B}}(\bar{A})\right)\left(\mathrm{P}(\bar{A})-\mathrm{P}_{\bar{B}}(\bar{A}) \mathrm{P}(\bar{B})\right)} \\
& =\frac{\mathrm{P}(A)-\frac{\mathrm{P}(A \cap \bar{B})}{\mathrm{P}(\bar{B})}}{\left(\frac{\mathrm{P}(A \cap \bar{B})}{\mathrm{P}(\bar{B})}\right)\left(\mathrm{P}(B)-\mathrm{P}(A)+\frac{\mathrm{P}(A \overline{\bar{B}})}{\mathrm{P}(\bar{B})}-\frac{\mathrm{P}(A \cap \bar{B}) \mathrm{P}(B)}{\mathrm{P}(\bar{B})}\right)} \\
& =\frac{\mathrm{P}(A)-\frac{\mathrm{P}(A)-\mathrm{P}_{A}(B) \mathrm{P}(A)}{1-\mathrm{P}(B)}}{\left(\frac{\mathrm{P}(A)-\mathrm{P}_{A}(B) \mathrm{P}(A)}{1-\mathrm{P}(B)}\right)\left(\mathrm{P}(B)-\mathrm{P}(A)+\frac{\mathrm{P}(A)-\mathrm{P}_{A}(B) \mathrm{P}(A)}{1 \mathrm{P}(B)}-\frac{\mathrm{P}(A) \mathrm{P}(B)-\mathrm{P} A(B) \mathrm{P}(A) \mathrm{P}(B)}{1-\mathrm{P}(B)}\right)} \\
& =\frac{1-\mathrm{P}(A))\left(\mathrm{P}_{A}(B)-\mathrm{P}(B)\right)}{\left(1-\mathrm{P}_{A}(B) \mathrm{P}(A)\right)(1-\mathrm{P}(B))\left(\mathrm{P}(B)-\mathrm{P}_{A}(B) \mathrm{P}(A)\right)} \\
& =\frac{\mathrm{P} A(B)-\mathrm{P}(B)}{\left(1-\mathrm{P}_{A}(B)\right)\left(\mathrm{P}(B)-\mathrm{P}_{A}(B) \mathrm{P}(A)\right)} \\
& =O R_{n h}^{d}(A \rightarrow B) .
\end{aligned}
$$

Therefore $O R_{h n}^{d}$ is an implicit measure.
If $\mathrm{P}_{A}(B)=1$, we have $O R_{n h}^{d}(\bar{B} \rightarrow \bar{A})=O R_{n h}^{d}(A \rightarrow B)=+\infty$

Hence we have : $\mathrm{P}_{5}\left(M_{G K}^{f}\right)=P_{5}(O R)=P_{5}\left(O R_{n h}\right)=1$ and $P_{5}\left(M_{G K}^{d}\right)=0$.

-Propriété $6\left(P_{6}\right)$: Increasing measure according to the number of examples

- If m is not increasing as a function of $n_{X Y}$, then $P_{6}(m)=0$;
- If m is increasing as a function of $n_{X Y}$, then $P_{6}(m)=1$.

The following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}^{d}$ are increasing measures as a function of $n_{X Y}$, while $O R_{h n}^{f}$ is not an increasing measure as a function of $n_{X Y}$.

Proposition 10. (a) If X favours Y, and $n_{X Y}$ the variable, with $a=\frac{1}{n_{X}\left(n-n_{Y}\right)}>0$ and $b=-\frac{n_{X} n_{Y}}{n_{X}\left(n-n_{Y}\right)}$, we have the following function:

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=a . n_{X Y}+b . \tag{13}
\end{equation*}
$$

(b) If X disfavours Y, and $n_{X Y}$ the variable, with $a=\frac{1}{n_{Y} \cdot n_{Y}}>0$, we have the following function

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=a . n_{X Y}-1 \tag{14}
\end{equation*}
$$

Proposition 11. If X favours Y, and $n_{X Y}$ the variable, with $a=f r a c 1 n_{Y} \cdot n_{Y}>0$, we have the following function :

$$
\begin{equation*}
O R(X \rightarrow Y)=a . n_{X Y} . \tag{15}
\end{equation*}
$$

Proposition 12. (a) Let X and Y be two patterns of the context \mathbb{K} and the variable $n_{X Y}$, with $a=n-n_{X}-n_{Y}$ and $b=n_{Y}$, we have the following function :

$$
\begin{equation*}
O R_{n h}(X \rightarrow Y)=\frac{1}{n_{X Y}+a}-\frac{b}{n_{X Y}\left(n_{X Y}+a\right)} \tag{16}
\end{equation*}
$$

(b) If X disfavours Y, and $n_{X Y}$ the variable, with $a=\frac{1}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}>0$ and $b=-\frac{n_{X} n_{Y}}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$, n. $n_{X} \neq n_{X Y}$ and $n_{Y} \neq n_{X Y}$; we have the following function :

$$
\begin{equation*}
O R_{n h}(X \rightarrow Y)=a \cdot n_{X Y}+b . \tag{17}
\end{equation*}
$$

Demonstrations :

1. Let X and Y be two patterns of the context \mathbb{K}, such that $n_{X} . n_{Y} \neq 0$, we define : $M_{G K}^{f}(X \rightarrow Y)=$ $\frac{n_{X Y}-n_{X} n_{Y}}{n_{X}\left(n-n_{Y}\right)}$. By posing $a=\frac{1}{n_{X}\left(n-n_{Y}\right)}$ and $b=-\frac{n_{X} n_{Y}}{n_{X}\left(n-n_{Y}\right)}$, we have: $M_{G K}(X \rightarrow Y)=$ $a . n_{X Y}+b$. As $n_{X}, n_{Y} \in \mathbb{N}^{*}$ and $n>n_{Y}$, then we have : $n_{X}\left(n-n_{Y}\right)>0$ and $a=\frac{1}{n_{X}\left(n-n_{Y}\right)}>0$. Therefore $M_{G K}^{f}$ is an increasing function of $n_{X Y}$.
In the end, we have : $M_{G K}^{f}=-a . n_{X \bar{Y}}+a . n_{X}+b$. By posing $c=a . n_{X}+b$, we have :
$M_{G K}^{f}(X \rightarrow Y)=-a . n_{X \bar{Y}}+c$ which is a decreasing function of $n_{X \bar{Y}}$.
Then, $M_{G K}^{d}(X \rightarrow Y)=\frac{n_{X Y}-n_{X} n_{Y}}{n_{X} \cdot n_{Y}}$. By fixing the value of n_{X} and n_{Y} we obtain : $M_{G K}^{d}(X \rightarrow Y)=a . n_{X Y}-1$. Since $n_{Y}, n_{Y} \in \mathbb{N}^{*}$, then $a=\frac{1}{n_{Y} \cdot n_{Y}}>0$.
Therefore $M_{G K}^{d}(X \rightarrow Y)=a . n_{X Y}-1$ is increasing by $n_{X Y}$. Moreover, we have : $n_{X Y}=$ $n_{X}-n_{X \bar{Y}}$. Therefore $M_{G K}^{d}(X \rightarrow Y)=-a . n_{X \bar{Y}}+a . n_{X}-1$. It comes $M_{G K}^{d}(X \rightarrow Y)=$ $-a . n_{X \bar{Y}}+\lambda$, with $\lambda=a . n_{X}-1$, is a decreasing function of $n_{X \bar{Y}}$.
2. Then, $O R(X \rightarrow Y)=\frac{n_{X Y} \cdot n_{\bar{X} \cdot \bar{Y}}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}$. As $n_{\bar{X} \cdot \bar{Y}}, n_{\bar{X} Y}, n_{X \bar{Y}} \in \mathbb{N}^{*}$, as $a=\frac{n_{\bar{X} \cdot \bar{Y}}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}>0$.

Therefore $O R(X \rightarrow Y)=a . n_{X Y}$ is increasing by $n_{X Y}$. Moreover, we have $O R(X \rightarrow Y)=$ $-a . n_{X \bar{Y}}+a . n_{X}$. We obtain $O R(X \rightarrow Y)=-a . n_{X \bar{Y}}+\beta$ with $\beta=a . n_{X}$ is a decreasing function of $n_{X \bar{Y}}$.
3. After, $O R_{n h}^{f}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-n_{Y}}{\frac{n_{X Y}}{n_{X}}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$

Therefore, $O R_{n h}^{f}(X \rightarrow Y)=\frac{n_{X Y}-n_{Y}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$.
It comes $O R_{n h}^{f}(X \rightarrow Y)=\frac{1}{n_{X Y}+n-n_{X}-n_{Y}}-\frac{n_{Y}}{n_{X Y}\left(n_{X Y}+n-n_{X}-n_{Y}\right)}=\frac{1}{n_{X Y}+a}-$ $\frac{b}{n_{X Y}\left(n_{X Y}+a\right)}$, with $a=n-n_{X}-n_{Y}$ and $b=n_{Y}$ is not increasing as a function of $n_{X Y}$.
Then, $\left.O R_{n h}^{d}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-n_{Y}}{\left(n-\frac{n_{X Y}}{n_{X}}\right)\left(n_{Y}-\frac{n_{X Y}}{n_{X}} n_{X}\right.}\right)$
Therefore, $O R_{n h}^{d}(X \rightarrow Y)=\frac{n_{X Y}-n_{X} n_{Y}}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$
We obtain, $O R_{n h}^{d}(X \rightarrow Y)=\frac{1}{\left(n \cdot n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)} n_{X Y}-\frac{n_{X} n_{Y}}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}=$ $a . n_{X Y}+b$, with $a=\frac{1}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$ and $b=-\frac{n_{X} n_{Y}}{\left(n . n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$ is increasing as a function of $n_{X Y}$.
Finally, $O R_{n h}^{d}(X \rightarrow Y)=-a . n_{X \bar{Y}}+a . n_{X}+b$. By posing : $c=a . n_{X}+b$, we have :
$O R_{n h}^{d}(X \rightarrow Y)=-a . n_{X \bar{Y}}+c$ which is a decreasing function of $n_{X \bar{Y}}$.
Hence we have : $\mathrm{P}_{6}\left(M_{G K}\right)=P_{6}(O R)=P_{6}\left(O R_{n h}^{d}\right)=1$ and $P_{6}\left(O R_{n h}^{f}\right)=0$.

-Property $7\left(P_{7}\right)$: Increasing measure as a function of the size of the learning set

- $P_{7}(m)=0$, sif m is not increasing as a function of n;
- Let $P_{7}(m)=1$, if m is increasing as a function of n.

LThe following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ are increasing measures as a function of n.

Proposition 13. (a) If X favours Y, and n is a variable with $\alpha=\frac{n_{X Y}}{n_{X}\left(n-n_{Y}\right)}>0, \beta=$
$\frac{n_{X} \cdot n_{Y}}{n_{X} \cdot\left(n-n_{Y}\right)}$ and $n \neq n_{Y}$; we have the following function expression:

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=\alpha . n-\beta \tag{18}
\end{equation*}
$$

(b) If X disfavours Y, and n is a variable with $\Theta=\frac{n_{X Y}}{n_{X} \cdot n_{Y}}>0$, we have the following function expression :

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=\Theta . n-1 \tag{19}
\end{equation*}
$$

Proposition 14. Let X and Y be two patterns, the variable n with $a=\frac{n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}>0$ and $b=\frac{\left(n_{X Y}-n_{X}-n_{Y}\right) \cdot n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}, n_{Y} \neq n_{X Y}, n_{X} \neq n_{X Y}$, we have the following function :

$$
\begin{equation*}
O R(X \rightarrow Y)=a . n+b \tag{20}
\end{equation*}
$$

Proposition 15. (a) If X favours Y, and n is a variable with $\alpha=\frac{n_{X Y}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}>0$ and $\beta=-\frac{n_{X Y}^{2}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$, then we have the following function expressions :

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=\alpha . n+\beta \tag{21}
\end{equation*}
$$

(b) If X disfavours Y, and n is a variable with $\eta=\frac{n_{X Y}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}>0$ and $\iota=-\frac{n_{X}^{2}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}, n_{Y} \neq n_{X Y}, n_{X} \neq n_{X Y}$, we have the following function expression :

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=\eta \cdot n+\iota . \tag{22}
\end{equation*}
$$

Demonstrations :

1. For M_{GK}, In effect
$M G_{G K}^{d}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{\frac{n_{Y}}{n}}=\frac{\frac{n_{X Y}}{n_{X}}}{\frac{n_{Y}}{n}}-1=\Theta . n-1$, with $\Theta=\frac{n_{X Y}}{n_{X} \cdot n_{Y}} \succ 0$.
Therefore, $M_{G K}^{d}$ is an increasing measure as a function of n. Moreover, $M_{G K}^{f}(X \rightarrow Y)=$ $\frac{\frac{n_{X Y}}{n_{X}-\frac{n_{Y}}{n}}}{1-\frac{n_{Y}}{n}}=\frac{n_{X Y}}{n_{X}\left(n-n_{Y}\right)} n-\frac{n_{X} \cdot n_{Y}}{n_{X} \cdot\left(n-n_{Y}\right)}=\alpha . n-\beta$, with $\alpha=\frac{n_{X Y}}{n_{X}\left(n-n_{Y}\right)} \succ 0$ and $\beta=$ $\frac{n_{X} \cdot n_{Y}}{n_{X} \cdot\left(n-n_{Y}\right)}$.
Therefore $M_{G K}^{d}$ is an increasing measure of n.
2. Then, $O R(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}\left(1-\frac{n_{X}}{n}-\frac{n_{Y}}{n}+\frac{n_{X Y}}{n_{X}} \frac{n_{X}}{n}\right)}{\left(\frac{n_{y}}{n}-\frac{n_{X Y}}{n_{X}} \frac{n_{X}}{n}\right)\left(1-\frac{n_{X Y}}{n_{X}}\right)}$

Simplifying this expression, we obtain :
$O R(X \rightarrow Y)=\frac{n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)} \cdot n+\frac{\left(n_{X Y}-n_{X}-n_{Y}\right) \cdot n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}$
So $O R(X \rightarrow Y)=a . n+b$ with $a=\frac{n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}>0$ and $b=\frac{\left(n_{X Y}-n_{X}-n_{Y}\right) \cdot n_{X Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}$, which is increasing in function of n.
3. Then, for $O R_{h n}$, we have :
$O R_{h n}^{f}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{X}}{n}}{\frac{n_{X Y}}{n_{X}}\left(1-\frac{n_{X}}{n}-\frac{n_{Y}}{n}+\frac{n_{X Y}}{n_{X}} \cdot \frac{n_{X}}{n}\right)}$
After the simplification, it comes :
$O R_{h n}^{f}(X \rightarrow Y)=\frac{n_{X Y}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)} \cdot n-\frac{n_{X Y}^{2}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$
Therefore $O R_{h n}^{f}(X \rightarrow Y)=\alpha . n+\beta$ with $\alpha=\frac{n_{X Y}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$ and $\beta=-\frac{n_{X Y}^{2}}{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}$,
is an increasing measure as a function of n.
In the end, $O R_{h n}^{d}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{X}}{n}}{\left(1-\frac{n_{X Y}}{n_{X}}\right)\left(\frac{n_{Y}}{n}-\frac{n_{X Y}}{n_{X}} \cdot \frac{n_{X}}{n}\right)}$
After simplification, we obtain :
$O R_{h n}^{d}(X \rightarrow Y)=\frac{n_{X Y}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)} \cdot n-\frac{n_{X}^{2}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$
So $O R_{h n}^{d}(X \rightarrow Y)=\eta \cdot n+\iota$, with $\eta=\frac{n_{X Y}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$ and
$\iota=-\frac{n_{X}^{2}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$ is an increasing measure of n.
Hence we have : $\mathrm{P}_{7}\left(M_{G K}\right)=P_{7}(O R)=P_{7}\left(O R_{n h}\right)=1$.

-Property $8\left(P_{8}\right):$ Decreasing measure depending on the size of the consequent or

 the size of the premise- SIf m is not decreasing according to n_{Y} i.e. if $\exists\left(X_{1} \rightarrow Y_{1}\right), \exists\left(X_{2} \rightarrow Y_{2}\right)$, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and $m\left(X_{1} \rightarrow Y_{1}\right)<m\left(X_{2} \rightarrow Y_{2}\right)$; then $P_{8}(m)=0$;
- If m is decreasing as a function of n_{Y} i.e. if $\forall\left(X_{1} \rightarrow Y_{1}\right), \forall\left(X_{2} \rightarrow Y_{2}\right)$
$\left(n_{X_{1}}=n_{X_{2}}\right.$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $\left.n_{Y_{1}}<n_{Y_{2}}\right) \Rightarrow m\left(X_{1} \rightarrow Y_{1}\right) \geq m\left(X_{2} \rightarrow Y_{2}\right)$
and $\exists\left(X_{1} \rightarrow Y_{1}\right), \exists\left(X_{2} \rightarrow Y_{2}\right)$, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and $m\left(X_{1} \rightarrow Y_{1}\right)>m\left(X_{2} \rightarrow Y_{2}\right), P_{8}(m)=1$.

The following proposition shows that $M_{G K}^{f}$ and $O R_{h n}^{f}$ are not decreasing measures of the size of the consequent or premise, while $M_{G K}^{d}, O R$ and $O R_{h n}^{d}$ are decreasing measures of the size of the consequent or the premise.

Proposition 16. (a) If X favours $Y,\left(X_{1} \rightarrow Y_{1}\right),\left(X_{2} \rightarrow Y_{2}\right)$ two rules, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and the variable n_{Y} with $\gamma=\frac{n \cdot n_{X Y}}{n_{X}}>0$, we have the following inequality :

$$
\begin{equation*}
M_{G K}\left(X_{1} \rightarrow Y_{1}\right)<M_{G K}\left(X_{2} \rightarrow Y_{2}\right) \tag{23}
\end{equation*}
$$

(b) If X disfavours $Y,\left(X_{1} \rightarrow Y_{1}\right),\left(X_{2} \rightarrow Y_{2}\right)$ two rules, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=$ $n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and the variable n_{Y} or n_{X} with $\theta=\frac{n_{X Y} \cdot n}{n_{X}}>0$ or $\beta=\frac{n_{X Y} \cdot n}{n_{Y}}>0$, we have the following inequality :

$$
\begin{equation*}
M_{G K}\left(X_{1} \rightarrow Y_{1}\right)>M_{G K}\left(X_{2} \rightarrow Y_{2}\right) \tag{24}
\end{equation*}
$$

Proposition 17. Let X and Y be two patterns, $\left(X_{1} \rightarrow Y_{1}\right),\left(X_{2} \rightarrow Y_{2}\right)$ two rules, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and the variable n_{Y} or n_{X} with $\alpha=n_{X Y}\left(n-n_{Y}+n_{X Y}\right)>0$ ou $\beta=n_{X Y}\left(n-n_{X}+n_{X Y}\right)>0$, we have the following inequality :

$$
\begin{equation*}
O R\left(X_{1} \rightarrow Y_{1}\right)>O R\left(X_{2} \rightarrow Y_{2}\right) \tag{25}
\end{equation*}
$$

Proposition 18. (a) If X favours $Y,\left(X_{1} \rightarrow Y_{1}\right),\left(X_{2} \rightarrow Y_{2}\right)$ two rules, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and the variable n_{Y} with $\alpha=n>0, \beta=n-n_{X}+n_{X Y}>$ $0, \lambda=\frac{n_{X}}{n_{X Y}}>0$, we have the following inequality :

$$
\begin{equation*}
O R_{h n}\left(X_{1} \rightarrow Y_{1}\right)<O R_{h n}\left(X_{2} \rightarrow Y_{2}\right) \tag{26}
\end{equation*}
$$

(b) If X disfavours $Y,\left(X_{1} \rightarrow Y_{1}\right),\left(X_{2} \rightarrow Y_{2}\right)$ two rules, such that $n_{X_{1}}=n_{X_{2}}$ and $n_{X_{1} Y_{1}}=$ $n_{X_{2} Y_{2}}$ and $n_{Y_{1}}<n_{Y_{2}}$ and the variable n_{Y} or n_{X} with $\alpha=\frac{n . n_{X Y}}{n_{X}-n_{X Y}}>0$ ou $\theta=\frac{n \cdot n_{X Y}}{n_{Y}-n_{X Y}}>$ $0, \beta=\frac{n_{X}}{n_{X}-n_{X Y}}>0$ ou $\lambda=\frac{n_{Y}}{n_{Y}-n_{X Y}}>0$, we have the following inequality :

$$
\begin{equation*}
O R_{h n}\left(X_{1} \rightarrow Y_{1}\right)>O R_{h n}\left(X_{2} \rightarrow Y_{2}\right) \tag{27}
\end{equation*}
$$

Demonstration :

1. Indeed, $M_{G K}^{f}(X \rightarrow Y)=\frac{n \cdot n_{X Y}}{n_{X}\left(n-n_{Y}\right)}-\frac{n_{X} \cdot n_{Y}}{n_{X}\left(n-n_{Y}\right)}=\frac{\gamma}{n-n_{Y}}-\frac{n_{Y}}{n-n_{Y}}$, with $\gamma=\frac{n . n_{X Y}}{n_{X}}>0$. Therefore, as n_{Y} grows tending to n, the measure $M_{G K}^{f}$ also grows. Hence $M_{G K}^{f}$ does not verify property 8 .
Then, $M_{G K}^{d}(X \rightarrow Y)=\frac{n_{X Y} \cdot n}{n_{X} \cdot n_{Y}}-1=\frac{\theta}{n_{X}}-1=\frac{\beta}{n_{Y}-1}$, with $\theta=\frac{n_{X Y \cdot n}}{n_{X}}$ ou $\beta=\frac{n_{X Y} \cdot n}{n_{Y}}$. Therefore, as n_{X} or n_{Y} increases, the measure $M_{G K}^{d}$ decreases to the limit -1 . Hence $M^{d} G K$ is decreasing with the size of the consequent or the size of the premise.
2. Then, $O R(X \rightarrow Y)=\frac{n_{X Y}\left(n-n_{X}-n_{Y}+n_{X Y}\right)}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}=$
$\frac{\alpha}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}-\frac{n_{X Y} \cdot n_{X}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}$
$=\frac{\beta}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}-\frac{n_{X Y} \cdot n_{Y}}{\left(n_{Y}-n_{X Y}\right)\left(n_{X}-n_{X Y}\right)}$, with $\alpha=n_{X Y}\left(n-n_{Y}+n_{X Y}\right)>0$ or $\beta=n_{X Y}\left(n-n_{X}+n_{X Y}\right)>0$. Thus, as n_{X} or n_{Y} increases, $O R$ decreases to 0 . Hence $O R$ is decreasing with the size of the consequent or the size of the premise.
3. After, $O R_{h n}^{f}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{\frac{n_{X Y}}{n_{X}}\left(1-\frac{n_{X}}{n}-\frac{n_{Y}}{n}+\frac{n_{X Y}}{n}\right)}=\frac{n \cdot n_{X Y}-n_{X} \cdot n_{Y}}{n_{X Y}\left(n-n_{X}-n_{Y}-n_{X Y}\right)}$

Therefore, $O R_{h n}^{f}(X \rightarrow Y)=\frac{n}{n-n_{X}-n_{Y}-n_{X Y}}-\frac{n_{X} \cdot n_{Y}}{n_{X Y}\left(n-n_{X}-n_{Y}-n_{X Y}\right)}=\frac{\alpha}{\beta-n_{Y}}-$ $\frac{\lambda . n_{Y}}{\beta-n_{Y}}$, with $\alpha=n>0, \beta=n-n_{X}+n_{X Y}>0, \lambda=\frac{n_{X}}{n_{X Y}}>0$. So the more n_{Y} tends to β, the more $O R_{h n}^{f}$ grows. Hence $O R_{h n}^{f}$ does not verify property 8 .
Then, $O R_{h n}^{d}(X \rightarrow Y)=\frac{\frac{n_{X Y}}{n_{X}-\frac{n_{Y}}{n}}}{\left(1-\frac{n_{X Y}}{n_{X}}\right)\left(\frac{n_{Y}}{n}-\frac{n_{X Y}}{n}\right)}=\frac{n \cdot n_{X Y}-n_{Y} \cdot n_{X}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}$
Therefore, $O R_{h n}^{d}(X \rightarrow Y)=\frac{n_{X} n_{X Y}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}-\frac{n_{X} \cdot n_{Y}}{\left(n_{X}-n_{X Y}\right)\left(n_{Y}-n_{X Y}\right)}=\frac{\alpha}{n_{Y}-n_{X Y}}-$ $\frac{\beta . n_{Y}}{n_{Y}-n_{X Y}}=\frac{\theta}{n_{X}-n_{X Y}}-\frac{\lambda . n_{X}}{n_{X}-n_{X Y}}$ with $\alpha=\frac{n . n_{X Y}}{n_{X}-n_{X Y}}>0$ or $\theta=\frac{n . n_{X Y}}{n_{Y}-n_{X Y}}>0, \beta=$ $\frac{n_{X}}{n_{X}-n_{X Y}}>0$ or $\lambda=\frac{n_{Y}}{n_{Y}-n_{X Y}}>0$; Therefore, the more n_{X} or n_{Y} grows, the more $O R_{h n}^{d}$ decreases and has limit -1. Hence $O R_{h n}^{d}$ is decreasing as a function of n_{X} or n_{Y}.

Hence we have : $\mathrm{P}_{8}\left(M_{G K}^{d}\right)=P_{8}(O R)=P_{8}\left(O R_{n h}^{d}\right)=1$ and $P_{8}\left(M_{G K}^{f}\right)=P_{8}\left(O R_{n h}^{f}\right)=0$.

- ${ }^{\circ}$ - Property $9\left(P_{9}\right):$ Measure admitting a fixed value in the case of independence

- If m does not admit a fixed value in the case of independence i.e. if $\forall a \in \mathbb{R}, \exists(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$ and $m(X \rightarrow Y) \neq a$; then $P_{9}(m)=0$;
- If m admits a fixed value in the case of independence i.e. if $\exists a \in \mathbb{R}, \forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\mathrm{P}(Y) \Rightarrow m(X \rightarrow Y)=a$, then $P_{9}(m)=1$.

The following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ admit a fixed value in the case of independence.

Proposition 19. Let X and Y be two patterns, $\forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$, we have the following value

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=0 . \tag{28}
\end{equation*}
$$

Proposition 20. Let X and Y be two patterns, $\forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$, we have the following value

$$
\begin{equation*}
O R(X \rightarrow Y)=1 . \tag{29}
\end{equation*}
$$

Proposition 21. Let X and Y be two patterns, $\forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$, we have the following value

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=0 . \tag{30}
\end{equation*}
$$

Théorème .1. (a) A probabilistic quality measure mu admits a fixed value at independence if, and only if, for any association rule X toY, the following condition is verified at the reference situation : $\mu_{\text {ind }} \neq \infty$, if $\left(\mu_{\text {imp }}, \mu_{\text {ind }}, \mu_{\text {inc }}\right) \in \overline{\mathbb{R}}^{3}$.
(b) All normalizable and normalized affine measures and homographies are allowed a fixed value of independence.

Preuve :

(i) if $\left(\mu_{\text {imp }}, \mu_{\text {ind }}, \mu_{\text {inc }}\right) \in \overline{\mathbb{R}}^{3}$, and $\mu_{\text {ind }} \neq \infty$, it is indeed sufficient to use property 9 (ii) above ;
(ii) if $\left(\mu_{i m p}, \mu_{\text {ind }}, \mu_{\text {inc }}\right) \in \overline{\mathbb{R}}^{3}$, following the process of normalization of the measure values between $[-1 ; 1]$ and following the definition of normalized measures, it is enough to use on property 9 above. Hence the stated theorem.

Demonstrations :

1. In fact, $\forall(X \rightarrow Y) \in \mathbb{K}(P, C, \mathbb{R}), M_{G K}^{f}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}$. So, at independence $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$, we get $M_{G K}^{f}(X \rightarrow Y)=0 \in \mathbb{R}$ (fixed value). And for $M_{G K}^{d}(X \rightarrow Y)=$ $\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)}$. Similarly, at independence, $M_{G K}^{d}(X \rightarrow Y)=0 \in \mathbb{R}$ (valeurfixe). Hence $M_{G K}$ is a measure admitting a fixed value at independence.
2. Then, $\forall(X \rightarrow Y) \in \mathbb{K}(P, C, \mathbb{R}), O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))}$. Then, at independence for $\mathrm{P}_{X}(Y)=\mathrm{P}(Y)$, on a $O R(X \rightarrow Y)=1 \in \mathbb{R}$ (fixed value). Hence $O R$ is a measure admitting a fixed value at independence..
3. After, $\forall(X \rightarrow Y) \in \mathbb{K}(P, C, \mathbb{R})$,
$O R_{h n}^{f}(X \rightarrow Y)=\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{P\left(Y^{\prime} / X^{\prime}\right)\left(1-P\left(X^{\prime}\right)-P\left(Y^{\prime}\right)+P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)}$.
At independence, $O R_{h n}^{f}(X \rightarrow Y)=0 \in \mathbb{R}$ (valeur fixe).
And for $O R_{h n}^{d}(X \rightarrow Y)=\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{\left(1-P\left(Y^{\prime} / X^{\prime}\right)\right)\left(P\left(Y^{\prime}\right)-P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)}$. Similarly, at independence $O R_{h n}^{d}(X \rightarrow Y)=0$ (fixed value). Hence $O R_{h n}$ is a measure admitting a fixed value at independence.

Hence we have : $\mathrm{P}_{9}\left(M_{G K}\right)=P_{9}(O R)=P_{9}\left(O R_{n h}\right)=1$.

Property $10\left(P_{10}\right)$: Measure admitting a fixed value in the case of logical implication

- If m does not admit a fixed value in the case of the logical implication i.e. if $\forall b \in \mathbb{R}, \exists(X \rightarrow$ $Y)$, such that $\mathrm{P}_{X}(Y)=1$ and $m(X \rightarrow Y) \neq b$; then $P_{10}(m)=0$;
- If m admits a fixed value in the case of the logical implication i.e. if $\exists b \in \mathbb{R}, \forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=1 \Rightarrow m(X \rightarrow Y)=b$, then $P_{10}(m)=1$.

The following propositions show that the measures $M_{G K}^{f}, O R_{h n}^{f}$ admit a fixed value in the case of logical implication, while $M_{G K}^{d}, O R$ and $O R_{h n}^{d}$ do not admit a fixed value in the case of logical implication.

Proposition 22. (a) If X favours Y, for $\mathrm{P}_{X}(Y)=1$, we have the following value:

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=1 \tag{31}
\end{equation*}
$$

(b) If X disadvantages Y, for $\mathrm{P}_{X}(Y)=1$, we have the relation:

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=\frac{1-\mathrm{P}(Y)}{\mathrm{P}(Y)} \tag{32}
\end{equation*}
$$

Proposition 23. Let X and Y be two patterns, for $\mathrm{P}_{X}(Y)=1$, we have the following value :

$$
\begin{equation*}
O R(X \rightarrow Y)=+\infty \tag{33}
\end{equation*}
$$

Proposition 24. (a) If X favours Y, for $\mathrm{P}_{X}(Y)=1$, we have the following value:

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=1 \tag{34}
\end{equation*}
$$

(b) SIf X disadvantages Y, for $\mathrm{P}_{X}(Y)=1$, we have the following value:

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=+\infty \tag{35}
\end{equation*}
$$

Théorème .2. All normalisable affine measures and normalisable homographies are allowed a fixed value at the logical implication.

Proof :

if $\left(\mu_{\text {imp }}, \mu_{\text {ind }}, \mu_{\text {inc }}\right) \in \overline{\mathbb{R}}^{3}$, following the process of normalization to bring back the values of measure between $[-1 ; 1]$ and according to the definition of normalized measures, and to use there on the property 10 above. Hence the stated theorem Demonstration :

1. Indeed, we have $M_{G K}^{f}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}$. So, at the logical implication $\mathrm{P}_{X}(Y)=1$, we get $M_{G K}^{f}(X \rightarrow Y)=1 \in \mathbb{R}$ which is a fixed value. And for $M_{G K}^{d}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)}$. Similarly, by logical implication, $M_{G K}^{d}(X \rightarrow Y)=\frac{1-\mathrm{P}(Y)}{\mathrm{P}(Y)}$ which is not a fixed value for any pattern Y of a context \mathbb{K}.
2. Then, $O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))}$. At the logical implication, we have $\mathrm{P}_{X}(Y)=1$, il vient $O R(X \rightarrow Y)=+\infty$ which is a nonfixed value.
3. Then, $O R_{h n}^{f}(X \rightarrow Y)=\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{P\left(Y^{\prime} / X^{\prime}\right)\left(1-P\left(X^{\prime}\right)-P\left(Y^{\prime}\right)+P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)}$. At the logical implication, it comes a $\mathrm{P}_{X}(Y)=1$, we obtain $O R_{h n}^{f}(X \rightarrow Y)=1$ qwhich is a fixed value.
In the end, $O R_{h n}^{d}(X \rightarrow Y)=\frac{P\left(Y^{\prime} / X^{\prime}\right)-P\left(Y^{\prime}\right)}{\left(1-P\left(Y^{\prime} / X^{\prime}\right)\right)\left(P\left(Y^{\prime}\right)-P\left(Y^{\prime} / X^{\prime}\right) P\left(X^{\prime}\right)\right)}$. At the logical implication, it comes $O R_{h n}^{d}(X \rightarrow Y)=+\infty$ which is not a fixed value.
Hence we have : $\mathrm{P}_{10}\left(M_{G K}^{d}\right)=P_{10}(O R)=P_{10}\left(O R_{n h}^{d}\right)=0$ and $P_{10}\left(M_{G K}^{f}\right)=P_{10}\left(O R_{n h}^{f}\right)=1$.

- If m does not admit a fixed value in the case of equilibrium i.e. if $\forall c \in \mathbb{R}, \exists(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$ and $m(X \rightarrow Y) \neq c$; then $P_{11}(m)=0$;
- If m has a fixed value in the case of equilibrium, i.e. if $\exists c \in \mathbb{R}, \forall(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2} \Rightarrow m(X \rightarrow Y)=c$, then $P_{11}(m)=1$.

The situation of equilibrium is another situation of reference other than independence and logical implication. We have a situation of equilibrium when the rule has as many examples as the counterexamples Grissa(2013) Grissa.

The following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ do not admit a fixed value in the equilibrium case.

Proposition 25. (a) If X favours Y, and $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=\frac{\mathrm{P}(X)-2 \mathrm{P}(Y)}{2(1-\mathrm{P}(Y))} \tag{36}
\end{equation*}
$$

(b) If X disadvantages Y, and $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, we have the following relationship:

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)=\frac{\mathrm{P}(X)-2 \mathrm{P}(Y)}{2 \mathrm{P}(Y)} \tag{37}
\end{equation*}
$$

Proposition 26. Let X and Y be two patterns, if $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, we have the following relationship :

$$
\begin{equation*}
O R(X \rightarrow Y)=\frac{\mathrm{P}(X)\left(2-2 \mathrm{P}(X)-2 \mathrm{P}(Y)-\mathrm{P}^{2}(X)\right)}{(2 \mathrm{P}(Y)-\mathrm{P}(X))(2-\mathrm{P}(X))} \tag{38}
\end{equation*}
$$

Proposition 27. (a) If X favours Y, and $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, we have the following relationship:

$$
\begin{equation*}
R_{h n}(X \rightarrow Y)=\frac{2(P(X)-2 P(Y))}{2-2 P(X)-2 P(Y)+P^{2}(X)} \tag{39}
\end{equation*}
$$

(b) SIf X disadvantages Y, and $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}(X \rightarrow Y)=\frac{2(P(X)-P(Y))}{(2-P(X))\left(2 P(Y)-P^{2}(X)\right)} \tag{40}
\end{equation*}
$$

Théorème .3. All affine and homograph normalisable measures and normalised measures do not admit of a fixed value in the case of equilibrium.

Proof :

if ($\mu_{\text {imp }}, \mu_{\text {ind }}, \mu_{\text {inc }}$) $\in \mathbb{R}^{3}$,following the process of normalization of the measurement values between $[-1 ; 1]$ and following the definition of normalized measurements, all its measurements only admit values that at the reference situation $\left(\mu_{i m p}=1, \mu_{\text {ind }}=0, \mu_{\text {inc }}=-1\right)$,of which it is enough to use on property 11 above. Hence the stated theorem.

Demonstration :

1. Indeed, we have $M_{G K}^{f}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}$. At equilibrium, if $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, on obtient $M_{G K}^{f}(X \rightarrow Y)=\frac{\frac{\mathrm{P}(X)}{2}-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}=\frac{\mathrm{P}(X)-2 \mathrm{P}(Y)}{2(1-\mathrm{P}(Y))}$ which is not a fixed value.
And for, $M_{G K}^{d}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)}$. At equilibrium, $\mathrm{P}_{X}(Y)=\frac{\mathrm{P}(X)}{2}$, it comes $M_{G K}^{d}(X \rightarrow$ $Y)=\frac{\frac{\mathrm{P}(X)}{2}-\mathrm{P}(Y)}{\mathrm{P}(Y)}=\frac{\mathrm{P}(X)-2 \mathrm{P}(Y)}{2 \mathrm{P}(Y)}$ which is not a fixed value too. Hence $M_{G K}$ is not a measure admitting a fixed value at the equilibrium situation.
2. Then, $O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))}$. At equilibrium, if $\mathrm{P}_{X}(Y)=$ $\frac{\mathrm{P}(X)}{2}$, we have $O R(X \rightarrow Y)=\frac{\frac{\mathrm{P}(X)}{2}\left(1-\mathrm{P}(X)-\mathrm{P}(Y)+\frac{\mathrm{P}(X)}{2} \cdot \mathrm{P}(X)\right)}{\left(\mathrm{P}(Y)-\frac{\mathrm{P}(X)}{2} \cdot \mathrm{P}(X)\right)\left(1-\frac{\mathrm{P}(X)}{2}\right)}$.
It comes $O R(X \rightarrow Y)=\frac{\mathrm{P}(X)\left(2-2 \mathrm{P}(X)-2 \mathrm{P}(Y)-\mathrm{P}^{2}(X)\right)}{(2 \mathrm{P}(Y)-\mathrm{P}(X))(2-\mathrm{P}(X))}$ which is not a fixed value. Hence $O R$ is not a measure admitting a fixed value at the equilibrium situation.
3. Then, $O R_{h n}^{f}(X \rightarrow Y)=\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))}$. At equilibrium, if $\mathrm{P}_{X}(Y)=$ $\frac{\mathrm{P}(X)}{2}$, on obtient $O R_{h n}^{f}(X \rightarrow Y)=\frac{\frac{\mathrm{P}(X)}{2}-P(Y)}{\frac{\mathrm{P}(X)}{2}\left(1-P(X)-P(Y)+\frac{\mathrm{P}(X)}{2} P(X)\right)}$

So $O R_{h n}^{f}(X \rightarrow Y)=\frac{2(P(X)-2 P(Y))}{2-2 P(X)-2 P(Y)+P^{2}(X)}$ which is not a fixed value at equilibrium.
In the end, $O R_{h n}^{d}(X \rightarrow Y)=\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))}$. At equilibrium, we have $O R_{h n}^{d}(X \rightarrow Y)=\frac{\frac{\mathrm{P}(X)}{2}-P(Y)}{\left(1-\frac{\mathrm{P}(X)}{2}\right)\left(P(Y)-\frac{\mathrm{P}(X)}{2} P(X)\right)}$.
Therefore $O R_{h n}^{d}(X \rightarrow Y)=\frac{2(P(X)-P(Y))}{(2-P(X))\left(2 P(Y)-P^{2}(X)\right)}$ which is not a fixed value at equilibrium. Hence $O R_{h n}$ is not a measure admitting a fixed value at the equilibrium situation.

Hence we have : $\mathrm{P}_{11}\left(M_{G K}\right)=P_{11}(O R)=P_{11}\left(O R_{n h}\right)=0$.

Property $12\left(P_{12}\right)$: Measure admitting identifiable values in case of attraction

between X and Y

- If m does not admit identifiable values in case of attraction between X and Y i.e. if $\forall a \in \mathbb{R}, \exists(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$ and $m(X \rightarrow Y) \leq a$; then $P_{12}(m)=0$;
- If m admits identifiable values in case of attraction between X and Y i.e. if $\exists a \in \mathbb{R}, \forall(X \rightarrow$ $Y)$, such that $\mathrm{P}_{X}(Y)>\mathrm{P}(Y) \Rightarrow m(X \rightarrow Y)>a$, then $P_{12}(m)=1$.

The following propositions show that the measures $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ admit identifiable values in case of attraction between X and Y.

Proposition 28. If X favours Y, and $\forall(X \rightarrow Y)$ and $\forall a \in \mathbb{R}^{-} \subset \mathbb{R}$ for $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)>a . \tag{41}
\end{equation*}
$$

Proposition 29. Let X and Y be two patterns, $\forall(X \rightarrow Y), \forall b \in]-\infty, 1] \subset \mathbb{R}$ for $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
O R(X \rightarrow Y)>b . \tag{42}
\end{equation*}
$$

Proposition 30. If X favours Y, and $\forall(X \rightarrow Y), \forall c \in \mathbb{R}^{-} \subset \mathbb{R}$ for $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
O R_{h n}^{f}(X \rightarrow Y)>c . \tag{43}
\end{equation*}
$$

Demonstration :

1. Indeed, we have $M_{G K}^{f}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \in[0,1]$. It is obvious that $\forall(X \rightarrow Y)$ and $\forall a \in \mathbb{R}^{-} \subset \mathbb{R}$ such that in case of attraction between X and Y, if $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have $\left.M_{G K}^{f}(X \rightarrow Y) \in\right] 0,1\left[\right.$ and $M_{G K}^{f}(X \rightarrow Y)>a$. Hence $M_{G K}$ admits identifiable values in case of attraction between X and Y.
2. Then, $O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))} \in[0 ;+\infty[$. Donc $\forall(X \rightarrow Y)$ and $\forall b \in]-\infty, 1] \subset \mathbb{R}$ in case of attraction between X and Y, if $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have $O R(X \rightarrow Y) \in] 1,+\infty[$ and $O R(X \rightarrow Y)>b$. Hence $O R$ admits identifiable values in case of attraction between X and Y.
3. In the end, $O R_{h n}^{f}(X \rightarrow Y)=\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))} \in[0,1]$. Thus $\forall(X \rightarrow Y)$ and $\forall c \in \mathbb{R}^{-} \subset \mathbb{R}$ such that in case of attraction between X and Y, if $\mathrm{P}_{X}(Y)>\mathrm{P}(Y)$, we have $\left.O R_{h n}^{f}(X \rightarrow Y) \in\right] 0,1\left[\right.$ and $O R_{h n}^{f}(X \rightarrow Y)>c$. Hence $O R_{h n}$ admits identifiable values in case of attraction between X and Y.

Hence we have : $\mathrm{P}_{12}\left(M_{G K}\right)=P_{12}(O R)=P_{12}\left(O R_{n h}\right)=1$.

Property $13\left(P_{13}\right)$: Measure admitting identifiable values in case of repulsion

 between X and Y- If m does not admit identifiable values in case of repulsion between X and Y i.e. if $\forall a \in \mathbb{R}, \exists(X \rightarrow Y)$, such that $\mathrm{P}_{X}(Y)<\mathrm{P}(Y)$ and $m(X \rightarrow Y) \geq a$; then $P_{13}(m)=0 ;$
- If m admits identifiable values in case of repulsion between X and Y i.e. if $\exists a \in \mathbb{R}, \forall(X \rightarrow$ $Y)$, such that $\mathrm{P}_{X}(Y)<\mathrm{P}(Y) \Rightarrow m(X \rightarrow Y)<a$, then $P_{13}(m)=1$.

The following propositions show that $\mathrm{M}_{\mathrm{GK}}, O R$ and $O R_{h n}$ admit identifiable values in case of repulsion between X and Y .

Proposition 31. If X disadvantages Y, and $\forall(X \rightarrow Y)$ and $\forall a \in \mathbb{R}^{+} \subset \mathbb{R}$ for $\mathrm{P}_{X}(Y)<\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
M_{G K}(X \rightarrow Y)<a . \tag{44}
\end{equation*}
$$

Proposition 32. Let X and Y be two patterns, and $\forall(X \rightarrow Y)$ and $\forall b \in\left[1,+\infty\left[\subset \mathbb{R}\right.\right.$ for $\mathrm{P}_{X}(Y)<$ $\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
O R(X \rightarrow Y)<b . \tag{45}
\end{equation*}
$$

Proposition 33. If X disadvantages Y, and $\forall(X \rightarrow Y)$ and $\forall c \in \mathbb{R}^{+} \subset \mathbb{R}$ for $\mathrm{P}_{X}(Y)<\mathrm{P}(Y)$, we have the following inequality :

$$
\begin{equation*}
O R_{h n}^{d}(X \rightarrow Y)<c . \tag{46}
\end{equation*}
$$

Demonstration :

1. Indeed $M_{G K}^{d}(X \rightarrow Y)=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)} \in[-1,0]$. Therefore $\forall(X \rightarrow Y)$ and $\forall a \in \mathbb{R}^{+} \subset \mathbb{R}$ such that in case of repulsion between X and $Y, \mathrm{P}_{X}(Y)<\mathrm{P}(Y)$, we have $\left.M_{G K}^{d}(X \rightarrow Y) \in\right]-1,0[$ and $M_{G K}^{d}(X \rightarrow Y)<a$. Hence $M_{G K}$ admits identifiable values in case of repulsion between X and Y.
2. Then, $O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))} \in[0 ;+\infty[$. Thus $\forall(X \rightarrow Y)$ and $\forall b \in\left[1,+\infty\left[\subset \mathbb{R}\right.\right.$ in case of repulsion between X and Y, if $\mathrm{P}_{X}(Y)<\mathrm{P}(Y)$, one has $O R(X \rightarrow Y) \in] 0,1[$ and $O R(X \rightarrow Y)<b$. Hence $O R$ admits identifiable values in the case of the repulsion between X and Y.
3. In the end, $O R_{h n}^{d}(X \rightarrow Y)=\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \in[-1,0]$. Thus $\forall(X \rightarrow Y)$ and $\forall c \in \mathbb{R}^{+} \subset \mathbb{R}$ such that in case of repulsion between X and $Y, \mathrm{P}_{X}(Y)<\mathrm{P}(Y)$, we have $\left.O R_{h n}^{d}(X \rightarrow Y) \in\right]-1,0\left[\right.$ and $O R_{h n}^{d}(X \rightarrow Y)<c$. Hence $O R_{h n}$ admits identifiable values in case of repulsion between X and Y.

Hence we have : $\mathrm{P}_{13}\left(M_{G K}\right)=P_{13}(O R)=P_{13}\left(O R_{n h}\right)=1$.

Property $14\left(P_{14}\right)$: Measure capable of tolerating the first counterexamples

A measure is able to tolerate the first few counterexamples if it decreases slowly as few counterexamples appear, and then more rapidly until it reaches a minimum or zero value. That is, at fixed n_{X} and n_{Y} margins, the evolution function of the measure m, as a function of $n_{X Y}$, has a concave shape.

- If m is a convex function of $n_{X Y}$, i.e. $\exists \min _{\text {conf }} \in[0 ; 1]$ $\forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}, \forall \lambda \in[0,1] ; n_{X_{1} Y_{1}} \geq \min _{\text {conf }} n_{X_{1}}$ and $n_{X_{2} Y_{2}} \geq \min _{\text {conf }} n_{X_{2}}$ impliquent $f_{m, n_{X Y}}\left(\lambda n_{X_{1} Y_{1}}+(1-\lambda) n_{X_{2} Y_{2}}\right) \leq \lambda f_{m, n_{X Y}}\left(n_{X_{1} Y_{1}}+(1-\lambda) n_{X_{2} Y_{2}}\right)$; alors $P_{14}(m)=0,($ rejection);
- If m is a linear function o $n_{X Y}$ i.e. $P_{14}(m) \neq 0$ and $P_{14}(m) \neq 2$, then $P_{14}(m)=1$ (indifference) ;
- If m is a concave function of $n_{X Y}$ i.e. $\exists \min _{\text {conf }} \in[0,1], \forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}, \forall \lambda \in$ $[0,1] ; n_{X_{1} Y_{1}} \geq \min _{\text {conf }} n_{X_{1}}$ and $n_{X_{2} Y_{2}} \geq \min _{\text {conf }} n_{X_{2}}$ imply $f_{m, n_{X Y}}\left(\lambda n_{X_{1} Y_{1}}+(1-\right.$ $\left.\lambda) n_{X_{2} Y_{2}}\right) \geq \lambda f_{m, n_{X Y}}\left(n_{X_{1} Y_{1}}+(1-\lambda) n_{X_{2} Y_{2}}\right)$, then $P_{14}(m)=2$ (tolerance).

The notation $f_{m, n_{X Y}}$ corresponds to the function of evolution of the measure m as a function of $n_{X Y}$ when the numbers n_{X}, n_{Y} and n remain constant.

We saw in the proof of property 6 that the measures $M_{G K}^{f}, M_{G K}^{d}, O R$ and $O R_{h n}^{d}$ are linear measures as a function of $n_{X Y}$. Therefore, these are measures that are indifferent to the first counterexamples. And the measure $O R_{h n}^{f}$ is a decreasing measure as a function of $n_{X Y}$. Therefore, it is a convex measure as a function of $n_{X Y}$. Hence $O R_{h n}^{f}$ is the measure rejected by the first counterexamples.
Hence we have : $\mathrm{P}_{14}\left(M_{G K}\right)=P_{14}(O R)=P_{14}\left(O R_{n h}^{d}\right)=1$ and $P_{14}\left(O R_{n h}^{f}\right)=0$.

- ${ }^{\circ}$ 'Property $15\left(P_{15}\right)$: Invariant measure in case of dilation of certain numbers

- If $\exists\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2},\left(n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}\right.$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$ and $\left.m\left(X_{1} \rightarrow Y_{1}\right) \neq m\left(X_{2} \rightarrow Y_{2}\right)\right)$ or $\left(n_{X_{1} Y_{1}}=k_{2} n_{X_{2} Y_{2}}\right.$ and $n_{X_{1} \bar{Y}_{1}}=k_{2} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{1} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ $k_{1} n_{\bar{X}_{2} \bar{Y}_{2}}$ and $\left.m\left(X_{1} \rightarrow Y_{1}\right) \neq m\left(X_{2} \rightarrow Y_{2}\right)\right)$; then $P_{15}(m)=0$ (variance);
- If $\forall\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}, \forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2},\left(n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}\right.$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$ and $\left.\Rightarrow m\left(X_{1} \rightarrow Y_{1}\right)=m\left(X_{2} \rightarrow Y_{2}\right)\right)$ and ($n_{X_{1} Y_{1}}=k_{2} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n \bar{X}_{1} Y_{1}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{1} n_{\bar{X}_{2} \bar{Y}_{2}}$ $\left.\Rightarrow m\left(X_{1} \rightarrow Y_{1}\right)+m\left(X_{2} \rightarrow Y_{2}\right)\right) ;$, then $P_{15}(m)=1$ (invariance).

The following propositions show that $O R, O R$ with the $2^{t h}$ expression, $O R_{h n}$ are not measures that vary with the growth of some numbers, while $O R$ with the $2^{t h}$ expression is a measure that is invariant with the expansion of some numbers.

Proposition 34. Let X and Y be two patterns, $\forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$, and $\forall\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}$, such that $n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and
$n_{\bar{X}_{1} Y_{1}}=k_{2} n \bar{X}_{2} Y_{2}$ and $n \bar{X}_{1} \bar{Y}_{1}=k_{2} n \bar{X}_{2} \bar{Y}_{2}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}\left(X_{1} \rightarrow Y_{1}\right) \neq M_{G K}\left(X_{2} \rightarrow Y_{2}\right) . \tag{47}
\end{equation*}
$$

For $O R(X \rightarrow Y)=\frac{\mathrm{P}(X \cap Y) \mathrm{P}(\bar{X} \cap \bar{Y})}{\mathrm{P}(\bar{X} \cap Y) \mathrm{P}(X \cap \bar{Y})}=\frac{n_{X Y} \cdot n_{\bar{X}} \cdot \bar{Y}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}$.
Proposition 35. Let X and Y be two patterns, $\forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$, and $\forall\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}$, such that $n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and
$n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n \bar{X}_{2} \bar{Y}_{2}$, we have the following relationship :

$$
\begin{equation*}
O R\left(X_{1} \rightarrow Y_{1}\right)=O R\left(X_{2} \rightarrow Y_{2}\right) . \tag{48}
\end{equation*}
$$

For $O R(X \rightarrow Y)=\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))}$.
Proposition 36. Let X and Y be two patterns, $\forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$, and $\forall\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}$, such that $n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n \bar{X}_{1} \bar{Y}_{1}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have the following relationship :

$$
\begin{equation*}
O R\left(X_{1} \rightarrow Y_{1}\right) \neq O R\left(X_{2} \rightarrow Y_{2}\right) \tag{49}
\end{equation*}
$$

Proposition 37. Let X and Y be two patterns, $\forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$, and $\forall\left(k_{1}, k_{2}\right) \in \mathbb{N}^{* 2}$, such that $n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and
$n_{\bar{X}_{1} Y_{1}}=k_{2} n \bar{X}_{2} Y_{2}$ and $n \bar{X}_{1} \bar{Y}_{1}=k_{2} n_{\bar{X}_{2}} \bar{Y}_{2}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}\left(X_{1} \rightarrow Y_{1}\right) \neq O R_{h n}\left(X_{2} \rightarrow Y_{2}\right) \tag{50}
\end{equation*}
$$

Demonstration :

1. In effect

Let $n_{X Y}=n_{X}-n_{X \bar{Y}}$ and $n_{X Y}=n_{Y}-n_{\bar{X} Y}$
So

$$
\begin{aligned}
M_{G K}^{f}(X \rightarrow Y) & =\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{1-\frac{n_{Y}}{n}} \\
& =\frac{n \cdot n_{X Y}-n_{X} \cdot n_{Y}}{n \cdot n_{X}-n_{X} \cdot n_{Y}}=\frac{n \cdot n_{X Y}-\left(n_{X Y}+n_{X \bar{Y}}\right)\left(n_{X Y}+n_{\bar{X} Y}\right)}{n \cdot\left(n_{X Y}+n_{X \bar{Y}}\right)-\left(n_{X Y}+n_{X \bar{Y}}\right)\left(n_{X Y}+n_{\bar{X} Y}\right)} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n \cdot n_{X Y}+n \cdot n_{X \bar{Y}}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have :

$$
\begin{aligned}
M_{G K}^{f}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} n_{X_{2} Y_{2}}^{2}-k_{1} \cdot k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k_{1} \cdot n \cdot n_{X_{2} Y_{2}+k_{1} \cdot n \cdot n n_{X_{2}} \bar{Y}_{2}}-k_{1}^{2} n_{X_{2} Y_{2}}^{2}-k_{1} \cdot k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k_{1} n_{X_{2} Y_{2}}^{2}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n \cdot n_{X_{2} Y_{2}+n \cdot n} n_{X_{2} \bar{Y}_{2}}-k_{1} n_{X_{2} Y_{2}}^{2}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n \cdot n_{X_{2} Y_{2}+n \cdot n}^{X_{2} \bar{Y}_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}=M_{G K}^{f}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

Hence $M_{G K}^{f}$ is a measure that varies with the growth of certain numbers.
And for

$$
\begin{aligned}
M_{G K}^{d}(X \rightarrow Y) & =\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)}=\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{\frac{n_{Y}}{n}} \\
& =\frac{n \cdot n_{X Y}-n_{X} \cdot n_{Y}}{n_{X} \cdot n_{Y}}=\frac{n \cdot n_{X Y}-\left(n_{X Y}+n_{X \bar{Y}}\right)\left(n_{X Y}+n_{\bar{X} Y}\right)}{\left(n_{X Y}+n_{X \bar{Y}}\right)\left(n_{X Y}+n_{\bar{X} Y}\right)} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n_{X Y}^{2}+n_{X Y} \cdot n_{\bar{X} Y}+n_{X \bar{Y}} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, then we have :

$$
\begin{aligned}
M_{G K}^{d}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} \cdot n_{X_{2} Y_{2}}-k_{1} \cdot k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k_{1}^{2} \cdot n_{X_{2} Y_{2}}+k_{1} \cdot k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+k_{1} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}-k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k_{1} \cdot n_{X_{2} Y_{2}}+k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}} \cdot n \overline{\bar{X}}_{2} Y_{2}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n_{X_{2} Y_{2}}+n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}=M_{G K}^{d}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

Hence $M_{G K}^{d}$ is a measure that varies with the growth of certain numbers.
2. Then, the very strange situation on the Odd-Ratio measure, Grissa in his work Grissa(2013)Grissa, on the $15^{i e ̀ m e}$ property, concerning the measure $m(X \rightarrow Y)$ invariant in case of dilation of some numbers is in function $n_{X Y}, n_{\bar{X}}, n_{X \bar{Y}} a n d n_{\overline{X Y}}$. This means that on the Odd-Ratio measure, we have a choice of using one of the two expressions of this measure. This leads to another problem :

- Using the $1^{\text {'ere }}$ expression, we have :

$$
O R(X \rightarrow Y)=\frac{\mathrm{P}(X \cap Y) \mathrm{P}(\bar{X} \cap \bar{Y})}{\mathrm{P}(\bar{X} \cap Y) \mathrm{P}(X \cap \bar{Y})}=\frac{n_{X Y} \cdot n_{\bar{X} \cdot \bar{Y}}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have :

$$
\begin{aligned}
O R\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} \bar{Y}_{2}}}{k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& =\frac{n_{X_{2} Y_{2}} \cdot n_{X_{2}} \bar{Y}_{2}}{n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2}} \overline{\bar{Y}}_{2}} \\
& =\frac{n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2}}}{ }_{2} \bar{Y}_{2}}{n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}=O R\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

From this result, it was concluded that the measure $O R$ is a measure that invariates with the growth of some number of people.

- Now, using the $2^{i t h}$ expression :

$$
\begin{aligned}
O R(X \rightarrow Y) & =\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))} \\
& =\frac{\frac{n_{X Y}}{n_{X}}\left(1-\frac{n_{X}}{n}-\frac{n_{Y}}{n}+\frac{n_{X Y}}{n}\right)}{\left(\frac{n_{Y}}{n}-\frac{n_{X Y}}{n}\right)\left(1-\bar{n} n_{X Y} n_{X}\right)} \\
& =\frac{n_{X Y} \cdot n_{X Y}-n_{X} \cdot n_{X Y}-n_{Y} \cdot n_{X Y}+n_{X Y}^{2}}{n_{X} \cdot n_{Y}-n_{Y} \cdot n_{X Y}-n_{X} \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{\left.n_{n} \cdot n_{Y}-\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot n_{X Y}-n_{X Y}+n_{\bar{X} Y}\right) \cdot n_{X Y}+n_{X Y}^{2}}{\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot\left(n_{X Y}+n_{\bar{X} Y}\right)-\left(n_{X Y}+n_{\bar{X} Y}\right) \cdot n_{X Y}\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{n_{X Y}-n_{X Y}^{2}-n_{X Y}}{n_{X \bar{Y}} \cdot n_{X} \bar{X} Y}-n_{X Y} \cdot n_{\bar{X} Y} .
\end{aligned}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have :

$$
\begin{aligned}
O R\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}}{k_{1} \cdot n_{X_{2} \bar{Y}_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{k_{2} \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\overline{X_{2} Y_{2}}}} \\
& \neq=\frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}}{n_{X_{2} \bar{Y}_{2}} \cdot n_{\overline{X_{2} Y_{2}}}}=O R\left(X_{2} \rightarrow Y_{2}\right) .
\end{aligned}
$$

From this result, it was concluded that the $O R$ measure is a measure that varies with the growth of certain numbers..
However, Grissa stated in her work that the Odd-Ratio(OR) measure varies according to the growth of certain numbers. Indeed, she used the $2^{i{ }^{i \hbar h}}$ expression of this measure. But the question arises, why did she not use the first expression (fundamental expression of Odd-Ratio) ?
3. Then,

$$
\begin{aligned}
O R_{h n}^{f}(X \rightarrow Y) & =\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))} \\
& =\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{\frac{n_{X Y}}{n_{X}}\left(1-\frac{n_{x}}{n}-\frac{n_{Y}}{n}+\frac{n_{X Y}}{n}\right)} \\
& =\frac{n \cdot n_{X Y}-n_{X} \cdot n_{Y}}{n \cdot n_{X Y}-n_{X} \cdot n_{X Y}-n_{Y} \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{n \cdot n_{X Y}-\left(n_{X Y}+n_{X \bar{Y}} \cdot\left(n_{X Y}+n_{\bar{X} Y}\right)\right.}{n \cdot n_{X Y}-\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot n_{X Y}-\left(n_{X Y}+n_{\bar{X} Y}\right) \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X Y} \cdot n_{X \bar{Y}}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{X \bar{Y}}-n_{X Y} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have :

$$
\begin{aligned}
& \mathrm{OR}_{h n}^{f}\left(X_{1} \rightarrow Y_{1}\right) \\
& \quad=\frac{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}-k_{1} \cdot n_{X_{2} \bar{Y}_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}}{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& \quad=\frac{n \cdot n_{X_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}}^{2}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k_{2} \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{n \cdot n_{X_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& \quad \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{X_{2} \overline{Y_{2}}} \cdot n_{\overline{X_{2} Y_{2}}}}{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}^{f}\left(X_{h} \rightarrow Y_{2}\right) .}
\end{aligned}
$$

Hence $O R_{h n}^{f}$ is a measure that varies with the growth of certain numbers.
In the end,

$$
\begin{aligned}
O R_{h n}^{d}(X \rightarrow Y) & =\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \\
& =\frac{\frac{n_{X Y}}{n_{X}}-\frac{n_{Y}}{n}}{\left(1-\frac{n_{X Y}}{n_{X}}\right)\left(\frac{n_{Y}}{n}-\frac{n_{X Y}}{n}\right)} \\
& =\frac{n_{X Y} \cdot n_{X Y}-n_{X} \cdot n_{Y}}{n_{X} \cdot n_{Y}-n_{X} \cdot n_{X Y}-n_{Y} \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{n \cdot n_{X Y}-\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot\left(n_{X Y}+n_{\bar{X} Y}\right)}{\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot\left(n_{X Y}+n_{\bar{X} Y}\right)-\left(n_{X Y}+n_{X \bar{Y}}\right) \cdot n_{X Y}-\left(n_{X Y}+n_{\bar{X} Y}\right) \cdot n_{X Y}+n_{X Y}^{2}} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X Y} \cdot n_{X \bar{Y}}-n_{\bar{X} Y} \cdot n_{X \bar{Y}}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}
\end{aligned}
$$

Therefore, if $\forall\left(k_{1} ; k_{2}\right) \in \mathbb{N}^{* 2}, n_{X_{1} Y_{1}}=k_{1} n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k_{1} n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k_{2} n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=k_{2} n_{\bar{X}_{2} \bar{Y}_{2}}$, we have :

$$
\begin{aligned}
& \mathrm{OR}_{h n}^{d}\left(X_{1} \rightarrow Y_{1}\right) \\
& \quad=\frac{k_{1} \cdot n \cdot n_{X_{2} Y_{2}}-k_{1}^{2} \cdot n_{X_{2} Y_{2}}^{2}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{2} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot k_{1} n_{X_{2} \bar{Y}_{2}}-k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}}{k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot k_{1} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \quad=\frac{n \cdot n_{X_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}}^{2}-k_{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k_{1} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k_{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \quad \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{\overline{X_{2}} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}}{n_{\overline{X_{2} Y_{2}}} \cdot n_{X_{2} \overline{Y_{2}}}}=O R_{h n}^{d}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

Hence $O R_{h n}^{d}$ is a measure that varies with the growth of certain numbers.
Hence we have : $\mathrm{P}_{15}\left(M_{G K}\right)=P_{15}(O R)=P_{15}\left(O R_{n h}\right)=0$.
-Property $16\left(P_{16}\right): A$ measure capable of differentiating between the rules $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ according to a relation of opposition

- If $\exists X \rightarrow Y, m(X \rightarrow Y) \neq-m(\bar{X} \rightarrow Y)$, then $P_{16}(m)=0$;
- If $\forall X \rightarrow Y, m(X \rightarrow Y)=-m(\bar{X} \rightarrow Y)$, then $P_{16}(m)=1$.

The following propositions show that the measures $M_{G K}, O R$ and $O R_{h n}$ are not measures capable
of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ rules according to an opposition relation..
Proposition 38. Let X and Y be two patterns and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(\bar{X} \rightarrow Y)=-M_{G K}(X \rightarrow Y) \times \frac{P(X)}{1-P(X)} \tag{51}
\end{equation*}
$$

Proposition 39. Let X and Y be two patterns and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R(\bar{X} \rightarrow Y)=\frac{1}{O R(X \rightarrow Y)} \tag{52}
\end{equation*}
$$

Proposition 40. (a) If X favours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}(\bar{X} \rightarrow Y)=-O R_{h n}^{d}(X \rightarrow Y) . \tag{53}
\end{equation*}
$$

(b) If X disfavours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}(\bar{X} \rightarrow Y)=-O R_{h n}^{f}(X \rightarrow Y) . \tag{54}
\end{equation*}
$$

Demonstration :

1. Indeed, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
M_{G K}^{f}(\bar{X} \rightarrow Y) & =\frac{\mathrm{P}_{\bar{X}}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)}=\frac{\frac{P(\bar{X} \cap Y)}{P(\bar{X})}-P(Y)}{1-P(Y)}=\frac{P_{Y}(\bar{X}) P(Y)-P(Y)+P(X) P(Y)}{(1-P(X))(1-P(Y))} \\
& =-\frac{P_{X}(Y)-P(Y)}{1-P(Y)} \times \frac{P(X)}{1-P(X)}=-M_{G K}^{f}(X \rightarrow Y) \times \frac{P(X)}{1-P(X)} \\
& \neq-M_{G K}^{f}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{f}$ is not a measure capable of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ the rules according to a relation of opposition.
And for

$$
\begin{aligned}
M_{G K}^{d}(\bar{X} \rightarrow Y) & =\frac{\mathrm{P}_{\bar{X}}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)}=\frac{\frac{P(\bar{X} \cap Y)}{P(\bar{X})}-P(Y)}{P(Y)}=\frac{P_{Y}(\bar{X}) P(Y)-P(Y)+P(X) P(Y)}{(1-P(X)) \cdot P(Y)} \\
& =-\frac{P_{X}(Y)-P(Y)}{P(Y)} \times \frac{P(X)}{1-P(X)}=-M_{G K}^{d}(X \rightarrow Y) \times \frac{P(X)}{1-P(X)} \\
& \neq-M_{G K}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{d}$ is not a measure capable of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ rules according to a relation of opposition.
2. Then, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
O R(\bar{X} \rightarrow Y) & =\frac{\mathrm{P}(Y / \bar{X})(1-\mathrm{P}(\bar{X})-\mathrm{P}(Y)+\mathrm{P}(Y / \bar{X}) \cdot \mathrm{P}(\bar{X}))}{(\mathrm{P}(Y)-\mathrm{P}(Y / \bar{X}) \cdot \mathrm{P}(\bar{X}))(1-\mathrm{P}(Y / \bar{X}))} \\
& =\frac{\frac{P(\bar{X} \cap Y)}{P(\bar{X})}(P(X)-P(Y)+P(\bar{X} \cap Y))}{(P(Y)-P(\bar{X} \cap Y))\left(1-\frac{P(\bar{X} \cap Y)}{P(\bar{X})}\right)} \\
& =\frac{\frac{P(Y)-P(X \cap Y)}{1-P(X)}(P(X)-P(Y)+P(Y)-P(X \cap Y))}{(P(Y)-P(Y)+P(X \cap Y))\left(1-\frac{P(Y)-P(X \cap Y)}{1-P(X)}\right)} \\
& =\frac{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))}{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))} \\
& =\frac{1}{O R(X \rightarrow Y)} \\
& \neq-O R(X \rightarrow Y)
\end{aligned}
$$

Hence $O R$ is not a measure capable of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ rules according to a relation of opposition.
3. In the end, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
O R_{h n}^{f}(\bar{X} \rightarrow Y) & =\frac{P(Y / \bar{X})-P(Y)}{P(Y / \bar{X})(1-P(\bar{X})-P(Y)+P(Y / \bar{X}) P(\bar{X}))} \\
& =\frac{\frac{P(\bar{X} \cap)}{P(\bar{X})}-P(Y)}{\frac{P(\bar{X} \cap Y)}{P(\overline{\bar{x}})}\left(P(X)-P(Y)+\frac{P(\bar{X} \cap Y)}{P(\bar{X})} P(\bar{X})\right)} \\
& =\frac{P(Y)-P(X \cap Y)-P(Y)+P(X) P(Y)}{(P(Y)-P(X \cap Y))(P(X)-P(X \cap Y))} \\
& =-\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \\
& =-O R_{h n}^{d}(X \rightarrow Y) \\
& \neq-O R_{h n}^{f}(X \rightarrow Y)
\end{aligned}
$$

Hence $O R_{h n}^{f}$ is not a measure capable of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ rules according to a relation of opposition. And for

$$
\begin{aligned}
O R_{h n}^{d}(\bar{X} \rightarrow Y) & =\frac{P(Y / \bar{X})-P(Y)}{(1-P(Y / \bar{X}))(P(Y)-P(Y / \bar{X}) P(\bar{X}))} \\
& =\frac{\frac{P(\bar{X} \cap Y)}{P(\bar{X})}-P(Y)}{\left(1-\frac{P(\bar{X} \cap Y)}{P(\overline{\bar{X}})}\right)\left(P(Y)-\frac{P(\bar{X} \cap Y)}{P(\bar{X})} P(\bar{X})\right)} \\
& =\frac{P(Y)-P(X \cap Y)-P(Y)+P(X) P(Y)}{(1-P(X)-P(Y)+P(X \cap Y))(P(X \cap Y))} \\
& =-\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))} \\
& =-O R_{h n}^{f}(X \rightarrow Y) \\
& \neq-O R_{h n}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $O R_{h n}^{d}$ is not a measure capable of differentiating between $X \rightarrow Y$ and $\bar{X} \rightarrow Y$ rules according to a relation of opposition.

Hence we have : $\mathrm{P}_{16}\left(M_{G K}\right)=P_{16}(O R)=P_{16}\left(O R_{n h}\right)=0$.
-Property $17\left(P_{17}\right): A$ measure capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to an oppositional relationship

- If $\exists X \rightarrow Y, m(X \rightarrow Y) \neq-m(X \rightarrow \bar{Y})$, then $P_{17}(m)=0$;
- If $\forall X \rightarrow Y, m(X \rightarrow Y)=-m(X \rightarrow \bar{Y})$, then $P_{17}(m)=1$.

The following propositions show that the measures $M_{G K}, O R$ and $O R_{h n}$ are not measures capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to an opposition relation..

Proposition 41. (a) According to Feno(2007)Feno if X favours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(X \rightarrow \bar{Y})=-M_{G K}^{d}(X \rightarrow Y) \tag{55}
\end{equation*}
$$

(b) If X disfavours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(X \rightarrow \bar{Y})=-M_{G K}^{f}(X \rightarrow Y) \tag{56}
\end{equation*}
$$

Proposition 42. Let X and Y be two patterns and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R(X \rightarrow \bar{Y})=\frac{1}{O R(X \rightarrow Y)} \tag{57}
\end{equation*}
$$

Proposition 43. (a) If X favours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}(X \rightarrow \bar{Y})=-O R_{h n}^{d}(X \rightarrow Y) . \tag{58}
\end{equation*}
$$

(b) If X disfavours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship:

$$
\begin{equation*}
O R_{h n}(X \rightarrow \bar{Y})=-O R_{h n}^{f}(X \rightarrow Y) \tag{59}
\end{equation*}
$$

Demonstration :

1. In fact, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
M_{G K}^{f}(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{X}(\bar{Y})-\mathrm{P}(\bar{Y})}{1-\mathrm{P}(\bar{Y})}=\frac{1-\mathrm{P}_{X}(Y)-1+\mathrm{P}(Y)}{1-1+\mathrm{P}(Y)} \\
& =\frac{-\mathrm{P}_{X}(Y)+\mathrm{P}(Y)}{\mathrm{P}(Y)} \\
& =-M_{G K}^{d}(X \rightarrow Y) \\
& \neq-M_{G K}^{f}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{f}$ is not a measure capable of differentiating between the rules $X t o Y$ and $X t o \bar{Y}$ according to an opposition relation.

And for

$$
\begin{aligned}
M_{G K}^{d}(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{X}(\bar{Y})-\mathrm{P}(\bar{Y})}{\mathrm{P}(\bar{Y})}=\frac{1-\mathrm{P}_{X}(Y)-1+\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \\
& =\frac{-\mathrm{P}_{X}(Y)+\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \\
& =-M_{G K}^{f}(X \rightarrow Y) \\
& \neq-M_{G K}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{d}$ is not a measure capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to an opposition relation.
2. Then, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
O R(X \rightarrow \bar{Y}) & =\frac{\mathrm{P}(\bar{Y} / X)(1-\mathrm{P}(X)-\mathrm{P}(\bar{Y})+\mathrm{P}(\bar{Y} / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(\bar{Y})-\mathrm{P}(\bar{Y} / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(\bar{Y} / X))} \\
& =\frac{(1-\mathrm{P}(Y / X))(1-\mathrm{P}(X)-1+\mathrm{P}(Y)+\mathrm{P}(X)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(1-\mathrm{P}(Y)-\mathrm{P}(X)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-1+\mathrm{P}(Y / X))} \\
& =\frac{(1-\mathrm{P}(Y / X))(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(1-\mathrm{P}(Y)-\mathrm{P}(X)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(\mathrm{P}(Y / X))} \\
& =\frac{1}{O R(X \rightarrow Y)} \\
& \neq-O R(X \rightarrow Y)
\end{aligned}
$$

Hence $O R$ is not a measure capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to a relation of opposition.
3. Then, $\forall X \rightarrow Y \in \mathbb{K}$,

$$
\begin{aligned}
O R_{h n}^{f}(X \rightarrow \bar{Y}) & =\frac{P(\bar{Y} / X)-P(\bar{Y})}{P(\bar{Y} / X)(1-P(X)-P(\bar{Y})+P(\bar{Y} / X) P(X))} \\
& =\frac{1-P(Y / X)-1+P(Y)}{(1-P(Y / X))(1-P(X)-1+P(Y)+P(X)-P(Y / X) P(X))} \\
& =\frac{-P(Y / X)+P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \\
& =-O R_{h n}^{d}(X \rightarrow Y) \\
& \neq-O R_{h n}^{f}(X \rightarrow Y)
\end{aligned}
$$

Hence $O R_{h n}^{d}$ is not a measure capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to an oppositional relationship.

At the end

$$
\begin{aligned}
O R_{h n}^{d}(X \rightarrow \bar{Y}) & =\frac{P(\bar{Y} / X)-P(\bar{Y})}{(1-P(\bar{Y} / X))(P(\bar{Y})-P(\bar{Y} / X) P(X))} \\
& =\frac{1-P(Y / X)-1+P(Y)}{(1-1+P(Y / X))(1-P(Y)-P(X)+P(Y / X) P(X))} \\
& =\frac{-P(Y / X)+P(Y)}{(P(Y / X))(1-P(Y)-P(X)+P(Y / X) P(X))} \\
& =-O R_{h n}^{f}(X \rightarrow Y) \\
& \neq-O R_{h n}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $O R_{h n}^{f}$ is not a measure capable of differentiating between the rules $X \rightarrow Y$ and $X \rightarrow \bar{Y}$ according to an opposition relation.
Hence we have : $\mathrm{P}_{17}\left(M_{G K}\right)=P_{17}(O R)=P_{17}\left(O R_{n h}\right)=0$.
Property $18\left(P_{18}\right):$ Measure evaluating th $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$ rules in the same way

- If $\exists X \rightarrow Y, m(X \rightarrow Y) \neq-m(\bar{X} \rightarrow \bar{Y})$, then $P_{18}(m)=0$;
- If $\forall X \rightarrow Y, m(X \rightarrow Y)=-m(\bar{X} \rightarrow \bar{Y})$, then $P_{18}(m)=1$.

The following propositions show that the measures $M_{G K}, O R$ and $O R_{h n}$ are measures evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$.

Proposition 44. (a) If X favours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(\bar{X} \rightarrow \bar{Y})=M_{G K}^{d}(X \rightarrow Y) \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \tag{60}
\end{equation*}
$$

(b) If X disfavours Y and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
M_{G K}(\bar{X} \rightarrow \bar{Y})=M_{G K}^{f}(X \rightarrow Y) \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \tag{61}
\end{equation*}
$$

Proposition 45. Let X and Y be two patterns and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R(\bar{X} \rightarrow \bar{Y})=O R(X \rightarrow Y) \tag{62}
\end{equation*}
$$

Proposition 46. Let X and Y be two patterns and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relationship :

$$
\begin{equation*}
O R_{h n}(\bar{X} \rightarrow \bar{Y})=O R_{h n}(X \rightarrow Y) \tag{63}
\end{equation*}
$$

Demonstration :

1. Indeed,

$$
\begin{aligned}
M_{G K}^{f}(\bar{X} \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{\bar{X}}(\bar{Y})-\mathrm{P}(\bar{Y})}{1-\mathrm{P}(\bar{Y})}=\frac{1-\mathrm{P}_{\bar{X}}(Y)-1+\mathrm{P}(Y)}{1-1+\mathrm{P}(Y)} \\
& =\frac{-\mathrm{P}_{\bar{X}}(Y)+\mathrm{P}(Y)}{\mathrm{P}(Y)}=\frac{-\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}+\mathrm{P}(Y)}{\mathrm{P}(Y)} \\
& =\frac{\frac{-\mathrm{P}(Y)+\mathrm{P}_{X}(Y) \mathrm{P}(X)}{1-\mathrm{P}(X)}+\mathrm{P}(Y)}{\mathrm{P}(Y)}=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)} \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \\
& =M_{G K}^{d}(X \rightarrow Y) \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \\
& \neq M_{G K}^{f}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{f}$ is not a measure evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$. Then,

$$
\begin{aligned}
M_{G K}^{d}(\bar{X} \rightarrow \bar{Y}) & =\frac{\mathrm{P}_{\bar{X}}(\bar{Y})-\mathrm{P}(\bar{Y})}{\mathrm{P}(\bar{Y})}=\frac{1-\mathrm{P}_{\bar{X}}(Y)-1+\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \\
& =\frac{-\mathrm{P}_{\bar{X}}(Y)+\mathrm{P}(Y)}{1-\mathrm{P}(Y)}=\frac{-\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}+\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \\
& =\frac{\frac{-\mathrm{P}(Y)+\mathrm{P}_{X}(Y) \mathrm{P}(X)}{1-\mathrm{P}(X)}+\mathrm{P}(Y)}{1-\mathrm{P}(Y)}=\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \\
& =M_{G K}^{f}(X \rightarrow Y) \times \frac{\mathrm{P}(X)}{1-\mathrm{P}(X)} \\
& \neq M_{G K}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $M_{G K}^{d}$ is not a measure evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$
2. Then,

$$
\begin{aligned}
O R(\bar{X} \rightarrow \bar{Y}) & =\frac{\mathrm{P}(\bar{Y} / \bar{X})(1-\mathrm{P}(\bar{X})-\mathrm{P}(\bar{Y})+\mathrm{P}(\bar{Y} / \bar{X}) \cdot \mathrm{P}(\bar{X}))}{(\mathrm{P}(\bar{Y})-\mathrm{P}(\bar{Y} / \bar{X}) \cdot \mathrm{P}(\bar{X}))(1-\mathrm{P}(\bar{Y} / \bar{X}))} \\
& =\frac{(1-\mathrm{P}(Y / \bar{X}))(1-1+\mathrm{P}(X)-1+\mathrm{P}(Y)+(1-\mathrm{P}(Y / \bar{X})) \cdot(1-\mathrm{P}(X)))}{(1-\mathrm{P}(Y)-(1-\mathrm{P}(Y / \bar{X})) \cdot(1-\mathrm{P}(X)))(1-1+\mathrm{P}(Y / \bar{X}))} \\
& =\frac{\left(1-\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}\right)\left(\mathrm{P}(Y)-\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}+\frac{\mathrm{P}(\bar{X} \cap Y) \cdot \mathrm{P}(X)}{\mathrm{P}(\bar{X})}\right)}{\left(-\mathrm{P}(Y)+\mathrm{P}(X)-\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}-\frac{\mathrm{P}(\bar{X} \cap Y) \cdot \mathrm{P}(X)}{\mathrm{P}(\bar{X})}\right)\left(\frac{\mathrm{P}(\bar{X} \cap Y)}{\mathrm{P}(\bar{X})}\right)} \\
& =\frac{\left(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}_{X}(Y) \mathrm{P}(X)\right)(1-\mathrm{P}(X)) \cdot \mathrm{P}_{X}(Y) \mathrm{P}(X)}{\left(\mathrm{P}(X)-\mathrm{P}^{2}(X)-\mathrm{P}_{X}(Y) \mathrm{P}(X)+\mathrm{P} X(Y) \mathrm{P}^{2}(X)\right)\left(\mathrm{P}(Y)-\mathrm{P}_{X}(Y) \mathrm{P}(X)\right)} \\
& =\frac{\left(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}_{X}(Y) \mathrm{P}(X)\right)(1-\mathrm{P}(X)) \cdot \mathrm{P}_{X}(Y) \mathrm{P}(X)}{\mathrm{P}(X)(1-\mathrm{P}(X))\left(1-\mathrm{P}_{X}(Y)\right)\left(\mathrm{P}(Y)-\mathrm{P}_{X}(Y) \mathrm{P}(X)\right)} \\
& =\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))} \\
& =O R(X \rightarrow Y) \\
& \neq-O R(X \rightarrow Y) .
\end{aligned}
$$

Hence $O R$ is not a measure evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$
3. And after

$$
\begin{aligned}
O R_{h n}^{f}(\bar{X} \rightarrow \bar{Y}) & =\frac{P(\bar{Y} / \bar{X})-P(\bar{Y})}{P(\bar{Y} / \bar{X})(1-P(\bar{X})-P(\bar{Y})+P(\bar{Y} / \bar{X}) P(\bar{X}))} \\
& =\frac{1-P(Y / \bar{X})-1+P(Y)}{(1-P(Y / \bar{X}))(1-1+P(X)-1+P(Y)+(1-P(Y / \bar{X}))(1-P(X)))} \\
& =\frac{-P(Y / \bar{X})+P(Y)}{(1-P(Y / \bar{X}))(P(Y)-P(Y / \bar{X})+P(Y / \bar{X}) P(X))} \\
& =\frac{-\frac{P(\bar{X} \cap Y)}{P(\bar{X})}+P(Y)}{\left(1-\frac{P(\bar{X} \cap Y)}{P(\bar{X})}\right)\left(P(Y)-\frac{P(\bar{X} \cap Y)}{P(\bar{X})}+\frac{P(\bar{X} \cap Y)}{P(\bar{X}) P(X)}\right)} \\
& =\frac{\frac{P_{X}(Y) P(X)-P(X) P(Y)}{1-P(X)}}{\left(\frac{1-P(X)-P(Y)+P_{X}(Y) P(X)}{1-P(X)} \frac{P_{X}(Y) P(X)(1-P(X))}{1-P(X)}\right.} \\
& =\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))} \\
& =O R_{h n}^{f}(X \rightarrow Y) \\
& \neq-O R_{h n}^{f}(X \rightarrow Y) .
\end{aligned}
$$

Hence $O R_{h n}^{f}$ is not a measure evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$

In the end,

$$
\begin{aligned}
O R_{h n}^{d}(\bar{X} \rightarrow \bar{Y}) & =\frac{P(\bar{Y} / \bar{X})-P(\bar{Y})}{(1-P(\bar{Y} / \bar{X}))(P(\bar{Y})-P(\overline{\bar{Y}} / \bar{X}) P(\bar{X}))} \\
& =\frac{1-P(Y / \bar{X})-1+P(Y)}{(1-1+P(Y / \bar{X}))(1-P(Y)-(1-P(Y / \bar{X}))(1-P(X)))} \\
& =\frac{-\frac{P(\bar{X} \cap Y)}{P(\bar{X})}+P(Y)}{\left(\frac{P(\bar{X} \cap Y)}{P(\bar{X})}\right)\left(-P(Y)+P(X)+\frac{P(\bar{X} \cap Y)}{P(\bar{X})}-\frac{P(\bar{X} \cap Y)}{P(\bar{X})} P(X)\right)} \\
& =\frac{\left(P_{X}(Y)-P(Y)\right) P(X)}{\left(P(Y)-P_{X}(Y)\right) \frac{(1-P(X)) P(X)\left(1-P_{X}(Y)\right)}{1-P(X)}} \\
& =\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \\
& =O R_{h n}^{d}(X \rightarrow Y) \\
& \neq-O R_{h n}^{d}(X \rightarrow Y)
\end{aligned}
$$

Hence $O R_{h n}^{d}$ is not a measure evaluating in the same way the rules $X \rightarrow Y$ and $\bar{X} \rightarrow \bar{Y}$

Hence we have : $\mathrm{P}_{18}\left(M_{G K}\right)=P_{18}(O R)=P_{18}\left(O R_{n h}\right)=0$.

Property $19\left(P_{19}\right)$: Measurement having a size the random premise

A measure m necessarily has a random premise size if it is based on one of these probabilistic models: normal, binomial, poisson or hypergeometric distribution.

- If m is not based on a probabilistic model, then $P_{19}(m)=0$ (taille fixe);
- If m is based on a probabilistic model, then $P_{19}(m)=1$.

In effect
The measures $M_{G K}, O R$ and $O R_{h n}$ are not based on one of the models: normal, binomial, poisson or hypergeometric distribution.
Hence $M_{G K}, O R$ and $O R_{h n}$ are not based on any probabilistic models
Hence we have : $\mathrm{P}_{19}\left(M_{G K}\right)=P_{19}(O R)=P_{19}\left(O R_{n h}\right)=0$.

-Propriété $20\left(P_{20}\right)$: Mesure statistique

Une mesure m est dite statistique si elle est sensible (croissante) à l'augmentation des données, par contre, elle est dite descriptive si elle est invariante à la croissance du nombre d'enregistrements.

- Si $\forall k \in \mathbb{N}^{*}, \forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$, tel que $\left(n_{X_{1} Y_{1}}=k . n_{X_{2} Y_{2}}\right.$ et $n_{X_{1} \bar{Y}_{1}}=k \cdot n_{X_{2} \bar{Y}_{2}}$ et $n_{\bar{X}_{1} Y_{1}}=k \cdot n_{\bar{X}_{2} Y_{2}}$ et $\left.n_{\bar{X}_{1} \bar{Y}_{1}}=k \cdot n_{\bar{X}_{2} \bar{Y}_{2}}\right) \Rightarrow m\left(X_{1} \rightarrow Y_{1}\right)=m\left(X_{2} \rightarrow Y_{2}\right)$, alors $P_{20}(m)=0$ (descriptive);
- Si $\exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}$, tel que $\left(n_{X_{1} Y_{1}}=k . n_{X_{2} Y_{2}}\right.$ et $n_{X_{1} \bar{Y}_{1}}=k . n_{X_{2} \bar{Y}_{2}}$ et $n_{\bar{X}_{1} Y_{1}}=k \cdot n_{\bar{X}_{2} Y_{2}}$ et $\left.n_{\bar{X}_{1} \bar{Y}_{1}}=k \cdot n_{\bar{X}_{2} \bar{Y}_{2}}\right)$ et $m\left(X_{1} \rightarrow Y_{1}\right) \neq m\left(X_{2} \rightarrow Y_{2}\right)$ alors $P_{20}(m)=1$ (statistique).

The following propositions show that the measures $M_{G K}, O R$ and $O R_{h n}$ are statistical measures.
Proposition 47. Let X and Y be two patterns, $\forall k \in \mathbb{N}^{*}$ and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relation:

$$
\begin{equation*}
M_{G K}\left(X_{1} \rightarrow Y_{1}\right) \neq M_{G K}\left(X_{2} \rightarrow Y_{2}\right) . \tag{64}
\end{equation*}
$$

Proposition 48. Let X and Y be two patterns, $\forall k \in \mathbb{N}^{*}$ and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relation :

$$
\begin{equation*}
O R\left(X_{1} \rightarrow Y_{1}\right) \neq O R\left(X_{2} \rightarrow Y_{2}\right) . \tag{65}
\end{equation*}
$$

Proposition 49. Let X and Y be two patterns, $\forall k \in \mathbb{N}^{*}$ and $\forall X \rightarrow Y \in \mathbb{K}$, we have the following relation:

$$
\begin{equation*}
O R_{h n}\left(X_{1} \rightarrow Y_{1}\right) \neq O R_{h n}\left(X_{2} \rightarrow Y_{2}\right) . \tag{66}
\end{equation*}
$$

Demonstration :

1. Indeed

$$
\begin{aligned}
M_{G K}^{f}(X \rightarrow Y) & =\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{1-\mathrm{P}(Y)} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n \cdot n_{X Y}+n \cdot n_{X \bar{Y}}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

So, if we have : $\forall k \in \mathbb{N}^{*}, n_{X_{1} Y_{1}}=k \cdot n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k \cdot n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k \cdot n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ k. $n_{\bar{X}_{2} \bar{Y}_{2}}$, donc on a:

$$
\begin{aligned}
M_{G K}^{f}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k \cdot n \cdot n_{X_{2} Y_{2}+k \cdot n \cdot n} n_{X_{2} \bar{Y}_{2}}-k^{2} n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n \cdot n_{X_{2} Y_{2}+n \cdot n_{X_{2} \bar{Y}_{2}}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}} n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n \cdot n_{X_{2} Y_{2}+n \cdot n} n_{X_{2} \bar{Y}_{2}}-n_{X_{2} Y_{2}}^{2} n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}=M_{G K}^{f}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

So $\exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}, M_{G K}^{f}\left(X_{1} \rightarrow Y_{1}\right) \neq M_{G K}^{f}\left(X_{2} \rightarrow Y_{2}\right)$
Hence $M_{G K}^{f}$ is a statistical measure.
Then,

$$
\begin{aligned}
M_{G K}^{d}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{\mathrm{P}_{X}(Y)-\mathrm{P}(Y)}{\mathrm{P}(Y)} \\
& =\frac{n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n_{X Y}^{2}+n_{X Y} \cdot n_{\bar{X} Y}+n_{X \bar{Y}} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

So, if we have: $\forall k \in \mathbb{N}^{*}, n_{X_{1} Y_{1}}=k \cdot n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k \cdot n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k \cdot n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ k. $n_{\bar{X}_{2} \bar{Y}_{2}}$, donc on a:

$$
\begin{aligned}
M_{G K}^{d}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k^{2} \cdot n_{X_{2} Y_{2}}+k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k \cdot n_{\overline{X_{2}} Y_{2}} \cdot n_{X_{2}} \bar{Y}_{2}}{k \cdot n_{X_{2} Y_{2}}+k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+k \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{n_{X_{2} Y_{2}}+n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}+n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}=M_{G K}^{d}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

So $\exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}, M_{G K}^{f}\left(X_{1} \rightarrow Y_{1}\right) \neq M_{G K}^{f}\left(X_{2} \rightarrow Y_{2}\right)$
Hence $M_{G K}^{d}$ is a statistical measure.
2. After

$$
\begin{aligned}
O R(X \rightarrow Y) & =\frac{\mathrm{P}(Y / X)(1-\mathrm{P}(X)-\mathrm{P}(Y)+\mathrm{P}(Y / X) \cdot \mathrm{P}(X))}{(\mathrm{P}(Y)-\mathrm{P}(Y / X) \cdot \mathrm{P}(X))(1-\mathrm{P}(Y / X))} \\
& =\frac{n_{X Y}-n_{X Y}^{2}-n_{X Y}^{2}-n_{X Y} \cdot n_{X \bar{Y}}-n_{X Y} \cdot n_{\bar{X} Y}}{n_{X \bar{Y}} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

Therefore, if we have : $\forall k \in \mathbb{N}^{*}, n_{X_{1} Y_{1}}=k \cdot n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k . n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k . n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ k. $n_{\bar{X}_{2} \bar{Y}_{2}}$, therefore, we have:

$$
\begin{aligned}
O R\left(X_{1} \rightarrow Y_{1}\right) & =\frac{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{k^{2} \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& =\frac{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{k \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& \neq=\frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}}{n_{X_{2} \bar{Y}_{2}} \cdot n_{\overline{X_{2} Y_{2}}}}=O R\left(X_{2} \rightarrow Y_{2}\right) .
\end{aligned}
$$

So $\exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}, O R\left(X_{1} \rightarrow Y_{1}\right) \neq O R\left(X_{2} \rightarrow Y_{2}\right)$
Hence $O R$ is a statistical measure.
3. Then,

$$
\begin{aligned}
O R_{h n}^{f}(X \rightarrow Y) & =\frac{P(Y / X)-P(Y)}{P(Y / X)(1-P(X)-P(Y)+P(Y / X) P(X))} \\
& =\frac{n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X Y} \cdot n_{X \bar{Y}}-n_{X \bar{Y}} \cdot n_{\bar{X} Y}}{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{X \bar{Y}}-n_{X Y} \cdot n_{\bar{X} Y}} .
\end{aligned}
$$

So, if we have : $\forall k \in \mathbb{N}^{*}, n_{X_{1} Y_{1}}=k . n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k . n_{X_{2} \bar{Y}_{2}}$ and $n{\overline{X_{1} Y_{1}}}=k . n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ k. $n_{\bar{X}_{2} \bar{Y}_{2}}$, therefore, we have:

$$
\begin{aligned}
& =\frac{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k^{2} \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& \mathrm{OR}_{h n}^{f}\left(X_{1} \rightarrow Y_{1}\right)=\frac{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k \cdot n_{X_{2} \bar{Y}_{2}} \cdot n_{\bar{X}_{2} Y_{2}}}{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{X_{2} \overline{Y_{2}}} \cdot n_{\overline{X_{2}} Y_{2}}}{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2}} Y_{2}}}=O R_{h n}^{f}\left(X_{2} \rightarrow Y_{2}\right) . \\
& \text { So } \exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}, O R_{h n}^{f}\left(X_{1} \rightarrow Y_{1}\right) \neq O R_{h n}^{f}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

Hence $O R_{h n}^{f}$ is a statistical measure.
At the end

$$
\begin{aligned}
O R_{h n}^{d}(X \rightarrow Y) & =\frac{P(Y / X)-P(Y)}{(1-P(Y / X))(P(Y)-P(Y / X) P(X))} \\
& =\frac{n \cdot n_{X Y}-n_{X Y}^{2}-n_{X Y} \cdot n_{\bar{X} Y}-n_{X Y} \cdot n_{X \bar{Y}}-n_{\bar{X} Y} \cdot n_{X \bar{Y}}}{n_{\bar{X} Y} \cdot n_{X \bar{Y}}}
\end{aligned}
$$

So, if we have : $\forall k \in \mathbb{N}^{*}, n_{X_{1} Y_{1}}=k \cdot n_{X_{2} Y_{2}}$ and $n_{X_{1} \bar{Y}_{1}}=k \cdot n_{X_{2} \bar{Y}_{2}}$ and $n_{\bar{X}_{1} Y_{1}}=k \cdot n_{\bar{X}_{2} Y_{2}}$ and $n_{\bar{X}_{1} \bar{Y}_{1}}=$ $k . n_{\bar{X}_{2} \bar{Y}_{2}}$, therefore, we have:

$$
\begin{aligned}
& =\frac{k \cdot n \cdot n_{X_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}}^{2}-k^{2} \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k^{2} \cdot n_{X_{2} Y_{2}} n_{X_{2} \bar{Y}_{2}}-k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k^{2} \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
\mathrm{OR}_{h n}^{d}\left(X_{1} \rightarrow Y_{1}\right) & =\frac{n \cdot n_{X_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}}^{2}-k \cdot n_{X_{2} Y_{2}} \cdot n_{\bar{X}_{2} Y_{2}}-k \cdot n_{X_{2} Y_{2}} n_{X_{2} \bar{Y}_{2}}-k \cdot n_{\bar{X}_{2} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}}{k \cdot n_{\overline{X_{2}} Y_{2}} \cdot n_{X_{2} \bar{Y}_{2}}} \\
& \neq \frac{n \cdot n_{X_{2} Y_{2}}-n_{X_{2} Y_{2}}^{2}-n_{X_{2} Y_{2}} \cdot n_{\overline{X_{2} Y_{2}}}-n_{X_{2} Y_{2}} \cdot n_{X_{2} \overline{Y_{2}}}-n_{\overline{\bar{X}_{2} Y_{2}}} \cdot n_{X_{2} \overline{Y_{2}}}}{n_{\overline{X_{2} Y_{2}} \cdot} \cdot n_{X_{2} \overline{Y_{2}}}}=O R_{h n}^{d}\left(X_{2} \rightarrow Y_{2}\right)
\end{aligned}
$$

So $\exists k \in \mathbb{N}^{*}, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}, O R_{h n}^{d}\left(X_{1} \rightarrow Y_{1}\right) \neq O R_{h n}^{d}\left(X_{2} \rightarrow Y_{2}\right)$
Hence $O R_{h n}^{d}$ is a statistical measure.
Hence we have : $\mathrm{P}_{20}\left(M_{G K}\right)=P_{20}(O R)=P_{20}\left(O R_{n h}\right)=1$.

Propriété 21 (P_{21}) : Discriminating measure

A measure m is said to be discriminative if it is able to distinguish rules of interest as the size of the training set n increases. In other words, a measure is able to return distinct values to the rules for different levels of involvement.

- If $\exists \eta \in \mathbb{N}^{*}, \forall n>\eta, \forall X_{1} \rightarrow Y_{1}, \forall X_{2} \rightarrow Y_{2}$ such that $\left(P_{X_{1}}\left(Y_{1}\right)>P\left(Y_{1}\right)\right.$ and $P_{X_{2}}\left(Y_{2}\right)>$ $\left.P\left(Y_{2}\right)\right) \Rightarrow m\left(X_{1} \rightarrow Y_{1}\right) \approx m\left(X_{2} \rightarrow Y_{2}\right)$, then $P_{21}(m)=0$ (non-discriminant);
- If $\forall \eta \in \mathbb{N}^{*}, \exists n>\eta, \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}$ such that $\left(P_{X_{1}}\left(Y_{1}\right)>P\left(Y_{1}\right)\right.$ and $P_{X_{2}}\left(Y_{2}\right)>$ $\left.P\left(Y_{2}\right)\right) \Rightarrow m\left(X_{1} \rightarrow Y_{1}\right) \neq m\left(X_{2} \rightarrow Y_{2}\right)$, then $P_{21}(m)=1$ (discriminante).

Théorème .4. (a) A probabilistic quality measure μ is a discriminating measure if, and only if, for any association rule $X \rightarrow Y$, the following condition is verified at the reference situation : $\mu_{\text {imp }} \neq \mu_{\text {ind }} \neq \mu i n c$.
(b) All normalisable and normalised measures (affine or homograph) are discriminating measures.

Proof :

Following the process of normalization of the measurement values between $[-1 ; 1]$ and following the definition of normalized measurements, it is obvious that normalizable and normalized measurements (affine or homographies) are discriminating measurements.

Demonstration :

It is obvious that the measures $M_{G K}, O R$, and $O R_{h n}$ are discriminating, because they are admitted different values to the independence and to the logical implication $\left(m_{i n d}(X \rightarrow Y) \neq m_{i m p}(X \rightarrow Y)\right.$). This means to attraction or $P_{X_{1}}\left(Y_{1}\right)>P\left(Y_{1}\right)$ and $P_{X_{2}}\left(Y_{2}\right)>P\left(Y_{2}\right), \exists X_{1} \rightarrow Y_{1}, \exists X_{2} \rightarrow Y_{2}$ such that $m\left(X_{1} \rightarrow Y_{1}\right) \neq m\left(X_{2} \rightarrow Y_{2}\right)$

$$
\text { Hence we have : } \mathrm{P}_{21}\left(M_{G K}\right)=P_{21}(O R)=P_{21}\left(O R_{n h}\right)=1 \text {. }
$$

References

[Feno(2007)Feno] Feno, D. R. (2007). Mesure de qualité des règles d'association : normalisation et caracterisation des règles d'association des bases. Ph. D. thesis, Universitè de La Réunion spécialité : Mathématiques Informatique.
[Grissa(2013)Grissa] Grissa, D. (2013). Etude comportementale des mesures d'intérêt d'extraction de connaissances. Ph. D. thesis, Université Blaise Pascal-Clermont-Ferrand II; Université de Tunis-El Manar (Tunisie).

