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It is well established that people with diabetes are more likely to have serious complications from COVID-19. Nearly 1 in 5 COVID-
19 deaths in the African region are linked to diabetes. World Health Organization (WHO) �nds that 18.3% of COVID-19 deaths in
Africa are among people with diabetes. In this paper, we have formulated and analysed a mathematical comorbidity model of
diabetes-COVID-19 of the deterministic type. �e basic properties of the model were explored. �e basic reproductive number,
equilibrium points, and stability of the equilibrium points were examined. Sensitivity analysis of the model was carried on to
determine the impact of the model parameters on the basic reproductive number (R0) of the model. �e model had a unique
endemic equilibrium point, which was stable for R0 > 1. Time-dependent optimal controls were incorporated into themodel with the
sole aim of determining the best strategy for curtailing the spread of the disease. COVID-19 cases fromMarch to September 2020 in
Ghana were used to validate the model. Results of the numerical simulation suggest a greater number of individuals deceased when
the infected individual had an underlying condition of diabetes.More so, the disease is endemic in Ghana with the basic reproduction
number found to be R0 � 1.4722. �e numerical simulation of the optimal control model reveals the lockdown control minimized
the rate of decay of the susceptible individuals whereas the vaccination led to a number of susceptible individuals becoming immune
to COVID-19 infections. In all, the two preventive control measures were both e�ective in curbing the spread of the disease as the
number of COVID-19 infections was greatly reduced.We conclude thatmore attention should be paid to COVID-19 patients with an
underlying condition of diabetes as the probability of death in this population was signi�cantly higher.

1. Introduction

Diabetes is one of the underlying conditions associated
with a high risk of COVID-19 complications. World Health
Organization �nds that 18.3% of COVID-19 deaths in
Africa are among people with diabetes [1]. A recent WHO
analysis evaluated data from 13 countries on underlying
conditions or comorbidities in Africans who tested positive
for COVID-19 revealed a 10.2% case fatality rate in patients
with diabetes, compared with 2.5% for COVID-19 patients
overall [2].

Having heart failure, coronary artery disease, and hy-
pertension can make you more severely ill from COVID-19.
However, the case fatality rate for people with diabetes is
twice as high as the fatality rate among patients su�ering
from any comorbidity mentioned [2]. Studies have also

shown that COVID-19 does not a�ect all population groups
equally. �e risk of severe COVID-19 increases as the
number of underlying medical conditions increases in a
person [3–6].

Research conducted by Choi (2021) [7] on the mortality
rates of 566,602 patients with coronavirus disease (COVID-
19) in a Mexican community revealed the mortality rate of
patients with the underlying health conditions was 12% and
was four times higher than that of patients without the
underlying condition. Several studies have con�rmed that
COVID-19 is more severe in older people and those with the
underlying condition of diabetes, lung or heart diseases [8].

Statistics from the World Health Organization (WHO)
indicates that globally over 460 million cases of COVID-19
have been recorded with more than 6 million deaths [9].
According to WHO, 422 million people worldwide have
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diabetes, particularly in low- and middle-income countries
and 1.5 million deaths are directly attributed to diabetes each
year [10]. In Ghana, studies on the general population have
estimated that between 3.3 and 6% of the population has
diabetes with the prevalence increasing with age and being
higher in urban than in rural areas [11]. Research conducted
by Oduro-Mensah et al. (2020) [12] reveals diabetes (9.9%)
as the second-highest underlying condition of COVID-19-
infected patients in two national treatment centers in Ghana
which were GA East Municipal Hospital and the University
of Ghana Medical Center.

Research on COVID-19 has been conducted from various
perspectives such as infection cases, clinical characteristics, and
preventive measures [13, 14]. *e transmission dynamics of
infectious diseases have been studied and analysed by re-
searchers using mathematical models [13–22]. Mathematical
models play an important role in understanding the com-
plexities of infectious diseases and their control [23]. Existing
studies onCOVID-19 usingmathematicalmodels have targeted
the transmission dynamics in a population without taking into
consideration the underlying health conditions of the patients
[13–20]. In [18], the authors formulated a two-patch mathe-
matical model with a mobility matrix to capture the spatial
heterogeneity of COVID-19 outbreaks in South Korea. In [13],
the authors formulated a mathematical model that incorporates
the currently known disease characteristics and tracks various
interventionmeasures in Uganda. In [17], the authors proposed
an age-structured Susceptible-Latent-Mild-Critical-Removed
(SLMCR) compartmental model to study the transmission rate
of COVID-19 disease in six countries which were Australia,
Italy, Spain, the USA, the UK, and Canada.

Some authors have also proposed models to examine
COVID-19 mortality rates in various countries [24–26]. In
[24], the authors proposed an exponentiated transformation
of GumbelType-II (ETGT-II) for modeling the two data sets
of death cases due to COVID-19 in Europe and China.

Few papers have considered a population with comor-
bidities. In [15], the authors proposed a deterministic-epi-
demic model that describes the spreading of SARS-CoV-2
within a community with comorbidities incorporating a
size-dependent area to quantify the effect of social
distancing.

In [27], the authors proposed a mathematical model to
investigate the transmission dynamics of COVID-19 with an
emphasis on the relationship between the disease transmis-
sion and the chronic health conditions of the host population.
*e authors in [27] partitioned the population into two
separate groups, one with an underlying condition and the
other without an underlying condition and described the
disease transmission within and among the groups.

*e current study is aimed to propose a new compart-
mental model using differential equations to describe the
transmission of COVID-19 in a population with an under-
lying condition of diabetes. Here, the model solely focuses on
human-to-human transmission of COVID-19 in a population
with a portion having an underlying condition of diabetes.
*e study is motivated by the available COVID-19 works
which has been reviewed. Comorbidity of diabetes-COVID-
19 has not yet been investigated according to the literature.

*e subsequent sections of the paper are as follows. In
Section 2, we propose and explore a mathematical model of
COVID-19 with comorbidity of diabetes. In Section 3, we
determine the qualitative features of the model. In Section 4,
analysis of the model was formulated. In Section 5, we
incorporate the optimal control in the formulated model. In
Section 6, we analysed numerically the behaviour of the
formulatedmodel using the available data. Finally, in Section
7, we discuss and conclude the results of our proposed study.

2. Model Formulation

We examine the transmission dynamics of the diabetes-
COVID-19 through modifying the model of [27] by intro-
ducing a population with diabetes and establishing the
transmission within the population. With an idea of the
transmission dynamics of COVID-19 and the incidence of
diabetes [14, 16], we formulate a new model to describe the
interactions of a population with diabetes in the event of
COVID-19 transmission.We classify the total populationN(t)

into six groups: susceptible individuals S(t); susceptible with
diabetes D(t); individuals exposed to COVID-19 E(t);
COVID-19-infected individuals I(t); COVID-19 patients with
diabetes C(t); and individuals removed from COVID-19 R(t).

We assume that the population is homogeneously mixed,
with no restriction of age, mobility or other social factors. All
newborns are susceptible (no inherited immunity). Individ-
uals are recruited into the susceptible population at the rateΩ,
and they become diabetic at the rate λ. *e susceptible may be
infected when they interact with those in class I or C. *en,
the infected person becomes exposed to the disease and hence
join the class E at the rate β. *e proportion of the exposed
that joined the compartment I and C are αϕE and (1 − α)ϕ,
respectively. *e parameters μ, δ, δ1 and δ2 are the natural
mortality rate, the disease-induced death rate of COVID-19-
infected people, COVID-19 patients with diabetes, and sus-
ceptible with diabetes, respectively.*e rate at which COVID-
19 patients with diabetes recover from COVID-19 is c1, and
the rate at which COVID-19-infected people recover is c. *e
flowchart of the model is shown in Figure 1.

*e following ordinary differential equations describe
the model:

dS

dt
� Ω − β

I + C

N
 S − (μ + λ)S,

dD

dt
� λS + c1C − β

I + C

N
 D − δ2 + μ( D,

dE

dt
� β

I + C

N
 S + β

I + C

N
 D − (ϕ + μ)E,

dI

dt
� αϕE − (δ + μ + c)I,

dC

dt
� (1 − α)ϕE − δ1 + μ( C,

dR

dt
� cI − μR.

(1)
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With initial conditions,S(0) � S0, D(0) � D0, E(0) �

E0, I(0) � I0, C(0) � C0, R(0) � R0.

3. Qualitative Analysis of the Proposed Model

*is section presents the computation of the invariant region
and the basic reproduction number for the proposed model
(1) and study the locally asymptotically stability of the
equilibrium points.

3.1. Invariant Region. We present the following results
which guarantee that system (1) is epidemiologically and
mathematically well-posed in a feasible region Φ, given as

Φ � (S, D, E, I, C, R) ∈ R
6
+: N≤
Ω
μ

 . (2)

Theorem 3.1. +ere exists a domain Φ in which the solution
set (S, D, E, I, C, R) is contained and bounded.

Proof. Given the solution set (S, D, E, I, C, R) with positive
initial conditions,

S(0) � S0, D(0) � D0, E(0) � E0, I(0) � I0, C(0) � C0, R(0) � R0.

(3)

We let N(t) � S(t) + D(t) + E(t) + I(t) + C(t) + R(t),
then,

N′(t) � S′(t) + D′(t) + E′(t) + I′(t) + C′(t) + R′(t). (4)

It follows that N′(t)≺Ω − μN.
Solving the differential inequalities yields

N′(t)≤
Ω
μ

+ N(0)e
− μ(t)

. (5)

Taking the limits as t⟶∞givesN′Ω/μ.
*at is, all solutions are confined in the feasible regionΦ.

We now show that the solutions of system (1) are non-
negative in Φ. □

Theorem 3.2. Having describe the human population in the
model (1), it is vital to show that the state parameters
S(t), D(t), E(t), I(t), C(t), andR(t) are non-negative for
all t> 0 in the domain Φ.

Proof. It is easy to see S(t)> 0, for all t≥ 0. If not, let there
exist t∗ > 0 such that S(t∗) � 0, S′(t∗)≤ 0 for all 0≤ t≤ t∗.
*en, from the first equation of the model (1), we have

d
dt

Se
(βI+βC/N+μ+λ)t

  � Ωe
(βI+βC/N+μ+λ)t

. (6)

Integrating from 0 to t∗, we obtain

S t∗( e
((βI+βC/N)+μ+λ)t

− S(0) � 
t∗

0
Ωe

((βI+βC/N)+μ+λ)τdτ. (7)

Multiplying through by e((βI+βC/N)+μ+λ)t, we obtain

S t∗(  � S(0)e
− ((βI+βC/N)+μ+λ)t

+ e
− ((βI+βC/N)+μ+λ)t


t∗

0
Ωe

((βI+βC/N)+μ+λ)τdτ > 0.

(8)

which contradicts S(t∗) � 0.
Similarly, from the remaining five equations of system

(1), the following results can be obtained:

D Cγ1

β

β

μ

Ω

λ
(1 – α)

E
I

S

μ

R

μ

μ + δ2 μ + δ1

μ + δ

γ

αφ

Figure 1: Schematic diagram of diabetes-COVID-19 model.
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D t∗(  � D(0)e
− (βI+βC/N)+δ2+μ( )t

+ e
− (βI+βC/N)+δ2+μ( )t


t∗

0
λS + c1C e

(βI+βC/N)+δ2+μ( )τdτ > 0,

E t∗(  � E(0)e
− (ϕ+μ)t

+ e
− (ϕ+μ)t


t∗

0
β

(I(τ) + C(τ))S(τ) +(I(τ) + C(τ))D(τ)

N(τ)
  e

(ϕ+μ)τdτ > 0,

I t∗(  � I(0)e
− (δ+μ+c)t

+ e
− (δ+μ+c)t


t∗

0
αϕE(τ)e

(δ+μ+c)τdτ > 0,

C t∗(  � C(0)e
− δ1+μ( )t

+ e
− δ1+μ( )t


t∗

0
(1 − α)ϕE(τ)e

δ1+μ( )τdτ > 0,

R t∗(  � R(0)e
− μt

+ e
− μt


t∗

0
cI(τ)e

μτdτ > 0,

(9)

which contradicts D(t∗) � E(t∗) � I(t∗) � C(t∗) �

R(t∗) � 0. Hence, this completes the proof. □

3.2. Stability of the Equilibrium Points. *e disease-free
equilibrium (E0) is the steady state solution where there is
no COVID-19 infection in the population. Setting E � I �

C � 0 and the right-hand side of the system (1) to zero, then
solving yields

E0 � S
0
, D

0
, E

0
, I

0
, C

0
, R

0
  �

Ω
μ + λ

,
Ωλ

δ2 + μ( (μ + λ)
, 0, 0, 0, 0 .

(10)

We denote the endemic equilibrium point (E1) by
E1 � (S∗, D∗, E∗, I∗, C∗, R∗). Equating the right-side of the
system (1) to zero and solving yields

S
∗

�
Ω

β I
∗

+ C
∗

( /N +(μ + λ)
, D
∗

�
λS
∗

+ c1C
∗

β I
∗

+ C
∗

( /N + μ + δ2( 
,

E
∗

�
β

(ϕ + μ)

I
∗

+ C
∗

(  S
∗

+ D
∗

( 

N
 , I

∗
�

αϕE
∗

(δ + μ + c)
,

C
∗

�
(1 − α)ϕE

∗

δ1 + μ + c1( 
, R
∗

�
cI
∗

μ
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

We now determine the basic reproduction number of
the model (1). *e basic reproduction number is the
number of secondary cases produced in a susceptible
population by a single infective individual during the time
of the infection. We evaluate the basic reproduction
number using the next-generation operator method [28].
From the model (1), E, I, and C are the COVID-19-infected
compartments. We decomposed the right-hand side of

system (1) corresponding to the COVID-19-infected
compartments as F − V, where

F �

β(I + C/N)S + β(I + C/N)D

αϕE

(1 − α)ϕE

⎛⎜⎝ ⎞⎟⎠ and V �

(ϕ + μ)E

(δ + μ + c)I

(δ1 + μ)C

⎛⎜⎝ ⎞⎟⎠.

Next, we find the derivative of F and V evaluated at the
disease-free steady state and this gives the matrices.

F � zF/zxi � 0 β(S
0

+ D
0
)/N β (S

0
+ D

0
)/Nα ϕ00

(1 − α) ϕ 00) and

V � zV/zxi �

ϕ + μ 0 0
0 δ + μ + c 0
0 0 δ1 + μ

⎛⎜⎝ ⎞⎟⎠,where

xi � E, I, C.

FV− 1
�

0 (δ + μ + c)β S
0

+ D
0/N  0

αϕ(ϕ + μ) 0 0

(1 − α)ϕ 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

*e basic reproduction number is the largest positive
eigenvalue of FV− 1 and is given as

R0 �

������������������������������������������

βαϕ(ϕ + μ)(δ + μ + c)
Ω λ + δ2 + μ( 

(μ + λ) δ2 + μ( 
  +(1 − α)ϕ



. (13)

3.3. Local Stability of the Disease-Free Equilibrium Point.
*e necessary condition for the local stability of the disease-
free steady state is established in the following theorem.

Theorem 3.3. +e disease-free equilibrium (DFE) is locally
asymptotically stable if Ro < 1 and unstable for Ro > 1.
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Proof. *e Jacobian matrix with respect to the system (1) is
given by

J �

J11 0 0 −
βS

N
−
βS

N
0

λ J22 0 −
βD

N
−
βD

N
0

β
I + C

N
  β

I + C

N
  − (ϕ + μ)

βS

N
+
βD

N

βS

N
+
βD

N
0

0 0 αϕ − (c + μ + δ) 0 0

0 0 (1 − α)ϕ 0 − δ1 + μ(  0

0 0 0 c 0 − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)

where

J11 � − β
I + C

N
  − (λ + μ),

J22 � − β
I + C

N
  − δ2 + μ( .

(15)

*e Jacobian matrix evaluated at the disease-free equi-
librium point is given as

JE0 �

− (λ + μ) 0 0 −
βS

0

N
−
βS

0

N
0

λ − δ2 + μ(  0 −
βD

0

N
−
βD

0

N
0

0 0 − (ϕ + μ)
βS

0

N
+
βD

0

N

βS
0

N
+
βD

0

N
0

0 0 αϕ − (c + μ + δ) 0 0

0 0 (1 − α)ϕ 0 − δ1 + μ(  0

0 0 0 c 0 − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

From the system (16), the first three eigenvalues are
− (λ + μ), − (δ2 + μ), and − μ. *e rest are obtained by
deleting the first, second, and sixth rows and columns of the
system (16). *is gives

JE0 �

− ϕ − μ A A

αϕ − (δ + μ + c) 0

(1 − α)ϕ 0 − δ1 + μ( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (17)

where

A � β
S
0

+ D
0

N
 . (18)

*e characteristic equation of the system (17) is

Φ(ω) � ω3
+ A1ω

2
+ A2ω + A3 � 0, (19)

where

A1 � δ + 3μ + ϕ + c + δ1,

A2 � δ1(δ + c + ϕ + 2μ) + μ(3μ + 2(δ + ϕ + c)) + ϕ(δ + c) +
(1 − α)ϕ − R

2
0

α(δ + μ + c)
,

A3 � μ2 α + ϕ + δ1 + c + μ(  + αδ1 + δ + c − α(δ + c)( 
(1 − α)ϕ − R

2
0

α(δ + μ + c)
 .

(20)

From the Routh–Hurwitz stability criterion [19], if the
conditions A1 > 0, A2 > 0, A3 > 0, and A1A2 − A3 > 0 are true,
then, all the roots of the characteristic (21) have a negative

real part which means stable equilibrium. *e coefficients
A1 ≥ 0, A2 ≥ 0, andA3 ≥ 0 and the condition
A1A2 − A3 � ϕ(δ + c) + δ1(ϕ + δ + c + 2μ) + 2μ(ϕ + δ +
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c + 2μ) − μ2(α + δ1 + ϕ + c + μ) + (ϕ + 2δ + 2c + 3μ − αδ1 −

α(δ + c))[(1 − α)ϕ − R2
0/α(δ + μ + c)]> 0 when R0 < 1. In

the case when R0 > 1, we have that at least A2 < 0 and by
using Decartes rule of sign, we can conclude that one of the
eigenvalues is positive. *erefore, the system is unstable.
*is completes the proof. □

4. Numerical Analysis of the Diabetes-COVID-
19 Model

In this section, the model is validated using confirmed cases
data from Ghana Health Service for the period March-
–September 2020 [22]. Using Matlab Gaussfit, the cumu-
lative data of confirmed COVID-19 cases for the period
March–September 2020 with the best-fitted curve is depicted
in Figure 2. Figure 3 shows the residuals of the best-fitted
curve.

For the parameters used in the simulation (see Table 1),
one computes the basic reproductive number and obtain
R0 � 1.4722 which shows the disease is endemic in Ghana.
Next, we investigate the sensitiveness of the model (1) with
respect to the variation of each one of its parameters for the
endemic threshold (13).

4.1. Sensitivity Analysis. Sensitivity analysis tells us how
important each parameter is to the disease transmission. We
use the normalized forward sensitivity index of a variable
with respect to a given parameter of the model (1). *is is
given as

χR0
θ �

zR0

zθ
×

θ
R0

, (21)

where θ is the parameter under consideration. A positive
sensitivity index means an increase in the value of the
parameter would lead to a percentage increase in the basic
reproduction number and a decrease in the parameter
would decrease the basic reproductive number. Using the
parameter values in Table 1 and the threshold parameter
(13), we determine the sensitivity indices and is given in
Table 2.

*e most sensitive parameters to the basic reproduction
number are ϕ, Ω, β, δ2, and λ. In concrete, an increase of the
value of β will increase the basic reproduction number by
19.73%. In contrast, an increase of the value of δ2 will de-
crease R0 by 40.36%. *e parameters c1 and δ1 has no in-
fluence on the basic reproductive number.

4.2. Numerical Simulation. We perform the numerical
simulation to compare our results with the real data from
Ghana and a population with an underlying condition of
diabetes. A starting point of our simulation is 12March 2020
where the authorities of Ghana confirmed the first two cases
of the COVID-19 [33]. According to 2020 population and
housing census, the population of Ghana is 30.8 million [34]
and between 3.3 and 6% of the Ghanaian population has
diabetes [11]. In agreement, in our model, we consider the
total population under study N� 30.8 million. We choose

the following initial conditions: D(0) � 0.06N �

1, 848, 000, I(0) � 2, E(0) � 0, C(0) � 0, R(0) � 0, and
S(0) � N − D(0) − I(0) � 28, 951, 998. Using Matlab
fourth-order Runge–Kutta method, the simulations per-
formed are displayed in Figures 4–9.

Figure 4 depicts the behaviour of the susceptible indi-
viduals. It can be observed from Figure 4 that the susceptible
population decays with time. Figure 5 shows the behaviour
of individuals exposed to COVID-19, the exposed pop-
ulation increases, reaches its peak in the first 50 days then
declines with time. In Figure 6, the population of COVID-
19-infected individuals increases in the first 60 days then
declines with time. Figure 7 depicts the behaviour of the
susceptible with diabetes, the population of susceptible with
diabetes decays and reaches zero at the end of the 200-day
period. In Figure 8, the population of COVID-19 patients
with diabetes increases in the first 60 days, then declines with
time. Figure 9 depicts the behaviour of individuals removed
from COVID-19. *e recovered population increases ex-
ponentially with time, reaches its maximum on the 100th day
then levels off. Figure 10 depicts individuals deceased as a
result of the COVID-19 disease. It can be seen that the
probability of death in the population of COVID-19 patients
with the underlying condition of diabetes is significantly
higher as compared to COVID-19-infected population with
no diabetes.

5. Optimal Control Model

In this section, we incorporate optimal controls into the
system (1). We consider two preventive control measures;
control (u1) which represents lockdown, and control (u2)

which represents vaccination of susceptible individuals. To
minimize the infections, countries first adopted the lock-
down policy by controlling the movement of people. In this
case, interactions among the susceptible individuals, sus-
ceptible with diabetes, COVID-19-infected individuals, and
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Figure 2: Cumulative cases of Ghana’s COVID-19 from March to
September 2020 with the best-fitted curve.

6 International Journal of Mathematics and Mathematical Sciences



COVID-19 patients with diabetes were reduced. To include
this lockdown in the model, we replaced the parameter β
with (1 − u1)β, where 0≤ u1 ≤ 1. If there are no lockdowns,
then u1 � 0 and if there are total lockdown then u1 � 1. After
the lockdown, countries have resulted to the vaccination of
individuals to allow free movement of people and easing
most restrictions. In this case, we vaccinate the susceptible
individuals both with an underlying condition and without

an underlying condition. We include the time-dependent
controls into the system (1) and we have
dS

dt
� Ω − 1 − u1( β

I + C

N
 S − (μ + λ)S − u2S,

dD

dt
� λS + c1C − 1 − u1( β

I + C

N
 D − δ2 + μ( D − u2D,

dE

dt
� 1 − u1( β

I + C

N
 S + 1 − u1( β

I + C

N
 D − (ϕ + μ)E,

dI

dt
� αϕE − (δ + μ + c)I,

dC

dt
� (1 − α)ϕE − δ1 + μ( C,

dR

dt
� cI − μR.

(22)

5.1. Analysis of the Optimal Control Model. We analyse the
behaviour of the system (22).*e objective function for fixed
time tf is given by

1
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Figure 3: Residuals of the best-fitted curve.

Table 1: Parameter values and description.

Parameter Description Value Source
Ω *e recruitment rate 28.452 [29]
β *e transmission rate 0.9 Estimated
δ COVID-19 disease-induced death 0.0016728 [30]
λ Incidence of diabetes 0.2 [16]
c *e rate of recovery of COVID-19 patients with no underlying condition of diabetes 1/14 Estimated
μ *e natural mortality rate 0.4252912 × 10− 4 Estimated
ϕ *e rate at which the exposed become infectious 0.25 [31]
c1 *e recovery rate of COVID-19 patients with an underlying condition of diabetes 1/14 Estimated
δ1 Disease-induced death rate of COVID-19 patients with an underlying condition 0.0144 [27, 32]
δ2 Disease-induced death rate of diabetes 0.05 [16]

Table 2: Sensitivity indices of the model parameters.

Parameter Value
Ω 0.4827
β 0.1973
δ 0.00037962
λ − 2.6134 × 103
c 0.0162
μ 3.6233 × 10− 4

ϕ 2.9130
c1 0.0
δ1 0.0
δ2 − 0.4036

International Journal of Mathematics and Mathematical Sciences 7



0
0

0.5

1

1.5S 
(t)

2

2.5

3
× 107

20 40 60 80 100
Time (days)

Susceptible

120 140 160 180 200

Figure 4: Behaviour of susceptible individual.
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Figure 5: Behaviour of the individual exposed to COVID-19.
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Figure 6: Behaviour of the COVID-19-infected individuals.
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Figure 7: Behaviour of the susceptible with diabetes.
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J u1, u2(  � 
tf

0
f1S(t) + f2E(t) + f3I(t) + f4C(t) + f5D(t) +

1
2

T1u
2
1 + T2u

2
2  dt, (23)

where f1, f2, f3, f4, and f5 are the relative weights and T1
and T2 are the relative cost associated with the controls u1
and u2. *e final time of the control is tf. *e aim of the
control is to minimize the cost function.

J u
∗
1 , u
∗
2(  � min

u1 ,u2∈U
J u1, u2( , (24)

subject to the system (22), where 0≤ (u1, u2)≤ 1 and
t ∈ (0, tf). In other to derive the necessary condition for the
optimal control, Pontryagin maximum principle given in
[35] was used. *is principle converts system (22)–(24) into
a problem of minimizing a Hamiltonian H, defined by

H � f1S(t) + f2D(t) + f3E(t) + f4I(t) + f5C(t) +
1
2

T1u
2
1 + T2u

2
2 

+ ΛS Ω − 1 − u1( β
I + C

N
 S − (μ + λ)S − u2S 

+ ΛD λS + c1C − 1 − u1( β
I + C

N
 D − δ2 + μ( D − u2D 

+ ΛE 1 − u1( β
I + C

N
 S + 1 − u1( β

I + C

N
 D − (ϕ + μ)E 

+ ΛI αϕE − (δ + μ + c)I  + ΛC (1 − α)ϕE − δ1 + μ( C  + ΛR cI − μR ,

(25)

where ΛS, ΛD, ΛE, ΛI, ΛC, and ΛR represent the adjoint
variables or co-state variables. *e system of equations is
derived by taking into account the correct partial derivatives
of the system (25) concerning the associated state variables.

Theorem 4. Given the optimal control u∗1 and u∗2 and the
corresponding solution S∗, D∗, E∗, I∗, C∗, andR∗ of the cor-
responding state systems (22) and (23) that minimizes
J(u1, u2) over U, there exist adjoint variables
ΛS,ΛD,ΛE,ΛI,ΛC, andΛR, satisfying

−
dΛi

dt
�

zH

zi
, (26)

where i � ΛS,ΛE,ΛA,ΛQ,ΛV, andΛR, with the transversality
conditionsΛS(tf) � ΛD(tf) �

ΛE(tf) � ΛI(tf) � ΛC(tf) � ΛR(tf) � 0

Proof. *e differential equations characterized by the ad-
joint variables are obtained by considering the right-hand
side differentiation of the system (25) determined by the
optimal control. *e adjoint equations derived are given as
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Figure 10: Deceased COVID-19 individuals.
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dΛS

dt
� − f1 + 1 − u1( β

I + C

N
  ΛS − ΛE  + μ + u2( ΛS + λ ΛS − ΛD ,

dΛD

dt
� − f2 + 1 − u1( β

I + C

N
  ΛD − ΛE  + δ2 + μ + u2( ΛD,

dΛE

dt
� − f3 +(ϕ + μ)ΛE + αϕ ΛC − ΛI  − ϕΛC,

dΛI

dt
� − f4 + 1 − u1( 

βS

N
ΛS − ΛE  + 1 − u1( β

D

N
ΛD − ΛE  +(c + μ + δ)ΛI − cΛR,

dΛC

dt
� − f5 + 1 − u1( 

βS

N
ΛS − ΛE  + 1 − u1( β

D

N
ΛD − ΛE  − cΛD + μ + δ1( ΛC,

dΛR

dt
� μΛR.

(27)

By obtaining the solution for u∗1 and u∗2 subject to the
constraints, we have

0 �
zH

zu1
� − T1u1 + β

I + C

N
 S ΛE − ΛS  + β

I + C

N
 D ΛE − ΛD ,

0 �
zH

zu1
� − T2u2 + SΛS + DΛD.

(28)

*is gives

u
∗
1 � min 1, max 0,

β(I + C/N)S ΛE − ΛS  + β(I + C/N)D ΛE − ΛD 

T1
  ,

u
∗
2 � min 1, max

SΛS + DΛD 

T2
  .

(29)

Hence, the theorem is proved. □

6. Numerical Analysis of the Optimal
Control Model

In this section, we analysed numerically the behaviour of the
optimal control model (22) using the method of forward-
backward sweep method as in [36]. We develop a numerical
scheme that uses the Matlab fourth-order Runge–Kutta
method [36–39] to solve the model’s optimality system.

6.1. Optimal Control (u1) of theModel. *e control u1 which
represents lockdown is optimized throughout the period of
200 days whilst setting u2 � 0. Using the parameter values
given in Table 1 and same initial conditions, the simulation
performed are displayed in Figures 11–16 which depicts the
dynamical behaviour of all the compartments.

In Figure 11, it can be observed that the lockdown
sustains the susceptible population for the entire period of
200 days as compared to no lockdown situation which
decays the susceptible population by the end of the 70th
day. In Figure 12, the behaviour of the COVID-19 exposed
individuals with and without the imposition of a lock-
down is depicted. It can be observed that the imposition of
a lockdown on the population, reduces the number of
individuals that get exposed to the COVID-19 from the
peak of 1600 to less than 800 on the 40th day. Figure 13
depicts the behaviour of COVID-19-infected individuals
with and without the lockdown.*e lockdown reduces the
number of COVID-19-infected individuals from the peak
of 3200 to 1500 on the 60th day. Figure 14 depicts the
behaviour of COVID-19 patients with diabetes with and
without the lockdown. It can be observed from Figure 12,
the lockdown control reduces the number of people with
the diabetes who contract COVID-19 with the peak

10 International Journal of Mathematics and Mathematical Sciences



reaching 500 on the 60th day as compared with 1200 in a
situation without the lockdown. Figure 15 depicts the
behaviour of the susceptible with diabetes with and
without the lockdown control. *e lockdown control
sustains the population of individuals with the diabetes as
it decays within the first 160 days in a situation where
there is no lockdown. Figure 16 depicts the behaviour of
individuals removed from COVID-19 with and without
the lockdown control. *ere is a decline in the population
of individuals removed from COVID-19 when the lock-
down control is implemented. *is is so because with the
lockdown movement of susceptible people are restricted
and hence less infections which translate to the decline in
the recoveries.

6.2. Control (u2) of COVID-19. We now focus our attention
on vaccination control (u2). *e goal is to reduce the
number of people who contract COVID-19. Using the same
initial conditions and parameter values given in Table 1, the
results of the simulations are displayed in Figures 17–22.

Figure 17 depicts the dynamic behaviour of the sus-
ceptible individuals when there is a vaccination control
within 200 days. *e vaccination reduces the number of
individuals who become susceptible to COVID-19 and
thereby developing immunity to the disease. Figure 18
depicts the behaviour of individuals exposed to COVID-
19 when there is a vaccination control within 200 days. It can
be observed that the number of individuals who become
exposed to COVID-19 declines as a result of individuals
getting vaccinated. *e number reduces from the peak of
1600 to 400 and then decays at the end of the 100th day.
Figure 19 depicts the behaviour of COVID-19-infected
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Figure 11: Behaviour of the susceptible population with and
without lockdown control.
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Figure 12: Behaviour of the exposed individuals with and without
lockdown control.
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Figure 13: Behaviour of COVID-19-infected individuals with and
without lockdown control.
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Figure 14: Behaviour of COVID-19 patients with diabetes with and
without lockdown control.
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individuals when there is a vaccination control within
200 days. *e number of individuals who contract COVID-
19 reduces drastically as vaccination control is implemented.
Figure 20 depicts the behaviour of COVID-19 patients with
diabetes with and without vaccination control. With the
vaccination of individuals with an underlying condition of
diabetes, it can be seen from Figure 20 that there is a decline
in the number of individuals who contract COVID-19 as
compared to a situation where there is no vaccination. *e

population of COVID-19 patients with diabetes declines at
the peak of 1200 to a peak of 300 on the 50th day. Figure 21
depicts the behaviour of susceptible with diabetes when
vaccination control is implemented. *ere is a decline in the
number individuals with diabetes who become susceptible to
the COVID-19 within the first 60 days as they become
immune after the vaccination. Figure 22 depicts the be-
haviour of individuals removed from COVID-19. *e
number of individual removed from COVID-19 increases as
those vaccinated joins the removed class.
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Figure 15: Behaviour of susceptible individuals with diabetes with
and without lockdown control.
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Figure 16: Behaviour of the individuals removed from COVID-19
with and without lockdown control.
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without vaccination control.
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Figure 18: Behaviour of the individuals exposed to COVID-19
with and without vaccination control.
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Figure 19: Behaviour of the COVID-19-infected individuals with and without vaccination control.
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Figure 20: Behaviour of COVID-19 patients with diabetes with and without control.
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Figure 21: Behaviour of susceptible individuals with diabetes with and without control.
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7. Conclusion

In this paper, we have formulated and analysed a mathe-
matical model which describes the transmission of COVID-
19 in a population with an underlying condition of diabetes.
*e basic properties of the model were explored. *e posi-
tivity and boundedness of the solution, the basic reproductive
number, equilibrium points, stability of the equilibrium
points, and sensitivity analysis of the model were examined.
*e basic reproduction number of the model was found to be
R0 � 1.4722. Results of the numerical simulation suggest a
greater number of individuals deceased when the infected
individual had an underlying condition of diabetes. Time-
dependent controls were incorporated into the model with
the sole aim of determining the best strategy in curbing the
spread of the disease. Pontrygin’s maximum principle was
used to characterize vital conditions of the optimal control
model. *e numerical simulation of the optimal control
model suggests the lockdown and vaccination when imple-
mented reduces COVID-19 infection in the population. *e
lockdown control minimizes the rate of decay of the sus-
ceptible individuals whereas the vaccination led to a number
of susceptible individuals becoming immune to infections. In
all, the two preventive control measures were both effective in
curbing the spread of the disease. Future research should
include fractional-order derivative. Fractional models provide
a more accurate and deeper analysis of the model’s behaviour
than a classical integer model [40]. Also, more attention
should be paid to individuals with the underlying condition of
diabetes as the number of deaths was significantly high.
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with and without vaccination control.
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