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Communication systems including AM and FM radio stations transmitting signals are capable of generating interference due to
unwanted radio frequency signals. To avoid such interferences and maximize the number of channels for a predefined spectrum
bandwidth, the radio-k-chromatic number problem is introduced. Let G � (V, E) be a connected graph with diameter d and radius ρ.
For any integer k, 1≤ k≤d, radio k− coloring of G is an assignment φ of color (positive integer) to the vertices of G such that
d(a, b) + |φ(a) − φ(b)|≥ 1 + k, ∀a, b ∈ V(G), where d(a, b) is the distance between a and b in G. *e biggest natural number in the
range of φ is called the radio k− chromatic number of G, and it is symbolized by rck(φ). *e minimum number is taken over all such
radio k− chromatic numbers of φ which is called the radio k− chromatic number, denoted by rck(G). For k � d and k � ρ, the radio
k− chromatic numbers are termed as the radio number (rn(G)) and radial radio number (rr(G)) of G, respectively. In this research
work, the relationship between the radio number and radial radio number is studied for any connected graph. *en, several sunflower
extended graphs are defined, and the upper bounds of the radio number and radial radio number are investigated for these graphs.

1. Introduction

*e channel frequency assignment problem was first pro-
posed by Griggs and Yeh [1] in 1992 for the amplitude
modulation radio stations. Due to the cochannel interfer-
ence, there is a challenge to fix the transmitters in a par-
ticular geographical area. *erefore, studying the channel
assignment problem in radio stations is NP-complete.
However, Fotakis et al. [2] proved that even for graphs with
diameter 2, the problem is NP-hard. Chartrand et al. [3]
presented the theoretical graph definition for the radio-k-
chromatic number as follows.

LetG � (V, E) be a connected graph with diameter d and
radius ρ. For any integer k, 1≤ k≤d, radio k− coloring of G is
an assignment φ of color (positive integer) to the vertices of
G such that d(a, b) + |φ(a) − φ(b)|≥ 1 + k, ∀a, b ∈ V(G),

where d(a, b) is the distance between a and b in G. *e
biggest natural number in the range of φ is called the radio
k− chromatic number of G, and it is symbolized by rck(φ).
*e minimum number is taken over all such radio
k− chromatic numbers of φ which is called the radio
k− chromatic number, denoted by rck(G).

Čada et al. [4] proved that, for any distance graph
D(t − 1, t), we have

rck(D(t − 1, t))≤

1
2
k
2

+ k −
t + 2
2

, where t> 2 is an integer, k> 3 is an odd integer,

1
2

tk
2
, k> 0 is an odd integer, t> 3 is an even integer.
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Recently, Bantva [5] improved this general lower bound.
Based on different k values, the radio k− chromatic number is
classified into different problems.

For k � d, the radio k− chromatic number is termed as the
radio number problem, and it is symbolized by rn(G). It was
introduced by Chartrand et al. [6] for the purpose of de-
termining the maximum number of channels for frequency
modulation (FM) radio stations by minimum utilization of
spectrum bandwidth. *e radio number problem has been
studied by several researchers [7, 8]. In 2017, Avadayappan
et al. [9] brought in the concept of radial radio labelling. A
mapping φ: V(G)⟶ N∪ 0{ } for a connected graph G �

(V, E) is called a radial radio labelling if this satisfies the
inequality |φ(a) − φ(b)| +d(a, b)≥ ρ +1∀a, b ∈ V(G), where
ρ is the radius of the graph G. Radial radio number of φ
symbolized by rr(φ ) is the maximum number mapped under
φ.*e radial radio number of G, denoted by rr(G), is equal to
min rr(φ)􏼈 /φ is a radial radio labelling of G}. A few number
of research articles [10, 11] were published in the area of radial
radio labelling. In this paper, we have studied a comparative
relation between rn(G) and rr(G). Furthermore, we have
defined and determined the radio and radial radio numbers of
certain sunflower extended graphs such as SS(n, Ւ), CS(n, Ւ),
and WS(n, Ւ).

2. Relation between the Radio Number and
Radial Radio Number

*is section deals with certain results which connect rn(G)

with rr(G) for any connected graph G.

Definition 1. *e eccentricity of a vertex z, represented by
e(z) in a connected graph G, is the maximum distance from
z to any other vertex in G. *at is, e(z) � max
d(z, a)∀a ∈ V(G){ }. *e maximum eccentricity of the
vertices of G is called the diameter of the graph, and it is
symbolized by d or di am(G). In addition, the radius of
graph G, symbolized by ρ or ra d(G), is the minimum
eccentricity of the vertices of G.

Definition 2. A connected graph G � (V, E) is called a
self-centred graph if e(u) � e(v)∀u, v ∈ V(G). In other
words, di am(G) � ra d(G).

*e following is a straight result from the definitions of
the radio number and radial radio number.

Theorem 1. For any connected graph G, rn(G)≥ rr(G).
Chartrand et al. [6] proved the following three theorems,

which will be used to study the general results for the radial
radio number.

Theorem 2. If G is a connected graph of order n and di-
ameter d, then n≤ rn(G)≤ (n − 1)d.

Theorem 3. For a complete k− partite graph G of order n,
rn(G) � n + (k + 1).

Theorem 4. Every connected graph G of order n with
rn(G) � n is self-centred.

Using *eorem 5 and Definition 2, we have attained the
equality of *eorem 1 as follows.

Theorem 5. A connected graph G of order n is self-centred if
and only if rn(G) � rr(G) � n.

Theorem 6. Let G � (V, E) be a complete k− partite graph of
order n; then, rr(G) � k.

Proof. Let the vertex set of G be partitioned into k disjoint
sets U1, U2, . . . , Uk such that Ui ∩Uj � ∅, 1≤ i≠ j≤ k, and
V � ∪ k

i�1Ui. *e radius of the complete k− partite graph is 1,
and all the vertices in the setsUi, 1≤ i≤ k, are at distance two.
Hence, we can label the vertices in each set Ui as
i(i � 1, 2, . . . , k). Clearly, the radial radio labelling condition
d(a, b) + |φ(a) − φ(b)|≥ 2 is satisfied for any pair of vertices
in G. Hence, rr(G) � k. □

Theorem 7. If G is a connected graph of order n> 1 and
radius ρ, then 2≤ rr(G) ≤ (n − 1)ρ.

Proof. Given G is a connected graph that contains at least
two vertices. *erefore, the lower bound of the theorem
attains in the particular case of *eorem 6 which is for the
complete bipartite graphs. Furthermore, the upper bound is
obtained by replacing d by ρ in *eorem 2. Consequently,
2≤ rr(G) ≤ (n − 1)ρ, n> 1. □

3. Results and Discussion

In this section, we have defined and investigated the radial radio
and radio number of some sunflower extended graphs such as
star-sun graph SS(n, Ւ), complete-sun graph CS(n, Ւ), wheel-
sun graph WS(n, Ւ), and fan-sun graph FS(n, Ւ).

Definition 3. A sunflower graph consists of a wheel with a
centre vertex wn, n-cycle w0, w1, . . . , wn− 1, and additional n

vertices u0, u1, . . . , un− 1 where ui is joined with edges to
(wi, wi+1), i � 0, 1, 2, . . . n–1, and i + 1 is taken as modulo n.
It is represented by SFn. *e radius, diameter, and number of
vertices of SFn are 2, 4, and 2n + 1, respectively.

Definition 4. A star graph, denoted by SՒ+1, is defined as a
complete bipartite graph of the form K1,Ւ, Ւ> 1. In other
words, SՒ+1 is a tree having Ւ leaves and one internal vertex.

Definition 5. A star-sun graph, denoted by SS(n, Ւ), is a
graph obtained from the sunflower graph SFn and n copies of
star graph SՒ+1 by merging the internal vertex of the kth star
graph SՒ+1 and vertex uk− 1 of SFn, 1≤ k≤ n, as shown in
Figure 1(a).

Remark 1. *e cardinality of V(SS(n, Ւ)) and E(SS(n, Ւ)) in
SS(n, Ւ) is n(Ւ + 2) + 1 and 2nՒ + 4n, respectively. Also, the
diameter and radius of the graph are 6 and 3, respectively.
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Definition 6. A complete-sun graph, denoted by CS(n, Ւ), is
a graph obtained from the sunflower graph SFn and n copies
of complete graph KՒ by merging a vertex of the mth

complete graph KՒ and the vertex um− 1 of SFn, 1≤m≤ n, as
shown in Figure 1(b). Here, we have |V(CS(n, Ւ))| � n(Ւ +

1) and |E(CS(n, Ւ))| � (nՒ(Ւ − 1)/2) + 2n.

Remark 2. *e diameter and radius of CS(n, Ւ) are 6 and 3,
respectively.

Definition 7. A wheel-sun graph, denoted by WS(n, Ւ), is a
graph obtained from the sunflower graph SFn and n copies of
wheel graph WՒ+1 by merging the vertex uk− 1 of SFn and the
centre vertex of the kth wheel, where 1≤ k≤ n as shown in
Figure 1(c).

Remark 3. *e number of vertices in WS(n, Ւ) is
n(Ւ + 2) + 1, while its number of edges is 2n(2n + Ւ). Also,
its diameter and radius are 6 and 3, respectively.

Definition 8. A fan-sun graph is a graph obtained from the
sunflower graph SFn and n copies of fan graph FՒ+1 � PՒ +

K1 by merging K1 of the kth fan and the vertex uk− 1 of SFn,
1≤ k≤ n. It is denoted by FS(n, Ւ) as shown in Figure 1(d).

Remark 4. For the graph FS(n, Ւ), the number of edges is
4n + n(2Ւ − 1), while the number of vertices is n(Ւ + 2) + 1.
Moreover, the diameter and radius are 6 and 3, respectively.

In this work, we name the newly included nՒ vertices of
SS(n, Ւ), WS(n, Ւ), and FS(n, Ւ) as v1, v2, . . . , vnՒ in the
clockwise sense.

3.1. Radial Radio Number of Sunflower Extended Graphs.
*e following theorems provide the upper bound for the
radial radio number of S(n, Ւ), CS(n, Ւ), andWS(n, Ւ).

Theorem 8. Let G be the sun-star graph SS(n, Ւ). <en,
rr(SS(n, Ւ))≤ 3n + 2Ւ + 1.

Proof. First, we define a mapping φ: V(SS(n, Ւ))⟶ N as
follows: φ(vՒ(j− 1)+i) � 2i, i � 1, 2, . . . , Ւ, j � 1, 2, . . . , n,
φ(w2i) � 2(Ւ + 1 + i), i � 0, 1, . . . , ⌈n/2⌉ − 1, φ(w2i+1) � 2
(⌈n/2⌉ + Ւ + 1 + i), i � 0, 1, . . . , ⌊n/2⌋ − 1, φ(u2i) � 2(n +Ւ
+ 1) + i, i � 0, 1, . . . , ⌈n/2⌉ − 1, φ(u2i+1) � 2(n + Ւ + 1) +⌈n

/2⌉ + i, i � 0, 1, 2, . . . , ⌊n /2⌋ − 1, and φ(wn) � 1 as shown in
Figure 2.

Since the radius of the graph is 3, we must verify φ
satisfies the radial radio labelling condition d(a, b) + |φ(a) −

φ(b)|≥ 1 + ra d(SS(n, Ւ)) � 1 + 3 � 4 for every pair of
vertices a, b ∈ V(SS(n, Ւ)).

Let us choose any two arbitrary vertices a and b in the
sun-star graph.

Case 1: suppose a and b are star vertices, then a and b

are of the form a � vl and b � vm, 1≤m≠ l≤ nՒ.

Case 1.1: if l � Ւ(j − 1) + α andm � Ւ(j − 1) +β, α
≠ β, then the value of a and b under φ is 2p and 2q,

respectively. Also, a and b are at a distance two. Hence,
the radial radio labelling condition becomes d(a, b) +

|φ(a) − φ(b)| � 2 + |2(α − β)|≥ 4 since α≠ β.
Case 1.2: if l � α + Ւ(s − 1) andm � β +Ւ(t − 1), t ≠ s,
then a and b are at a distance at least 4. Hence, the
radial radio labelling condition is trivially satisfied.

Case 2: let a � v(j− 1)+l, 1≤ l≤ Ւ, and b � wm, 0
≤m≤ n − 1; then, the value of φ(a) is 2l, and φ(b) is at
least 2(Ւ + 1 + m). Furthermore, d(a, b) is at least 2.
*erefore, d(a, b) + |φ(a) − φ(b)|≥ 2 + |2Ւ − 2(Ւ+

2)|≥ 4.
Case 3: if we take a � vՒ(j− 1)+s, 1≤ s≤ Ւ, and
b � ut, 0≤ t≤ n − 1, then |φ(a) − φ(b)|≥ |2(n +Ւ + 1)

− (2Ւ)|≥ 2n> 4 since n> 2, which trivially verifies the
radial radio labelling condition.
Case 4: suppose a � vՒ(j− 1)+l, 1≤ l≤ Ւ, and b � wm, 0
≤m≤ n − 1, then the value of φ(a) is 2l, and φ(b) is at
least 2(Ւ + 1 + m). Furthermore, d(a, b) is at least 2.
*erefore, d(a, b) + |φ(a) − φ(b)| ≥ 2 + |(2Ւ + 2)

− 2Ւ|≥ 4.
Case 5: if a is the centre vertex of the wheel and b is any
other star vertex, then the distance between them is
exactly 3. Also, φ(a) � 0 and φ(b)≥ 1. *erefore,
d(a, b) + |φ(a) − φ(b)|≥ 4.
Case 6: let a and b be the vertices in the n-cycle of the
sunflower graph.

Case 6.1: if a � w2l and b � w2m, 0≤ l≠m≤ ⌈n/2⌉ − 1,
then |φ(a) − φ(b)|≥ |2(l − m)|. Again, d(a, b) � 2.
Since l≠m, the condition for the radial radio labelling
is satisfied.
Case 6.2: suppose a and b are of the form w2l+1 and
w2m+1, where 0≤ l≠m≤ ⌊n/2⌋ − 1, then the distance
between them is exactly two. Also, the function values
of a and b are 2(Ւ + l + ⌈n/2⌉ + 1) and 2(Ւ +m+

⌈n/2⌉ + 1), respectively. Hence, the radial radio label-
ling condition becomes d(a, b) + |φ(a) − φ(b)| � 2 +

|2 (⌈n/2⌉ + Ւ + l + 1) − (2(⌈n /2⌉ + Ւ +m + 1)) | ≥ 4.
Case 6.3: suppose a � w2l, 0≤ l≤ ⌈n/2⌉ − 1, and
b � w2m+1, 0≤m≤ ⌊n/2⌋ − 1, then φ(a) � 2(Ւ + 1 + l)

and φ(b) � 2(Ւ + m + ⌈n/2⌉ + 1).

If m � 0 and l � ⌈n/2⌉ − 1, then d(a, b) � 2; else,
d(a, b)≥ 1. Hence, in both possibilities, we obtain d(a, b) +

|φ(a) − φ(b)| � 2 + |2(⌈n/2⌉ + Ւ + 1) − (2(Ւ + ⌈n/2⌉ − 1
+1))|≥ 2 + 2 � 4 and d(a, b) + |φ (a) − φ(b)|≥ 1 + |2(⌈n

/2⌉ + Ւ + m) − (2(Ւ + l + 1))|≥ 1 + 4> 4.

Case 7: if a � wl, 0≤ l≤ n − 1, and b � wn, then |φ(a) −

φ(b)| is at least 2Ւ + 1. Since n> 2, the radial radio
labelling condition is easily verified.
Case 8: suppose a � ul and � um, 0≤ l≠m≤ n − 1.

Case 8.1: if l � 2α and m � 2β, 0≤ α≠ β≤ ⌈n/2⌉ − 1,
respectively, then φ(a) � 2(n + Ւ + 1) + α and
φ(b) � 2(n + Ւ + 1) + β. Also, the distance between a

and b is 2. Hence, we have d(a, b) + |φ(a) − φ(b)| �

2 + |2(n + Ւ + 1) + α − (2(n + Ւ + 1) + β)|> 3 since
α≠ β.
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Case 8.2: if l � 2α + 1 and m � 2β + 1, 0≤ α≠ β
≤ ⌈n/2⌉ − 1, then d(a, b) � 2. Also, φ takes the values
of a and b to 2(n + Ւ) + ⌈n/2⌉ + α + 1 and
2(n + Ւ + 1) + ⌈n/2⌉ + β + 1, respectively. *erefore,
d(a, b) + |φ(a) − φ(b)| � 2 + |2(n + Ւ + 1) + ⌈n/2⌉ +

α +1 − (2(n + Ւ + 1) + ⌈n/2⌉ + β + 1)|≥ 4.
Case 8.3: let a � u2l, 0≤ l≤ ⌈n/2⌉ − 1, and b � u2m+1,
0≤m≤ ⌊n/2⌋ − 1; then, a and b are mapped to 2(n +

Ւ + 1) + l and 2(n + Ւ + 1) + ⌈n/2⌉ + m + 1,
respectively.

When l � ⌈n/2⌉ − 1 and m � 0, d(a, b) � 2, and hence,
d(a, b) + |φ(a) − φ(b)| � 2 + |2(n + Ւ + 1) + ⌈n/2⌉ −

1− (2(n + Ւ + 1) + ⌈n/2⌉ + 1)|≥ 2 + 2 � 4.

*e remaining possibility is obvious since the distance
between them is at least 1, and the modulus difference
between φ(a) and φ(b) is at least 4.

Case 9: if a � wn and b is any vertex of the form ul,
0≤m≤ n − 1, then the verification is obvious since the
difference in the function values of a and b is at least
2(n + Ւ).

*us, φ is a valid radial radio labelling, and the vertex
un− 1 receives the maximum number 2(n + Ւ +1)

+⌈n/2⌉ + ⌊n/2⌋ − 1 � 3n + 2Ւ − 1. *at is, rr(φ) � 3n

+2Ւ + 1.

Hence, we conclude that rr(SS(n, Ւ)) ≤ 3n + 2Ւ +1. □

Theorem 9. Let G be the complete-sun graph CS(n, Ւ). If
n ≡ 0(mod3), then the radial radio number of G satisfies
rr(G) ≤ 3(Ւ + 1) + 2n.

Proof. Let us name the newly included n(Ւ − 1) vertices of CS

(n,Ւ) as v1,v2 ...vn(Ւ− 1) in the clockwise sense.Now,we define a
one-one mapping φ: V(CS(n,Ւ))⟶ 1,2 ...{ } as follows:

(a) (b) (c) (d)

Figure 1: Different sunflower extended graphs.
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Figure 2: A sun-star graph SS(6, 5) and its radial radio labelling.
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φ v(Ւ− 1)(j− 1)+i􏼐 􏼑 � 3i − 1, i � 1, 2, . . . , Ւ − 1, j � 1, 2 . . . n,

φ u3i+2( 􏼁 � 3Ւ − 1, i � 0, 1, . . . ,
n

3
− 1,

φ u3i( 􏼁 � 3Ւ + 1, i � 0, 1, . . . ,
n

3
− 1,

φ u3i+1( 􏼁 � 3Ւ + 3, i � 0, 1, . . . ,
n

3
− 1,

φ w2i( 􏼁 � 3Ւ + 2i + 5, i � 0, 1, . . . , ⌈
n

2
⌉ − 1,

φ w2i+1( 􏼁 � 3Ւ + 2⌈
n

2
⌉ + 2i + 5, i � 0, 1, . . . ,

n

2
􏼖 􏼗 − 1,

φ wn( 􏼁 � 1.

(2)

*is mapping is visible in Figure 3(a).
In the following, we claim that d(a, b)+ |φ(a)

− φ(b)|≥ 4∀a, b ∈ V(CS(n, Ւ)).
Let a, b ∈ V(CS(n, Ւ)).

Case 1: suppose a � v(Ւ− 1)(p− 1)+α and b � v(Ւ− 1)

(q − 1) + β, 1≤ α, β≤ Ւ − 1, 1≤p, q≤ n, then
φ(v(Ւ− 1)(p− 1)+l) � 3l − 1 and φ(v(Ւ− 1)(q− 1)+m) � 3m − 1.

Case 1.1: if α≠ β, then d(v(Ւ− 1)(p− 1)+α, v(Ւ− 1)(q− 1)+β) �

1 and |φ(a) − φ(b)| ≥ |3(α − β)|. *erefore, d(a, b) +

|φ(a) − φ(b)|≥ 1 + |3(α − β)|≥ 4 since α≠ β.
Case 1.2: if p � q, then d(v(Ւ− 1)(p− 1)+α, v(Ւ− 1)(q− 1)+β)

� 4, which is enough for verifying the condition.

Case 2: assume that a � v(Ւ− 1)(p− 1)+α, 1≤ α≤ Ւ − 1,
1≤p≤ n, and b � uβ, 0≤ β≤ n − 1; then, φ(a)≤ 3Ւ − 4
and φ(b)≥ 3Ւ − 1. Also, d(a, b)≥ 1. *erefore,
d(a, b) + |φ(a) − φ(b)|≥ 1 + 3≥ 4.
Case 3: if we take � v(Ւ− 1)(p− 1)+α, 1≤ α≤ Ւ − 1, 1≤p≤ n,
and b � wβ, 0≤ β≤ n − 1, then |φ(a) − φ
(b)|≥ |3Ւ − 4 − (3Ւ + 3)|> 4 since n> 2, which verifies
the condition trivially.
Case 4: assume that a � uα and b � wβ, 0≤ α, β≤ n − 1.

Case 4.1: if α � n − 2 and β � 1, then φ(uα) � 3Ւ + 3
and φ(wβ) � 3Ւ + 5. However, d(uα, wβ) � 2. *ere-
fore, d(a, b) + |φ(a) − φ(b)|≥ 4. Otherwise,
|φ(a) − φ(b)| is greater than 3.

Case 5: let a � uα and b � uβ, 0≤ α≠ β≤ n − 1. In this
case, if α � 3p + 2 and β � 3q + 2 or α � 3p + 1 and β �

3q + 1 or α � 3p and β � 3q, 0 ≤p≠ q≤ (n/3) − 1, then
d(a, b) � 4 and |φ(a) − φ(b)| � 0. Otherwise, d(a, b)

≥ 2 and |φ(a) − φ(b)|≥ 2. Hence, in both possibilities,
the condition for radial radio labelling is satisfied.
Case 6: assume that a � wα and b � wβ, 0≤ α≠ β ≤ n

− 1. If α � 2p and β � 2q or α � 2p + 1 and β � 2q + 1,
0≤p≠ q, 0≤p≠ q≤ ⌈n/2⌉ − 1, then d(a, b) � 2. *us,
d(a, b) � 2 and |φ(a) − φ(b)|≥ 2. Otherwise,

d(a, b)≥ 1 and |φ(a) − φ(b)| ≥ 4. *erefore, the con-
dition holds in both of the possibilities.
Case 7: finally, let us assume that a � wn, and b is any
vertex in CS(n, Ւ). If b � v1, then d(a, b) � 3 and
|φ(a) − φ(b)| � 1. Otherwise, the radial radio labelling
condition is obviously true. *us, φ satisfies the con-
dition of radial radio labelling and attains the maxi-
mum value 3Ւ + 2⌈n/2⌉ + 2⌊n /2⌋ − 2 + 5 � 3Ւ + 2n +3
for the vertex w2⌊n/2⌋. *erefore, we get rr(CS (n, Ւ))

≤ 3(Ւ + 1) + 2n.

*e proof for the other two cases, namely, n ≡ 1(mod 3)

and n ≡ 2(mod 3), is left to the reader. □

Theorem 10. For n> 2 and r> 3, the radial radio number of
the wheel-star graph satisfies

rr(SS(n, Ւ))≤

2(Ւ + n) + 6, n ≡ 0(mod 3)

2(Ւ + n) + 8, n ≡ 1(mod 3)

2(Ւ + n) + 9, n ≡ 2(mod 3)

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

We omit the proof, but Figure 3(b) illustrates the case
n ≡ 2(mod 3).

3.2. Radio Number of Sunflower Extended Graphs. *is
section provides the upper bound for the radio number of
S(n, Ւ), SS(n, Ւ), andWS(n, Ւ).

Theorem 11. For n> 3 and n ≡ 0(mod 3), the radio number
of the complete-sun graph satisfies rr(CS(n, Ւ))≤ 18Ւ
+9n − 30.

Proof. We define a 1-1 mapping φ: V(CS (n, Ւ))

⟶ 1, 2 . . .{ } as follows:
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φ v3(Ւ− 1)(j− 1)+i􏼐 􏼑 � 6(i − 1) + j + 4, i � 1, 2, . . . , Ւ − 1, j � 1, 2, . . .
n

3
,

φ v(Ւ− 1)(3j− 2)+i􏼐 􏼑 � 6Ւ +
n

3
+ 6(i − 1) + j − 8, i � 1, 2, . . . , Ւ − 1, j � 1, 2, . . . ,

n

3
,

φ v(Ւ− 1)(3j− 1)+i􏼐 􏼑 � 12Ւ + 2
n

3
+ 6(i − 1) + j − 20, i � 1, 2, . . . , Ւ − 1, j � 1, 2, . . . ,

n

3
,

φ u3i( 􏼁 � 18Ւ + n + 3i − 28, i � 0, 1, . . . ,
n

3
− 1,

φ u3i+1( 􏼁 � 18Ւ + 2n + 3i − 28, i � 0, 1, . . . ,
n

3
− 1,

φ u3i+2( 􏼁 � 18Ւ + 3(n + i) − 28, i � 0, 1, . . . ,
n

3
− 1,

φ w2i( 􏼁 � 18Ւ + 4n + 5i − 25, i � 0, 1, . . . , ⌈
n

2
⌉ − 1,

φ w(2i+1)􏼐 􏼑 � 18Ւ + 4n + 5⌈
n

2
⌉ + 5i − 25, i � 0, 1, . . . ,

n

2
􏼖 􏼗 − 1,

φ wn( 􏼁 � 1.

(4)

See Figure 3(a).
*en, to show φ is a valid radio labelling, we must verify

the inequality

d(a, b) +|φ(a) − φ(b)|≥ 7∀a, b ∈ V(CS(n, Ւ)). (5)

Let a, b ∈ V(CS(n, Ւ)).

Case 1: suppose that a � vα and b � vβ, 1≤ α ≠ β ≤ n

(Ւ − 1).

Case 1.1: if α � 3(Ւ − 1)(s − 1) +p and β � 3
(Ւ − 1)(t − 1) + q or α � (Ւ − 1)(3s − 2) +p and β �

(Ւ − 1)(3s − 2) + p or α � (Ւ − 1) (3s − 1) +p and β �

(Ւ − 1)(3s − 1) + p where p≠ q and s � t, then
d(vα, vβ) � 1 and |φ(vα) − φ(vβ)|≥ |6(p − q)|≥ 6. In
the same subcase, if s≠ t, then d(vα, vβ) � 6 and
|φ(vα) − φ(vβ)|≥ 1. So, d(a, b) + |φ(a) − φ(b)|≥ 7.

Case 1.2: if α � 3(Ւ − 1) (s − 1) + p and β � 3(Ւ −

1)(t − 1) +q,where 1≤p, q≤ Ւ − 1, 1≤ s, t≤ (n/3),
then φ(vα) � 6(p − 1) + s + 4 andφ(vβ) � 6Ւ+ (n/3)

+6(q − 1) + t − 8. In addition, d(vα, vβ)≥ 4.*erefore,
d(a, b) + |φ(a) − φ(b)|≥ 4 + |6(p − 1) + s + 4 − (6Ւ
+(n/3) + 6(q − 1) + t − 8)|≥ 4 + 3 � 7.

Case 1.3: if α � 3(Ւ − 1)(s − 1) + p and β � (Ւ
− 1)(3t − 1) + q ,where 1≤p, q≤ Ւ − 1, 1≤ s, t≤ (n/3),
then |φ(a) − φ(b)| � |6(p − 1) +s +4 − (12Ւ+
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Figure 3: A radial radio labelling of complete-sun graph CS(n, Ւ) for n � 9 and Ւ � 4 and wheel-sun graph WS(8, 5).
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2(n/3) + 6(q − 1) + t − 20)|> 6. Consequently, the
condition is true.
Case 1.4: if α � (Ւ − 1) (3s − 2) +p and β �

(Ւ − 1)(3t − 1) + q,where 1 ≤p, q≤ Ւ − 1, 1≤ s, t≤ ,
then d(vα, vβ)≥ 4 and |φ(vα) − φ(vβ)| � |6Ւ+ (n/3) +

6(p − 1) + s − 8 − (12Ւ+2(n/3) +6(q − 1) + t − 20)|≥3.
It follows that d(a,b) + |φ(a) − φ(b)|≥7.

Case 2: take a � vα and b � vβ, 0≤ α, β≤ n − 1. If α �

3s + p and β � 3t + q, 0≤p � q≤ 2, 0≤ s, t≤ (n/3) − 1,
then d(v3s+p, v3t+p) � 4 and |φ(v3s+p) − φ (v3t+p)|≥ 3.

Otherwise, that is, if p≠ q, thus, d(v3s+p, v3t+q)≥ 2 and
|φ(v3s+p) − φ (v3t+q)|≥ n> 6 since n> 6. *erefore, in
both chances, we get d(a, b) + |φ(a) − φ(b)|≥ 7.
Case 3: assume that a � u2s+p and b � u2t+q,

0≤ s≤ ⌈n/2⌉ − 1, 0≤ t≤ ⌊n/2⌋ − 1, 0≤p, q≤ 1.If p � q,

then |φ(u2s+p) − φ(u2t+q)|≥ 4 and d(v3s+p, v3t+p) � 3;
else, d(v3s+p, v3t+q)≥ 2 and |φ(v3s+p)− φ(v3t+q)|≥
⌈n/2⌉ + ⌊n/2⌋. *erefore, in both of them, the inequality
is satisfied.

Case 4: suppose that a � vα and b � uβ, 0≤ α≤ n(Ւ − 1),
0≤ β≤ n − 1; then, either d(a, b) � 3 and
|φ(a) − φ(b)|≥4 or d(a,b) � 1 and |φ(a) − φ(b)|>6.
*erefore, d(a,b) + |φ(a) − φ(b)|≥7.

Case 5: if we take a � vα, 1≤ α≤ n(Ւ − 1), and b � wβ,
0≤ β≤ n − 1, then from the mapping, |φ(a) − φ(b)|≥
|12Ւ + 2(n/3) + 6(Ւ − 2) +(n/3) − 20 − (18Ւ + 4n− 25)

φ|> n> 6, which verifies the condition trivially.
Case 6: assume that a � uα and b � wβ, 0≤ α, β≤ n − 1.
If α � n − 1 and β � 0, then |φ(uα) − φ(wβ)| � |18Ւ +

3(n + (n/3) − 1) − 28 − (18Ւ + 4n + 5⌈n/2⌉ − 25)| � 6
and d(uα, wβ) � 1. Otherwise, |φ(uα) − φ(wβ)|> 6. So,
d(uα, wβ) + |φ(uα) − φ(wβ)|> 6.

Case 7: let a be the centre vertex of the wheel and b be
any other vertex in the graph. If b � v1, then
|φ(wn) − φ(v1)| � |1 − 5| � 4 and d(a, b) � 3. Other-
wise, the condition is obviously true. *us, φ is a valid
radio labelling, and the vertex wn− 1 is labelled with the
maximum number 18Ւ + 4n + 5⌊n/2⌋ + 5(⌈n

/2⌉ − 1) − 25 � 18Ւ + 9n − 30. Hence, rn(CS(n, Ւ))≤
18Ւ + 9n − 30, n> 4 and n ≡ 0(mod 3). □

Theorem 12. For n> 5 and n ≡ 1(mod 3), the radio number
of the star-sun graph satisfies rr(SS(n, Ւ))≤
20Ւ + 12⌊n/3⌋ + 5n − 4.

Proof. First, we define an injection φ: V(SS(n, Ւ))⟶ N as
follows:

φ v3Ւ(j− 1)+i􏼐 􏼑 � 5(i − 1) + j + 4, i � 1, 2, . . . , Ւ, j � 1, 2, . . . ,
n

3
􏼖 􏼗,

φ vՒ(3j− 2)+i􏼐 􏼑 � 5Ւ +
n

3
􏼖 􏼗 + 5(i − 1) + j − 1, i � 1, 2, . . . Ւ, j � 1, 2, . . . ,

n

3
􏼖 􏼗,

φ v(Ւ− 1)(3j− 1)+i􏼐 􏼑 � 10Ւ + 2
n

3
􏼖 􏼗 + 5(i − 1) + j − 4, i � 1, 2, . . . , Ւ, j � 1, 2, . . . ,

n

3
􏼖 􏼗,

φ vՒ(n− 1)+i􏼐 􏼑 � 15Ւ + 3
n

3
􏼖 􏼗 + 5(i − 1) − 6, i � 1, 2, . . . , Ւ,

φ u3i( 􏼁 � 20Ւ + 3
n

3
􏼖 􏼗 + 3i − 7, i � 0, 1, . . . ,

n

3
􏼖 􏼗,

φ u3i+1( 􏼁 � 20Ւ + 6
n

3
􏼖 􏼗 + 3i − 4, i � 0, 1, . . . ,

n

3
􏼖 􏼗,

φ u3i+2( 􏼁 � 20Ւ + 9
n

3
􏼖 􏼗 + 3i − 1, i � 0, 1, . . . ,

n

3
− 1,

φ w2i( 􏼁 � 20Ւ + 12
n

3
􏼖 􏼗 + 5i + 1, i � 0, 1, . . . , ⌈

n

2
⌉ − 1,

φ w2i+1( 􏼁 � 20Ւ + 12
n

3
􏼖 􏼗 + 5 ⌈

n

2
⌉ + i􏼒 􏼓 + 1, i � 0, 1, . . . ,

n

2
􏼖 􏼗 − 1,

φ wn( 􏼁 � 1.

(6)

We omit the rest of the proof as it is similar to the one for
*eorem 11.

*e other two cases in*eorems 11 and 12 are also left to
the reader. □
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Theorem 13. For n> 5, the radio number of the wheel-sun
graph satisfies

rr(WS(n, Ւ))≤

15Ւ +
n

3
􏼖 􏼗 + 8n − 4, n ≡ 0(mod 3)

19Ւ +
n

3
􏼖 􏼗 + 8n − 4, n ≡ 1(mod 3).

19 +
n

3
􏼖 􏼗 + 8n − 5, n ≡ 2(mod 3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Figure 4 illustrates the case n ≡ 2(mod 3). We omit the
proof of this theorem.

4. Conclusion

In this paper, we have presented the relation between the
radio number and radial radio number. We have also de-
fined and investigated the bounds for the same problems for
the graphs CS(n, Ւ), SS(n, Ւ), andWS(n, Ւ). For the graph
fan-sun graph SS(n, Ւ), the problem is still considered as an
open research problem that needs further investigation.
Since the method of finding the radial radio number and
radio number of the fan-sun graph is similar to the previous
theorem, it is still open to the interested researchers to do a
further research work that can extend our results to identify
more relations between the radio number and radial number
by studying the same problem for interconnection networks.
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