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Te well-knownmatrix-generated tree structure for Pythagorean triplets is extended to the primitive solutions of the Diophantine
equation x2 + dy2 − z2 � 0 where d is a positive square-free integer. Te proof is based on a parametrization of these solutions as
well as on a dual version of the Fermat’s method of descent.

1. Introduction

Let d be a positive square-free integer. In this paper, the
structure of the solutions to the Diophantine equation

x
2

+ dy
2

− z
2

� 0, (1)

is determined (Cf. [1–9]). Since (1) is homogeneous, we may
assume that (x, y, z) is primitive, i.e., gcd(x, y, z) � 1. It is
well-known ([10–14]) that in the classical case d � 1, all such
Pythagorean triplets (or nodes) form an infnite tree that is
generated by the action of three explicit matrices at each
node beginning with the root (3, 4, 5). All nodes descend to
(3, 4, 5), and each node appears exactly once.

For each fxed d> 1, we construct fnite sets of matrices
and fnite sets of roots that generate all solutions to (1). Given
a primitive solution (x, y, z) of equation (1), an algorithm
describes a path (or descent) from (x, y, z) to some element
in the fnite set of roots. Te main diferences in the classical
case are that the descent path may not be unique and that the
action of the matrices may result in a nonprimitive solution.
Tese anomalies may, respectively, be remedied by removing
improper branches and by dividing nodes by their gcds.
Moreover, if d is 2, 6, or any odd square-free integer, the only
root is (1, 0, 1). In addition, for any other square-free d,
nodes may descend to other roots defned as follows in terms
of generating sets.

Te essential idea of a generating set for solutions of (1) is
a variation of Fermat’s method of descent that requires the
following to be true for special related sets of nonsingular
matrices:

Defnition 1. Let d be a positive square-free integer and let
M(d) be a set of nonsingular matrices. A primitive solution
(x, y, z) of (1) satisfes the Fermat’s method of descent with
respect to M(d), if there exists an element g of M(d) with
inverse lnv[g] such that the inner product Inv[g]. (x, y, z) is
a positive integer multiple of a primitive solution (x′, y′, z′)

where one of the following holds:

(a) z − x> z′ − x′

(b) z − x � z′ − x′ and z> z′

(c) d≥ 10 is even and (x, y, z) is a binary root, i.e., z −

x � z′ − x′ and z< z′, and in this case, (x′, y′, z′) is
called the copartner of (x, y, z).

By Lemma 13, it will follow that for any positive square-
free integer d, there exists a set M(d) of nonsingular ma-
trices such that every primitive solution of (1) satisfes the
Fermat’s method with respect to M(d). Given a primitive
solution (x, y, z) of (1), we generate the sequence of descents
as follows: (x0, y0, z0) � (x, y, z), and for n≥ 1, (xn,

yn, zn) � (xn− 1′, yn− 1′, zn− 1′)/gcd [(xn− 1′, yn− 1′, zn− 1′)] and sub-
sequently show that after a fnite number of steps, the result
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is a positive integer times either (1,0, 1) or a primitive binary
root. Moreover, we characterize all binary roots (x, y, z) and
their copartners (x′, y′, z′) in Teorem 12 and prove that in
the sequence of descents, (x′, y′, z′) intertwines (x, y, z)

indefnitely as follows: (x, y, z), (x′, y′, z′), (x, y, z),

(x′, y′, z′), etc.

Defnition 2. A fnite set G of matrices with integer entries is
said to be a generating set for solutions to (1) whenever the
following conditions hold:

(a) if g is in G and w � (x, y, z) is an integer solution to
(1), then g. w also satisfes (1);

(b) if w is a primitive solution to (1), then there exists
a positive integer k and a primitive root r that is
either binary or (1, 0, 1) such that
k × w � f( inite product of matrices fromG).r.

Te origin of the generating sets G � G(d) is Shaw’s
observation which shows that if (x, y, z) satisfes (7), then so
does (x′ � x − ut, y′ � y − vt, z′ � z − wt) where (u, v, w) is
not a solution to (1) and

t �
2(ux + dv y − wz)

u
2

+ dv
2

− w
2

􏼐 􏼑
, (2)

or equivalently, M(u, v, w, d) (x, y, z) satisfes (1) where
u2 + dv2 ≠w2 and

u
2

+ dv
2

− w
2

􏼐 􏼑 × M(u, v, w, d)

�

− uu + dv v − ww − 2du v 2uw

− 2uv uu − dv v − ww 2vw

− 2uw − 2dv w uu + dv v + ww

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(3)

Te sets G(d) result from judicious choices of the triplets
(u, v, w) as follows:

Defnition 3. Let d be a square-free positive integer and let
δ(d) denote 1 if d is even and 2 otherwise. Te kth seminal
matrix S(k, d) is defned by

δ(d) × S(k, d) � (d − 2k + 1)

× M(k − 1, 1, k, d) for k � 1, 2, . . . , μ(d) − 1,

S(μ(d), d) � M(d, 1, d, d),

(4)

where 2μ(d) � d + δ(d + 1). Moreover, let v(d)> 0 and
p(d)> 0 satisfy v(d)2 � δ(d) and p(d)2 � d.

For all k and d, S(k, d) is an integer matrix such that if
(x, y, z) is a primitive solution to (1), then S(k, d). (x, y, z) is
an integer solution to (1).

Multiplication by the matrices e(j)(j � 0, 1, 2, 3), where
e(0) is the identity matrix, e(j) (j � 1, 2) is e(0) with the
(j, j)-entry replaced by − 1, and e(3) is e(0) with both (1, 1)
and (2, 2) entries replaced by − 1, will be used to ensure that
the components of solutions are nonnegative. In particular,
paths from (x, y, z) to a root will be in terms of products of

descentmatrices e(j). S(k, d), whereas paths back to (x, y, z)

will be with products of ascent matrices S(k, d). e(j).
Our main result is

Theorem 4. For any positive square-free integer d, the set

G(d) � S(k, d). e(j): 1≤ k≤ μ(d), 0≤ j≤ 3􏼈 􏼉, (5)

generates all primitive solutions to (1).
Minimal generating subsets of G(d) are G(d)∗ and

G(d)∗∗ defned as follows: if d � 1, then G(d)∗ �

S(μ(d), d).e(j): 1≤ j≤ 3􏼈 􏼉.

If d � 2, 3 or 5, then

G(d)
∗

� S(1, d).e(2){ }∪ S(μ(d), d).e(j): 0≤ j≤ 3􏼈 􏼉. (6)

Finally, for d≥ 6,

q � f loor
(p(d) + 3)

2
􏼢 􏼣,

r � f loor
(p(d)(p(d) − v(d)) − (2q − 1 + v(d)))

2
􏼢 􏼣,

G(d)
∗

� S(q + s, d). e(1), S(q + s, d). e(3): 0≤ s≤ r + 1􏼈 􏼉∪

S(q + r + 1, d). e(2)􏼈 􏼉∪ S(μ(d), d). e (j): 0≤ j≤ 3􏼈 􏼉.

(7)

(a) If 2q − 1 − v (d)<p(d), then G(d)∗ is a generating
set for all primitive solutions.

(b) On the other hand, if p(d)< 2q − 1-v(d), then

G(d)
∗∗

� S(q − 1, d). e(3)􏼈 􏼉∪G(d)
∗
. (8)

is a generating set.

Remark 5. Since x − 1< f loor(x)<x for irrationalx, we
have the following useful bounds:

q + r<
(p(d)(p(d) − v(d)) + 1 − v(d))

2
< q + r + 1. (9)

Example 1. For d � 5, q � 2, r � − 2, root (1, 0, 1), and
generating set

G(d)
∗

� S(1, d).e(2){ }∪ S(μ(d), d).e(j): 0≤ j≤ 3􏼈 􏼉,

(10)

we have

S(1, d). e(2). (1, 0, 1) � (2, 1, 3),

S(3, d). e(0). (1, 0, 1) � (1, 0, 1),

S(3, d). e(1). (1, 0, 1) � (19, 4, 21),

S(3, d). e(3). (1, 0, 1) � (19, 4, 21),

S(3, d).e(2). (1, 0, 1) � (1, 0, 1),

(11)

so the frst level consists of the proper nodes (2, 1, 3) and (19,
4, 21). Continuing as above,
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S(1, d).e(2). (2, 1, 3) � (4, 6, 14),

S(3, d).e(0). (2, 1, 3) � (2, 1, 3),

S(3, d).e(1). (2,1,3) � (38,9, 43),

S(3, d).e(3). (2,1,3) � (58, 11, 63),

S(3, d).e(2). (2, 1, 3) � (22, 3, 23),

S(1, d). e(2). (19, 4, 21) � (38, 33, 83),

S(3, d). e(0). (19, 4, 21) � (− 1, 0, 1),

S(3, d). e(1). (19, 4, 21) � (341, 76, 381),

S(3, d). e(3). (19, 4, 21) � (421, 84, 461),

S(3, d). e(2). (19, 4, 21) � (79, 8, 81).

(12)

Dropping the irrelevant outputs (2,1,3) and (− 1,0, 1),
the frst two levels of the tree of all primitive solutions by the
proof of Teorem 4 are given in Figure 1.

2. Parametric Representation

Our descent method depends on the following generaliza-
tion of the classical representation theorem ([15–17]) for
primitive Pythagorean triplets.

Proposition 6. Let d be an even square-free positive integer.
Te primitive solutions (x, y, z) of (1) are exactly of the form

A(m, n, b, a) ≡ x � nb
2

− ma
2
, y � 2ab, z � nb

2
+ ma

2
􏼐 􏼑,

(13)

for positive integers m, n, a and b such that d � mn,

bn> ap(d) and gcd (bn, am) � 1.

On the other hand, if d is an odd square-free positive
integer, then the primitive solutions (x, y, z) of (1) are given
exactly by the following: When y is even,
(x, y, z) � A(m, n, b, a) as defned above where, in addition,
a and b are of opposite parity; and when y is odd, (x, y, z) �

A(m, n, b, a)/2 where a and b are odd.

Proof. Suppose that (x.y, z) is a primitive solution of (1) so
that the following holds:

If y is even, then d(y/2)2 � [(z − x)/2][(z + x)/2].
Otherwise,

dy
2

� (z − x)(z + x). (14)

Assume frst that d is even.Ten, by (1), x and z have the
same parities, dy2 � (z − x) (z + x) where z− x and z + x are
even, and since d is square-free, y2 and y are even. It follows
that x and z are odd since (x, y, z) is primitive. By (14), each
prime factor (including 2) of d divides either (z − x)/2 or
(z + x)/2, i.e., there exist square − free integersm and n such
that d � mn and (y/2)2 � [(z − x)/(2m)][(z + x)/(2n)].
Moreover, any prime divisor of (z − x)/(2m) and
(z + x)/(2n) must be 1 since it also divides y/2, (z − x)/2
and (z + x)/2 (i.e., x, y and z). Consequently,
(z − x)/(2m) � a2 and (z − x)/(2n) � b2 for positive in-
tegers a and b by the prime factorization theorem (See [4]).

Solving for (x, y, z), we have (x, y, z) � A(m, n, b, a)

where bn> ap(d). Furthermore, gcd (bn, a m) � 1 if
gcd(b2n, a2m) � 1 if gcd((z + x)/2, (z − x)/2) � 1 if
gcd(x, z) � 1. Let p be a prime divisor of x and z. Ten, p2

divides d(y/2)2 by (14) where p may be at most one factor of
d. It follows that p divides y/2 (and y) so that p � 1 since
(x, y, z) is primitive.

Conversely, suppose that (x, y, z) � A(m, n, b, a). Ten,
x2 + dy2 − z2 � (x − z) (x + z) + dy2 � − 2a2m(2b2n) + d

(2ab)2 � 0, and x, y, and z are positive. Finally, as above,
gcd(x, z) � 1 � gcd (bn, a m); and (x, y, z) is primitive since
any prime divisor is a divisor of x and z.

Similar arguments may be made when d is odd and y is
either even or odd. □

Remark 7. For a fxed factorization d � mn≠ 1 of square-
free d and primitive solution (x, y, z) of (1), we have the
following simple criteria for types:

(a) (x, y, z) � A(m, n, b, a) if and only if (z − x)/(2m) is
a square integer.

(b) (x, y, z) � A(m, n, b, a)/2 if and only if (z − x)/(m)

is a square integer.

Tese ensue directly from Proposition 6: For (a) (z −

x)/(2m) � a2 so we show that the condition (z − x)/(2m) is

{38, 9, 43}

{2, 1, 3}

{58, 11, 63}

{22, 3, 23}

{1, 0, 1}

{38, 33, 83}

{19, 4, 21}

{79, 8, 81}

{341, 76, 381}

{421, 84, 461}

{2, 3, 7}

Figure 1: x2 + 5y2 − z2 � 0.
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a square integer holds only in this case. Te other possi-
bilities are

(i) (x, y, z) � A(n, m, b, a) where gcd(bm, an) � 1. But
in this case, (z − x)/(2m) � (na2)/m≠ square in-
teger, since gcd(m, n) � 1 � gcd(m, a).

(ii) (x, y, z) � A(m, n, b, a) where (z − x)/(2m) � a2/2
is not a square integer.

(iii) (x, y, z) � A(n, m, b, a)/2 where gcd(bm, an) � 1.
Again, in this case, (z − x)/(2m) � (na2)/(2m)≠
square integer, since gcd(m, n) � 1 � gcd(m, a).

(b) is similar.

Remark 8. Te proof of Proposition 6 shows the following
concerning the parametric representations of primitive
solutions (x, y, z) of (1) for square-free d:

If y is even, then (x, y, z) � A(m, n, b, a) where m is the
product of the common factors of d and (z − x)/(2); and
n � d/m.

Furthermore, a2 � (z − x)/(2m) and b2 � (z + x)/(2n).
In this case, if d is odd, then a and b are of opposite parity.

On the other hand, if y is odd, then d is odd and
(x, y, z) � A(m, n, b, a)/2 where m is the product of the
common factors of d and z − x; n � d/m. In this case, a and b

are odd such that a2 � (z − x)/m and b2 � (z + x)/n.

Remark 9. Since A(m, n, b, a) � nb2(1, 0, 1) + 2ab(0, 1, 0)+

ma2(− 1, 0, 1), expressions involving S(k, d). A(m, n, b, a)

may be simplifed accordingly: If k< μ(d), then δ(d)

S(k, d).A(m, n, b, a) � nb2A(1, d, 1, 1) − 2ab(2d(k − 1), d+

(2k − 1), 2dk) + ma2A(d, 1, 2k − 1, 1). Otherwise, δ(d) S(μ
(d), d).A(m, n, b, a) � nb2(1, 0, 1) − 2ab(2d, 1, 2d) + ma2A

(1, d, 2, 1).
Te next result will be useful in expressing primitive

solutions in terms of a generating set according to
Defnition 2.

Lemma 10. Te descent and ascent matrices are related by
inverse formulas for all j, k, and d: If k � μ(d), then Inv
[e(j).S(k, d)] � S(k, d).e(j).

Otherwise, k< μ(d) and (d − 2k + 1)2 lnv[e(j).

S(k, d)] � δ(d)2[S(k, d). e(j)].

Proof. Suppose that (x, y, z) is a solution to (1) and
u2 + dv2 ≠w2. By the defnitions of M and t given in
Section 1,

M(u, v, w, d). (x, y, z) � x
′

� x − ut, y
′

� y − vt, z
′

� z − wt􏼒 􏼓,

(15)

is a solution to (1) such that

M(u, v, w, d). x
′
, y
′
, z
′

􏼒 􏼓

� x
″

� x
′
− ut
′
, y
″

� y
′
− vt
′
, z
″

� z
′
− wt
′

􏼒 􏼓,

(16)

where t′ � − t. Consequently, (x″, y″, z″) � (x, y, z) and

M(u, v, w, d)
2
. (x, y, z) � (x, y, z), (17)

for every solution (x, y, z) to (1). In particular, by Propo-
sition 6, this identity holds for (x, y, z) � A(1, d,

d + 2n − 1, 1)(n � 1, 2, 3). Since the determinant of the
matrix with these solutions as rows is − 64d≠ 0, we have that
the solutions are linearly independent and, therefore,
M(u, v, w, d)2 is the identity matrix. Lemma 10 is now
immediate since the vectors (u, v, w) in the defnitions of the
seminal matrices S(k, d) satisfy u2 + dv2 ≠w2. □

3. Theorem 4 When d Is Even

We now show that the only possibility of binary roots
(x, y, z) defned by Defnition 1 is when square-free d �

mn≥ 10 is even and (x, y, z) � A(m, n, b, a) where
bn � a(2k). In this case, the identity

nA(m, n, b, a) � 2a
2
A

d

2
, 2, k, 1􏼠 􏼡, (18)

reduces A(m, n, b, a) to “standard” binary roots of the form
A(d/2, 2, k, 1). Moreover, the copartner A′(m, n, b, a) of
(x, y, z) satisfes

nA
′
(m, n, b, a) � 2a

2
A
′ d

2
, 2,

d

2
− k, 1􏼠 􏼡. (19)

where bn � a(2(d/2 − k)). Note that the multiples n and 2a2

will usually be ignored in the descent process.
Te next result is unexpected in view of the defnitions of

q and r. It will play a key role in determining the constant k.

Lemma 11. Let d≥ 6 be a square-free even integer Te fol-
lowing are equivalent:

(a) d � 4q + 2r − 2
(b) p(d)< 2(q − 1)

(c) r is even.
Similarly, the following are equivalent:

(d) d � 4q + 2r

(e) p(d)> 2(q − 1)

(f ) r is odd

Proof. Let d≥ 6 be even and square-free.

(a)⇒(c). If d � 4q + 2r − 2, then d/2 � (2q − 1) + r so
r is even since d/2 and 2q − 1 are odd.
(d)⇒(f). It is similar to (a)⇒(c).
(b)⇒(a). Assume that ρ(d)< 2(q − 1). Ten, by the
defnitions of q and r,

4q + 2r − 2< d +[p(d) − 2(q − 1)] + 2< d + 2. (20)

Since 4q + 2r − 2 and d + 2 are even integers, we have
that 4q + 2r − 2≤d. Moreover, as in Remark 8,

4q + 2r − 2>[(2(q − 1) − p(d)] + d − 2>d − 2, (21)
so 4q + 2r − 2≥ d and (a) follows.
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(e)⇒(d). Assume that p(d)> 2(q − 1). Ten, in this
case,

4q + 2r − 2< d +[2(q − 1) − ρ(d)]< d. (22)

Since 4q + 2r − 2 and d are even, 4q + 2r − 2≤d.

Similarly, by the assumption,

4q + 2r> d + p(d) − 2q > d − 2. (23)

Since 4q + 2r and d − 2 are even, 4q + 2r≥d and (d)

follows.
(a)⟺(b). It remains to show (a)⇒(b). Assume that
d � 4q + 2r − 2. Ten, either p(d)< 2(q − 1) or
p(d)> 2(q − 1). However, if ρ(d)> 2(q − 1), then by
(e)⇒(d), d � 4q + 2r which is false in this case, so
p(d)< 2(q − 1).
(d)⟺(e). We only need to show (d)⇒(e) which is
similar to (a)⟹(b).
(c)⟺(a). It remains to show (c)⟹(a). Assume r is
even. Either p(d)< 2(q − 1) or p(d)> 2(q − 1). By the
equivalences (a)⟺(b) and (d)⟺(e), either d � 4q +

2r − 2 or d � 4q + 2r. But if d � 4q + 2r, then d/2 �

2q + r so r must be odd (a contradiction) since d/2 is
odd and 2q is even. It follows that d � 4q + 2r − 2 and
(a) results.
(f)⟺(d). It is similar to (c)⟺(a).

By Lemma 11, we have the resulting characterizations of
binary roots and their copartners: □

Theorem 12. Let the square-free integer d≥ 10 be even.
Tere are exactly [r + δ(r + 1)]/2 standard binary roots as
follows: Let k � q + i + 1-δ(r + 1) for some integer i in
[0, r/2]. Ten, d/2 − k> k and we have the following cycle:

(e(3). S(k, d)).A
d

2
, 2, k, 1􏼠 􏼡 � A

d

2
, 2,

d

2
− k, 1􏼠 􏼡,

e(3). S
d

2
− k, d􏼠 􏼡􏼠 􏼡.A

d

2
, 2,

d

2
− k, 1􏼠 􏼡 � A

d

2
, 2, k, 1􏼠 􏼡.

(24)

It follows that A(d/2, 2, k, 1) is a binary root with co-
partner A (d/2, 2, d/2 − k, 1) by Defnition 1.

Moreover, if g(k) � gcd(k, d/2), then

A
d

2
, 2, k, 1􏼠 􏼡 � g(k)A

(d/2)

g(k)
, 2g(k),

k

g(k)
, 1􏼠 􏼡, (25)

where A ((d/2)/g(k), 2g(k), k/g(k), 1) is primitive and
similarly,

A
d

2
, 2,

d

2
− k, 1􏼠 􏼡 � g(k) A

d/2
g(k)

, 2g(k),
((d/2) − k)

g(k)
, 1􏼠 􏼡,

(26)

whereA((d/2)/g(k), 2g(k), ((d/2) − k)/g(k), 1) is primitive.

Proof. Let d≥ 10 be even and square-free. Ten, q≥ 3 and
r≥ 0.

Let us suppose frst that r is even and k � q − 1 + i where
0≤ i≤ r/2. By Lemma 11, d � 4q + 2r − 2 and d/2 − k �

q + r − i> k. By Remark 9, since k≤ q − 1 + r/2<
μ(d) � 2q + r,

(e(3). S(k, d)).A
d

2
􏼠 􏼡, 2, k, 1􏼠 􏼡

� 2k
2 1 − d, − 2, d + 1{ } − 2k 2d(1 − k), 1 − 2k − d, 2dk{ }

+
d

2
􏼠 􏼡 d − (2k − 1)

2
, − 2(2k − 1), d +(2k − 1)

2
􏽮 􏽯.

(27)

Moreover, A (d/2, 2, d/2 − k, 1) � 2(d/2 − k)2−􏽮

d/2, 2(d/2 − k), 2(d/2 − k)2 + d/2}.

By expanding and comparing each component, we have
the proposed equation.

By Proposition 6, A(d/2, 2, k, 1) is a solution to (1) since
d � 2(d/2) is even and 2k>p(d): r is even, so by the def-
inition of k and part (b) of Lemma 11,
2k � 2(q − 1 + i)≥ 2(q − 1)>p(d). Furthermore, A (d/2, 2,

d/2-k, 1) is also a solution since d � 2(d/2) is even and
2(d/2 − k)> ρ(d): 2(d/2 − k) � 2(q + r − i)> 2k> ρ(d) by
the frst case.

By the proof of Proposition 6, A(d/2, 2, k, 1) is primitive
if and only if gcd(2k, d/2) � 1 (or equivalently:
gcd(k, d/2) � 1, since d is square-free).

Te proof of the equation when r is odd is the same as in
(a) except for diferent values of the variables.

Moreover, A(d/2, 2, k, 1) is a solution to (1) since d �

2(d/2) is even and 2k>p(d): by the defnitions of k and q,
we have 2k � 2(q + i)≥ 2q>p(d) + 1>p(d). Additionally,
A (d/2, 2, d/2 − k, 1) is also a solution by the frst case as in
part (a).

For the corresponding relations, we simply replace k by
d/2 − k in the algebraic part of the previous proof.

Finally, by the proof of Proposition 6, A (d/2, 2, d/2 − k,

1) is primitive if and only if

gcd 2
d

2
− k􏼠 􏼡,

d

2
􏼠 􏼡

� 1 or equivalently, as above: gcd
d

2
− k,

d

2
􏼠 􏼡 � 1􏼠 􏼡.

(28)

Factoring g(k) � gcd(k, d/2) out of A(d/2, 2, k, 1) and A

(d/2, 2, d/2 − k, 1) are straightforward computations. Te
frst result is primitive since d/2 is square-free and
gcd(k, (d/2)/g(k)) � 1. Te second is similar since g(k) is
also gcd(d/2 − k, d/2)

For example, if d � 30, then q � 4 and r � 8. Let us
suppose that k � q − 1. Ten,
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g(k) � gcd k,
d

2
􏼠 􏼡

� gcd
d

2
− k,

d

2
􏼠 􏼡

� 3,

A
d

2
, 2, k, 1􏼠 􏼡 � 3 ×(1, 2, 11)

� g(k)A
(d/2)

g(k)
, 2g(k),

k

g(k)
, 1􏼠 􏼡

� 3A(5, 6, 1, 1)and,

A
d

2
, 2,

d

2
− k, 1􏼠 􏼡 � 3 ×(91, 8, 101)

� g(k)A
(d/2)

g(k)
, 2g(k),

(d/2 − k)

g(k)
, 1􏼠 􏼡

� 3A(5, 6, 4, 1).

(29)

By (18) and (31), Teorem 12 holds for the more general
formsA(m, n, 2k/n, 1) and A(m, n, 2(d/2 − k)/n, 1) of binary
roots and their copartners whenever d � mn is even.

In this case, they are primitive if and only if gcd(2k, m) �

1 � gcd(2(d/2 − k), m) and if and only if m is odd and
gcd(k, m) � 1 � gcd(d/2 − k, m). □

4. A General Interval Decomposition

Let us consider the following sets of inverses for the set
M(d) from Defnition 1:

M(d) � Inv[e(j).S(k, d)]: j and k as inG(d)􏼈 􏼉,

M(d)
∗

� lnv[e(j) . S(k, d)]: j and k as inG(d)
∗

􏼈 􏼉,

M(d)
∗∗

� Inv[e(j).S(k, d)]: j and k as inG(d)
∗∗

􏼈 􏼉.

(30)

By Lemma 10, these sets contain noninteger matrices,
but in some sense G(d), G(d)∗ and G(d)∗∗ fromTeorem 4
will, respectively, be their generator completions.

Let (x, y, z) be a primitive solution of (1). By Proposition
6, there is a unique factorization d � mn such that (x, y, z) is
either A(m, n, b, a) or A(m, n, b, a)/2 for certain positive
integers a and b with bn> aρ(d) and gcd (bn, a m) � 1. Te
interval (a p(d), ∞) will now be expressed as a union of
subintervals with the property that if bn is in the kth sub-
interval, then there is an element gjk of M(d)∗ or M(d)∗∗

such that Inv[gjk]. (x, y, z) is a positive integer multiple of
a primitive solution (x′, y′, z′) as in Defnition 1. Te fol-
lowing elementary result plays an essential role in identifying
the “generator” gjk. It is expressed in an equivalent form
without the parameters m, n, a and b, and consequently, may

be used to determine j and k when dealing with large values
of d that are not feasible to factoring.

By Proposition 6, for primitive solution (x, y, z) of (1),
(x + z)/y � (b × n)/a, and by the proof, gcd (bn, a m) � 1 is
equivalent to gcd(x, z) � 1. (Actually, gcd(x, z) � 1 fol-
lows directly from (x, y, z) being a primitive solution
of (1)).

Lemma 13. Let (x, y, z) be a primitive solution of (l) for
some positive square-free integer d. Suppose that integer k

satisfes 1≤ k< μ(d) so that

p(d)
(2k − p(d) − 1)

(p(d) − 1)
􏼢 􏼣< 2k − 1<p(d)

(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣< d.

(31)

Ten, p(d)< (x + z)/y≤ d and z − x> zjk − xjkwhere

Inv gjk􏽨 􏽩. (x, y, z) � (e(j). S(k, d)). (x, y, z) � xjk, yjk, zjk􏼐 􏼑,

(32)

when (x + z)/y is in any of the intervals in (a) − (c) except
for a specifed case of (b)(i):

(a) For j � 1 and d≥ 6,

(2k − 1 − v(d), 2k − 1]where q≤ k≤ q + r + 1. (33)

Moreover, if (x + z)/y � 2k − 1, then z1k − x1k � 0.

(b) For j � 3 and d≥ 6, either

(i) (2k − 1, 2k − 1 + v(d)] where q≤ k≤ q + r, and
where k � q − 1 whenever p(d)< 2q − 1-v(d).
or

(ii) (2k − 1, p(d)[(2k + ρ(d) − 1)/(p(d) + 1)])
where k> q + r.

However, if d≥ 10 is even and (x + z)/y � 2k< d/2
in (b)(i), then (x, y, z) is a binary root. Tis is the
only possibility for part (c) of Defnition 1.

(c) For j � 2, either

(i) p(d)< (x + z)/y<d where k � 1 and 2≤ d≤ 5.

or
(ii) p(d)[(2k + p(d) − 1)/(p(d) + 1)]< (x + z)/y
≤d, where d≥ 6 and

q + r< k<
[((p(d) + 1)/p(d))((x + z)/y) + 1 − p(d)]

2
.

(34)

In this case, faster convergence may be obtained
with the largest possible k.

Moreover, if (x + z)/y � d, then z2k − x2k � 0.

Note that the case d � 1 is a consequence of
parts (e), (f ), and (g).
On the other hand, let k � μ(d) and
(x + z)/y>d. Ten, (xjk, yjk, zjk) satisfes
Defnition 1 if
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(d) (j � 0)

d<
(x + z)

y
<p(d)(2ρ(d) − 1). (35)

In this case, z − x � z0k − x0k and z> z0k.

(e) (j � 1)

p(d)(2p(d) − 1)<
(x + z)

y
≤ 2d. (36)

In this case, z − x> z1k − x1k and z> z1k.

Moreover, if (x + z)/y � 2d, then z1k − x1k � 0.

(f ) (j � 3)

2d<
(x + z)

y
<p(d)(2p(d) + 1). (37)

In this case, z − x> z3k − x3k and z> z3k.

(g) (j � 2)

(x + z)

y
>p(d)(2p(d) + 1). (38)

In this case, z − x � z2k − x2k and z> z2k.

Proof. Let 1≤ k< μ(d) so that (31) is straightforward. Re-
mark 9 may be helpful with the following computations since:

(e(j). S(k, d)).A(m, n, b, a) � e(j) . (S(k, d).A(m, n, b, a)). (39)

(a) Let j � 1, and for (x1k, y1k, z1k): x1k > 0⟺z1k+

x1k > z1k − x1k⟺n (a m − b)2 − m(b n − a (2k −

1))2 > 0⟺

n(m − b/a) − p(d)[(bn)/a − 2k + 1]􏼈 􏼉

× p(d)(d − (bn)/a) + d[(bn)/a − (2k − 1)]􏼈 􏼉

> 0⟺ − (bn)/a +[d + p(d)(2k − 1)]/[1 + p(d)]􏼈 􏼉

× − (bn)/a + d[p(d) − 2k + 1]/[p(d)(1 − p(d))]􏼈 􏼉 < 0⟺p(d)
(2k − p(d) − 1)

(p(d) − 1)
􏼢 􏼣<

(x + z)

y
<p(d)

(2k + p(d) − 1))

(p(d) + 1)
􏼢 􏼣.

(40)

Similarly,

y1k > 0⟺z1k + y1k > z1k − yik

⟺ (b n − a (2k − 1)) (b n − a d) > 0

⟺
(x + z)

y
< 2k − 1 or

(x + z)

y
>d.

(41)

Moreover, 2z1k � n(d + 1)b2 − (4akd)b + a2m (d +

(2k − 1)2) � 0 is a quadratic equation in b with
discriminant -4a2d(d − 2k + 1)2 < 0. Evaluating 2z1k

at b � 4akd, we fnd that 2z1k � 16a2k2d2

(n(d + 1) − 1)+ a2m × (d + (2k − 1)2)> 0, so z1k is
always positive.
It follows that the components are all positive if and
only if

p(d)
(2k − p(d) − 1)

(p(d) − 1)
􏼢 􏼣<

(x + z)

y
< 2k − 1. (42)

Next,

n (z − x) − z1k − x1k( 􏼁􏼂 􏼃

� n 2a
2
m − δ(d + 1)m(a (2k − 1) − bn)

2
􏽨 􏽩

� − δ(d + 1)d[b n − a (2k − 1 − v(d))]

×[b n − a (2k − 1 + v(d))],

(43)

and z − x >z1k − x1k if and only if 2 k − 1 − v

(d)< (x + z)/y< 2k − 1 + v(d).
Note that it is straightforward to show p(d)[(2k −

p(d) − 1)/(p(d) − 1)]< 2k − 1 − v(d)<⇒k< [p (d)

(p(d)− v(d)) + 1 + v(d)]/2 By hypothesis, assume
that 2k − 1 − v(d)< (x + z)/y≤ 2k − 1 where q≤
k≤ q + r + 1.

By the previous part, the components of
(x1k, y1k, z1k) are positive and z-x >z1k − x1k.

Since k≤ q + r + 1, it follows by Remark 5 that

k≤ (q + r) + v(d)<
[p(d)(p(d) − v(d)) + 1 + v(d)]

2
. (44)

Terefore, by the second equivalence given above, we
have that
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p(d)
(2k − p(d) − 1)

(p(d) − 1)
􏼢 􏼣< 2k − 1 − v(d)

<
(x + z)

y
< 2k − 1< 2k − 1

+ v(d), and thus z − x > z1k − x1k.

(45)

Note that since p(d)< (x + z)/y< 2k − 1, it follows
that

k>
(p(d) + 1)

2
�

(p(d) + 3)

2
− 1> f loor

(p(d) + 3)

2
􏼢 􏼣 − 1.

(46)

So, the hypothesis that k≥ q is necessary.
Finally, if (x + z)/y � 2k − 1, then a(z1k − x1k) �

m((x + z)/y − (2k − 1))2 � 0.

(b) Let j � 3.

x3k > 0<⇒p(d)
(2k − p(d) − 1)

(p(d) − 1)
􏼢 􏼣<

(x + z)

y

<p(d)
(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣as with x1k > 0.

(47)

As in (a)

y3k > 0⇔z3k + y3k

> z3k − y3k

⇔ (b n − a (2k − 1)) (b n − a d) < 0

⇔2k − 1<
(x + z)

y
< d.

(48)

Te proof of z3k > 0 is identical to that of z1k > 0.

Subsequently, by (31), all components are positive if
and only if

2k − 1<
(x + z)

y
<p(d)

(2k + ρ(d) − 1)

(ρ(d) + 1)
􏼢 􏼣. (49)

Next, z − x >z3k − x3k is equivalent to

2k − 1 − v (d)<
(x + z)

y
< 2k − 1 + v(d), (50)

as in (a).

Special Case. Moreover, z − x � z3k − x3k if and only if
(x + z)/y � 2k − 1 ± v(d). If d≥ 10 is even and
2k − 1< (x + z)/y � 2k<d/2, then (x, y, z) is a binary root
by a shortened version of the proof of Teorem 12.

By a direct calculation,

2k − 1 + v(d)<p(d)
(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣⇔k

<
[p(d)(p(d) − v(d)) + 1 − v(d)]

2
.

(51)

Since

2k − 1 − v(d)< 2k − 1<p(d)
(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣,

(52)

by (31), we have the previous intervals on (x + z)/y for
positivity and the inequality z-x >z3k − x3k, it follows
that part (a) of Defnition 1 holds for (x3k, y3k, z3k) if
and only if
b(i) 2k − 1< (x + z)/y< 2k − 1 + v(d) when k< [p(d)

(p(d) − v(d)) + 1 − v(d)]/2
and
b(ii) 2k − 1< (x + z)/y<p(d)[(2k + p(d) − 1)/
(p(d) + 1)] otherwise.
Let d≥ 6 and assume that k< [p(d)

(p(d) − v(d)) + 1 − v(d)]/2. By Remark 5, k≤ q + r.
Ten, 2k − 1< (x + z)/y< 2k − 1 + v(d) holds where
(x + z)/y>p(d) by (31), so 2k>p(d) − v(d) + 1. In
particular, 2q>p(d) + 1>p(d) − v(d) + 1 and thus
q≤ k≤ q + r. Moreover, if p(d)< 2q − 1-v(d), then k �

q − 1 is also possible since 2q − 1 − v

(d)≤ 2q − 3 + v(d) and it follows that p(d)< 2q − 3 +

v(d) or 2(q − 1)>p(d) − v(d) + 1.

On the other hand, if k> [p(d)(p(d)−

v(d)) + 1 − v(d)]/2, then by Remark 5, k> q + r for
interval (ii) as follows: 2k − 1< (x + z)/y<p(d)[(2k +

p(d) − 1)/(p(d)+ 1)].
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(c) Let j � 2. Ten, as in (a),

x2k > 0⇔z2k + x2k > z2k − x2k

⇔
(x + z)

y
<[p(d)(2k − p(d) − 1)/(p(d) − 1)]or

(x + z)

y
>p(d)

(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣.

y2k > 0<⇒2k − 1<
(x + z)

y
<d,

(53)

as with y3k > 0.

z2k > 0 is identical to that of z1k > 0.

It follows that all components are positive if and only if

p(d)
(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣<

(x + z)

y
< d. (54)

Next,

n (z − x) − z2k − x2k( 􏼁􏼂 􏼃 � n 2a
2
m − δ(d + 1) (a m − b)

2
n􏽨 􏽩

� − δ(d + 1)[b n − a p(d)(p(d) − v(d))][b n − a p(d)(p(d) + v(d))].
(55)

Consequently, z − x >z2k − x2k if and only if

p(d)(p(d) − v(d))<
(x + z)

y
<p(d)(p(d) + v(d)).

(56)

It is easy to check that

p(d)
(2k + p(d) − 1)

(p(d) + 1)
􏼢 􏼣<p(d)(p(d) − v(d)), (57)

if and only if k< [p(d)(ρ(d) − v(d)) + 1 − v(d)]/2.

Terefore, by (31) and the previous results,

(x2k, y2k, z2k) fulflls part (a) of Defnition 1 if and only
if

p(d)(p(d) − v(d))<
(x + z)

y
<dwhen k

<
[p(d)(p(d) − v(d)) + 1 − v(d)]

2
,

p(d)
(2k + p(d) − 1)

(ρ(d) + 1)
􏼢 􏼣<

(x + z)

y
<d otherwise.

(58)

c(i) Note that for d≠ 1,

2<p(d)(p(d) − v(d)) + 1 − v(d) � d + 1 − v(d)(p(d) + 1)

⇔v(d)(p(d) + 1)<(p(d) − 1)(p(d) + 1)⇔p(d)> 1 + v(d)⇔d≥ 6.
(59)

It follows that if 2≤ d≤ 5, then the second possibility
given above holds with k � 1 and

p(d)<
(x + z)

y
< d. (60)

c(ii) Let d≥ 6. By Remark 5 as in the proof of (b), the
condition

k<
[p(d)(p(d) − v(d)) + 1 − v(d)]

2
, (61)

is equivalent to 1≤ k≤ q + r. Terefore, the second
possibility given above holds whenever k> q + r. How-
ever, in this case, k can always bemaximized at this step to
ensure faster convergence since 2k + p(d) − 1< [(p(d)

+ 1)/p(d)] × (x + z)/y so we can choose k � Floor of
[[(p(d) + 1)/p(d)] × [(x + z)/y] + 1 − p(d)]/2.
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Finally, if (x + z)/y � d, then n(z2k − x2k) � (b n −

a d)2 � 0.

On the other hand, suppose that k � μ(d) and (x +

z)/y> d where d � mn is square-free.
(d)(j � 0)

x0k > 0⇔n z0k + x0k( 􏼁 − n z0k − x0k( 􏼁> 0

<⇒ (b n − 2a d)
2

− (a p(d))
2 > 0

⇔((x + z)/y − p(d)(2p(d) − 1))((x + z)/y − p(d)(2p(d) + 1))> 0.

⇔Either
(x + z)

y
<p(d)(2p(d) − 1)or

(x + z)

y
>p(d)(2p(d) + 1).

(62)

Similarly,

y0k > 0⇔bn< 2ad

<⇒
(x + z)

y
< 2d.

(63)

Finally, z0k � nb2 − (4amn)b + a2m(4mn + 1) � 0 is
a quadratic equation in b with negative discriminant
− 4a2d. Since z0k > 0 when b2 � 4a2md, we have that z0k

is always positive.

It follows that the components are positive if and only if
(x + z)/y<p(d)(2p(d) − 1).
Next, z − x � 2a2m � z0k − x0k.

Moreover, n (z − z0k) � 4ad (bn − ad)
� 4a2d((x + z)/y − d), and z> z0k since by assumption
(x + z)/y>d, so (d) follows.
(e) (j � 1)

x1k > 0<⇒(b n − a p(d)(2p(d) − 1) (b n − a p(d)(2p(d) + 1)) < 0

⇔p(d)(2p(d) − 1)<
(x + z)

y
<p(d)(2p(d) + 1),

(64)

as in (d).
Similarly, y1k > 0⇔(x + z)/y< 2d, and z1k is always
positive.
Moreover,

z − x > z1k − x1k⇔p(d)(2p(d) − 1)<
(x + z)

y

<p(d)(2p(d) + 1).

(65)

We conclude that (x1k, y1k, z1k) has positive compo-
nents such that z − x >z1k − x1k if and only if
p(d)(2p(d) − 1)< (x + z)/y≤ 2d.

In this case, n(z − z1k) � 4a2d((x + z)/y − d)> 0 since
x1k > 0 and thus,

(x + z)

y
> 2d − p(d) � d + p(d)(p(d) − 1)≥d. (66)

Finally, if (x + z)/y � 2d, then n(z1k − x1k) � 2a2

[(x + z)/y − 2d]2 � 0.

(f)(j � 3)

As in (e),

x3k > 0<⇒p(d)(2p(d) − 1)<
(x + z)

y
<p(d)(2p(d) + 1).

(67)

As in (d),

y3k > 0⇔
(x + z)

y
> 2d (68)

and z3k is always positive.
Next, as in (e), z− x >z3k − x3k⇔p(d)

(2p(d) − 1)< (x + z)/y< p(d)(2p(d) + 1).
We have that (x3k, y3k, z3k) has positive components
that satisfy
z − x >z3k − x3k if and only if 2d< (x + z)/
y<p(d)(2p(d) + 1) .
In this case, n2 (z − z3k) � 4a2d((x + z)/y − d)> 0
since (x + z)/y> 2d>d.

(g)(j � 2)

As in (d),
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x2k > 0⇔
(x + z)

y
− 2d􏼠 􏼡

2

− d > 0

<⇒Either
(x + z)

y
<p(d)(2ρ(d) − 1) or

(x + z)

y
> ρ(d)(2ρ(d) + 1).

(69)

As in (f ),

y2k > 0⇔
(x + z)

y
> 2d, (70)

and z2k is always positive.
Ergo, (x2k, y2k, z2k) has positive components if and
only if (x + z)/y>p(d)(2p(d) + 1). Next,

n(z − x) � 2a
2
d � n z2k − x2k( 􏼁 and z − x � z2k − x2k.

(71)

In this case, z> z2k:

n z − z2k( 􏼁 � 4a
2
d

(x + z)

y
− d􏼠 􏼡> 0 sincey2k

> 0 so
(x + z)

y
> 2d> d.

(72)

□

Remark 15. Let (x, y, z) beA(m, n, b, a) orA(m, n, b, a)/2 as
in Proposition 6. In view of (a) − (c) of Defnition 1, we
proved by Lemma 13 that Inv[g]. (x, y, z) � i′(x′, y′, z′) for
some g in M(d)∗ or M(d)∗∗, positive integer i′, and
primitive solution (x′, y′, z′) such that one of the following
holds:

(a′) z − x> i′(z′ − x′)

(b′) z − x � i′(z′ − x′) and z> i′z′

(c′) z − x � i′(z′ − x′) and z< i′z′.

However, if i′ > 1, then (a′) − (c′) all reduce to (a), and if
i′ � 1, then (a′) − (c′) imply (a) − (c), respectively. In both
cases, (x, y, z) satisfes Defnition 1.

Lemma 13 provides an algorithm for determining ma-
trices e(j). S(k, d) for the descent of any primitive solution
(x, y, z) of (1). Rephrasing parts (a) − (c) of Lemma 13, we
have the following simplifcations:

Corollary 16. Suppose frst that integer k satisfes
1≤ k< μ(d) so that (31) holds and p(d)< (x + z)/y≤ d.

(a) (j � 1 and d≥ 6)

For any positive square-free integer d, let
k ≡ (Ceiling[(x + z)/y] + 1)/2.

Moreover, if d is odd, then a second possible choice for
k is ((x + z)/y + 2)/2. If either choice of k is an in-
teger such that q≤ k≤ q + r + 1, then we have the
descent matrix e(1). S(k, d). Note that in this case, if
(x + z)/y � 2k − 1, then z1k − x1k � 0 (and STOP).

If both choices of k fail, then we proceed to (b).
(b) (j � 3 andd≥ 6)

Either (i) or (ii):

(i) For any positive square-free integer d, let
k ≡ Ceiling[(x + z)/y]/2.

If k is an integer such that q≤ k≤ q + r, then we
have e(3). S(k, d).
Moreover, if k � q − 1 and p(d)< 2q − 1-v(d),
then e(3). S(q − 1, d) is also a descent matrix.
If (i) fails, then we go to (ii).
Note that if d≥ 10 is even and (i) succeeds where
(x + z)/y � 2k< d/2, then there exists a positive
integer multiple of (x, y, z) that is a binary root.

(ii) Let k ≡ Ceiling[((p(d) + 1)/p(d))× ((x + z)/
y) + 1 − p(d)]/2. Ten, (x + z)/y<p(d)[(2k+

p(d) − 1)/(p(d) + 1)].

Terefore, if 2k − 1< (x + z)/y and k> q + r,
then we have e(3). S(k, d).
Otherwise, (ii) fails so proceed to (c).

(c)(j � 2)

Either

(i) k � 1 when 2≤ d≤ 5 and p(d)< (x + z)/y< d.

or
(ii) Let k ≡ Floor [((p(d) + 1)/p(d)) × ((x + z)/

y)+ 1 − p(d)]/2. Ten, p(d)[(2k + p(d)−

1)/(p(d)+ 1)]< ((x + z)/y)≤ d.

Tus, if k> q + r, then we have the descent matrix
e(2). S(k, d).
In this case, if (x + z)/y � d, then z1k − x1k � 0
(and STOP)
Note that the case d � 1 is a consequence of parts
(e), (f), and (g) below.
Let’s suppose fnally that k � μ(d) and
(x + z)/y>d.

(d) (j � 0)

d<
(x + z)

y
<p(d)(2ρ(d) − 1). (73)

In this case, z − x � z0k − x0k and z> z0k.

(e) (j � 1)

p(d)(2p(d) − 1)<
(x + z)

y
< 2d. (74)

In this case, z − x >z1k − x1k and z> z1k.

Moreover, if (x + z)/y � 2d, then z1k − x1k � 0.

(f ) (j � 3)
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2d<
(x + z)

y
< ρ(d)(2p(d) + 1). (75)

In this case, z − x >z3k − x3k and z> z3k.

(g )(j � 2)

(x + z)

y
>p(d)(2p(d) + 1). (76)

In this case, z − x � z2k − x2k and z> z2k.

Example 2. Let d � 3 × 5 × 7 × 11 × 13 × 17 and (x, y, z) �

A(385, 663, 34, 19) � (627443,1292,905413) Ten, q � 254,

r � 127016, and p(d)< 2q − 1-v(d). By Theorem 1, G(d)∗∗

is a generating set for all primitive solutions, and by Cor-
ollary 16, we have the following descent:

Since (x + z)/y≤d, we start with (a) k � 594 that checks
out, but (x + z)/y≠ 2k − 1. Our frst descent matrix is

e(1). S(q + 340, d). (x, y, z) � (17573773279, 80091, 17573819864)

�
A(385, 663, 7281, 11)

2

� x
′
, y
′
, z
′

􏼒 􏼓.Note that z − x

� 277970> z
′
− x
′

� 46585.

(77)

Replacing (x, y, z) with (x′, y′, z′), we return to (a)
where now (x + z)/y> d. Tus, with
k � (d + 1)/2 � q + r + 358, we check (d) − (g) and fnd
that (d) holds. Our next descent is

e(0). S(q + r + 358, d). (x, y, z) � (468625219, 13079, 468671804)

�
A(385,663,1189,11)

2

� x
′
, y
′
, z
′

􏼒 􏼓.Then z − x

� 46585 � z
′
− x
′
.

(78)

Replacing (x, y, z) with (x′, y′, z′), since (x + z)/y<d,
we are back to

(a) k � 35833 � q + 35579 that checks out, but
(x + z)/y≠ 2k − 1. Our next descent matrix is

e(1). S(q + 35579, d).(x, y, z) � (1537 841567,12184,1537853 887)

� A(385,663,1523,4) � x
′
, y
′
, z
′

􏼒 􏼓.Note that z − x � 46585> z
′
− x
′

� 12320.
(79)

Replacing (x, y, z) with (x′, y′, z′), since
(x + z)/y< d, we return to

(a) Both possibilities for k fail, so we go to
(b) (i) Here, k � 126219 � q + 125965 so the next

descent matrix is e(3). S(q + 125965, d). (x, y,

z) � (95611, 17, 95996) � A(385, 663, 17, 1)/ 2 �

(x′, y′, z′), and z-x � 12320> z′ − x′ � 385.

Replacing (x, y, z) with (x′, y′, z′), since
(x + z)/y < d, we are back to

(a) k � 5636 � q + 5382 checks out, and (x + z)/y � 2k −

1 so we are done with z1k − x1k � 0. Our fnal descent
matrix is

e(1).S(q + 5382, d) . (x, y, z) � (22446528, 0, 22446528).

(80)

Summary of Corollary 16 is as follows:

(e(1).S(q + 5382, d)). (e(3). S(q + 125965, d)). (e(1).S(q + 35579, d)).

(e(0).S(q + r + 358, d)). (e(1).S(q + 340, d)).A(385, 663, 34, 19) � 22446528(1, 0, 1) .
(81)

By Lemma 10, according to Defnition 2 of a generating
set, we have the following ascent:

12 International Journal of Mathematics and Mathematical Sciences



((S(q + 340, d).e(1)). (S(q + r + 358, d).e(0)). (S(q + 35579, d).e(1)). (S(q + 125965, d).e(3)).((S(q + 5382, d).e(1))).

(1, 0, 1) � 22 × 52 × 112 × 192 × 14092 × 16692 × 33432 ×(3 × 13 × 17)A(385, 663, 34, 19).

(82)

Example 3. Let d � 7 × 11 × 19 × 31 × 47 and
(x, y, z) � A(7 × 19 × 47, 11 × 31, 197, 16) � (11633613,
6304, 14834125). Ten, q � 731, r � 1064031 and
p(d)> 2q − 1-v(d).

ByTeorem 4, G(d)∗∗ is a generating set for all primitive
solutions, and by Corollary 16, we have the following
descent:

Summary is as follows:

(e(1). S(q + 515373, d)). (e(1). S(q + 548962, d)). (e(2). S(q + r + 1034, d)).

(e(3). S(q + 298984, d)). (e(2). S(q + r + 1034, d)). (e(1). S(2100, d)). (x, y, z) � 886103504(1,0, 1).
(83)

By Lemma 10 and the defnition of a generating set, we
have the following ascent:

((S(2100, d). e(1)). (S(q + r + 1034, d). e(2)). (S(q + 298984, d). e(3)).

(S(q + r + 1034, d). e(2)). (S(q + 548962, d). e(1)). (S(q + 515373, d). e(1)). (1,0, 1)

� 28 × 72 × 172 × 192 × 2832 × 27072 × 34992 × 43372 ×(11 × 31)(x, y, z).

(84)

Example 4. Let d � 2 × 3 × 5 × 11 × 17 × 19 and (x, y, z) �

A(190, 561,1329,7) � (990851891, 18606, 990870511). Ten,
q � 164, r � 52967, and p(d)< 2(q − 1).

ByTeorem 4, G(d)∗∗ is a generating set for all primitive
solutions; and by Corollary 16, for even d, we have the
following descent to primitive binary root
(x′, y′, z′) � A(187, 570, 2, 1) .

Summary is as follows:

(e(2). S(q + r + 124, d)). (x, y, z) � 3 x
′
, y
′
, z
′

􏼒 􏼓. (85)

By Lemma 10 and the defnition of a generating set, we
have the expansion

(S(q + r + 124, d). e(2)). x
′
, y
′
, z
′

􏼒 􏼓 � 37(x, y, z).􏼒 (86)

Example 5. Let d � 2 × 13 × 23 × 29 × 37 and
(x, y, z) � A(2 × 37, 13 × 23 × 29, 31, 17) �(8311445, 1054,
8354217). Ten q � 402, r � 320024 and p(d)< 2q − 1-v(d).

ByTeorem 4, G(d)∗∗ is a generating set for all primitive
solutions, and by Corollary 16, we have the following descent
to (1,0, 1) for even d.

Summary is as follows:

(e(1). S(q + 133999, d)). (e(0). S(q + r + 402, d)). (e(1). S(q + 66799, d)). (e(3). S(q + 275625, d)).

(e(1). S(q + 261277, d)). (e(0). S(q + r + 402, d)). (e(3). S(q + 7504, d)) . (x, y, z) � 16032679(1, 0, 1) .
(87)

By Lemma 10, according to the defnition of a generating
set, we have the expansion

((S(q + 7504, d). e(3)). (S(q + r + 402, d). e(0)). (S(q + 261277, d). e(1)). (S(q + 275625, d).

e(3)). (S(q + 66799, d). e(1)). (S(q + r + 402, d). e(0)). (S(q + 133999, d). e(1)). (1, 0, 1)

� 32 × 312 × 1072 × 58492 × 163632 × 298672 × 1182972 ×(13 × 23 × 29)(x, y, z).

(88)
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5. Proof of Theorem 4

We frst show by Lemma 13 that any primitive solution
(x, y, z) of (1) satisfes the Fermat’s method of descent with
respect to M(d)∗ (when 2q-1-v (d)<p(d)) and with respect
to M(d)∗∗ (when p(d)< 2q − 1-v(d)). Te interval
(ap(d),∞) will now be expressed as a union of subintervals
with the property that if bn is in the kth subinterval, then there
is an element gjk of M(d)∗ or M(d)∗∗ such that Inv[gjk].

(x, y, z) is a positive integer multiple of a primitive solution
(x′, y′, z′) as in Defnition 1. Since (x + z)/y � (bn)/a, the
subintervals follow directly from those derived in Lemma 13.

Let d � 1. Since

(ap(d),∞) � [ap(d), 2ad]∪ [2ad, 3ad]∪ (3ad,∞), (89)

the following descent matrices of Lemma 13 satisfy Def-
nition 1

(e) e(1).S(μ(d), d) when bn is in (ap(d), 2ad]

(f ) e(3).S(μ(d), d) when bn is in (2ad, 3ad]

(g) e(2).S(μ(d), d) when bn is in (3ad,∞).
Let d � 2, 3 or 5. Since

(ap(d),∞) � (ap(d), ad]∪ (ad, ap(d)(2p(d) − 1)]∪ .

(90)

(ap(d)(2p(d) − 1), 2ad]∪ [(2ad, ap(d)(2p(d) + 1)]

∪ (ap(d)(2p(d) + 1),∞), the following descent
matrices of Lemma 13 satisfy Defnition 1:
(c) (i) e(2). S(1, d) when bn is in (ap(d), ad]

(d) e(0). S(μ(d), d) when bn is in (ad, aρ
(d)(2p(d) − 1)]

(e) e(1). S(μ(d), d) when bn is in (ap(d)

(2p(d) − 1), 2ad]

(f ) e(3). S(μ(d), d) when bn is in (2ad, ap(d)(2p

(d) + 1)]

(g) e(2). S(μ(d), d) when bn is in
(ap(d)(2ρ(d) + 1),∞).

Let d≥ 6 and defne for s � 0, 1, . . . , r:
Int (q + s) ≡ (a(2(q + s) − 1), a(2(q + s) − 1 + v(d))] and
Int(q + s)∗ ≡ (a(2(q + s) − 1 + v(d)), a(2(q + s+ 1) − 1)].

Ten,

(a p(d),∞) � (a p(d), a(2q − 1)]∪ 0≦s≦r Int(q + s)∪ Int(q + s)
∗

( 􏼁∪

(a(2(q + r + 1) − 1), a p(d)
[2(q + r + 1) + p(d) − 1]

(p(d) + 1)
∪

a p(d)
[2(q + r + 1) + p(d) − 1]

(p(d) + 1)
, a d􏼠 􏼣∪

(ad, a p(d)(2p(d) − 1)]∪ (a p(d)(2p(d) − 1), 2ad]∪

(2ad, a p(d)(2p(d) + 1)]∪ (a p(d)(2p(d) + 1),∞),

(91)

where the following descent matrices of Lemma 13 satisfy
Defnition 1:

(a) e(1). S(q, d) when 2q − 1 − v(d)<p(d) and bn is in
(ap(d), a (2q − 1)]

In this case, q- foor [(p(d) + 3)/2]> (p(d) + 1)/2,
so (a) applies to e(1). S(q, d) over the interval a (2 q-
1-v(d)) <ap(d)< bn≤ a (2q-1).

(b) (i) e(3).S(q − 1, d) when p(d)< 2q − 1-v(d) and bn

is in (ap(d), a(2q − 1 − v(d))]
Since q< (p(d) + 3)/2, we apply (b)(i) to e(3). S

(q − 1, d) over the larger interval a (2q-3) < ap (d) <
bn < a(2q − 1 − v(d)) ≤a (2 q- 3 + v(d)).

(a) e(1).S(q, d) when p(d)< 2q − 1-v(d) and bn is in (a
(2q − 1 − v (d)), a (2q − 1)]
For s � 0, 1, . . . , r is in the next two lines:

(b) (i) e(3). S(q + s, d) when bn is in lnt (q + s).
(a) e(1). S(q + s + 1, d) when bn is in the interval (a

(2(q + s + 1) − 1- v(d)), a(2(q + s + 1) − 1)] that
also contains lnt(q + s)∗ (with equality holding
when d is even).

(b) (ii) e(3). S(q + r + 1, d) when bn is in (a(2(q+ r +

1) − 1), ap(d)[2(q + r + 1) + ρ(d) − 1]/(p(d) + 1)]

(c) (ii) e(2). S(q + r + 1, d)) when bn is in
(ap(d)[2(q + r + 1) + p(d) − 1]/(ρ(d) + 1)], ad]

(d) e(0). S(μ(d), d) when bn is in (a d, a p(d)

(2p(d) − 1)]

(e) e(1). S(μ(d), d) when bn is in
(a p(d)(2p(d) − 1), 2ad]

(f ) e(3). S(μ(d), d) when bn is in (2ad,
a p(d)(2p(d) + 1)]

(g) e(2). S(μ(d), d) when bn is in (a p(d)(2p(d) + 1),

∞).

By Proposition 6 and the interval decomposition of (ap(d),

∞) with corresponding descent matrices, arbitrary primitive
solutions (x, y, z) of (1) satisfy Fermat’smethod of descent with
respect to M(d)∗ or M(d)∗∗. Finally, we show thatTeorem 4
is a consequence of this result and Teorem 12.

Let d be any positive square-free integer and let
(x1, y1, z1) be a primitive solution of (1). By the argument
mentioned above, there is g in M(d)∗ or M(d)∗∗ such that
lnv[g]. (x1, y1, z1) � i2(x2, y2, z2) satisfes Defnition 1. By
Lemma 13, if d is 2 or 6, then only parts (a) and (b) of
Defnition 1 are used in the descent. Moreover, by b(i) of
Lemma 13 andTeorem 12, the only situation where part(c)

of Defnition 1 occurs is when d≥ 10 is even and (x1, y1, z1)

is a binary root or a copartner of a binary root. In this case,
(x1, y1, z1) and (x2, y2, z2) intertwine indefnitely so the
descent is to a binary root. We assume henceforth that part
(c) of Defnition 1 does not occur.

Replacing (x1, y1, z1) with (x2, y2, z2) and continuing
by induction, we construct a sequence (xn, yn, zn) of
primitive solutions of (1). In view of our assumption on part
(c) of Defnition 1, we wish to show that there exists N> 0
such that zN − xN � 0 (i.e., yN � 0). Suppose by way of
contradiction, that yn > 0 for all n. We frst show that z1 −

x1 > zk − xk for some k.
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Since Lemma 13 holds for any positive square-free in-
teger d, we may assume without loss of generality that
(x1, y1, z1) � A(m1, n1, b1, a1) and consider two cases on
b1 × n1:

Case 16. Suppose that b1 × n1 is not in

a1d, a1p(d)(2p(d) − 1]∪ a1p(d)(2p(d) + 1),∞( 􏼁,(

(92)

(i.e., (d) and (g) of Lemma 13). Ten, by Lemma 13, there
exists an element g of M(d)∗ or M(d)∗∗ and a primitive
solution (x2, y2, z2) such that Inv[g]. (x1, y1, z1) �

i2(x2, y2, z2) for some positive integer i2; andmoreover, z1 −

x1 > z2 − x2 (so that k � 2).

Case 18. Let’s assume on the other hand that b1 × n1 is in
(92). By Lemma 13, there exists g in M(d)∗ or M(d)∗∗ such
that Inv[g]. (x1, y1, z1) � i2(x2, y2, z2) satisfes Defnition 1
with z1 − x1 � z2 − x2 and z1 > z2 (since y2 ≠ 0). By Remark
7, the parametric representation of (x2, y2, z2) is of the same
type as that of (x1, y1, z1). Furthermore, by Remark 8, if
(x2, y2, z2) � A(m2, n2, b2, a2), then m2 � m1, n2 � n1, a2 �

a1 and therefore,

z1 � n1b
2
1 + m1a

2
1 > z2 � n2b

2
2 + m2a

2
2 � n1b

2
2 + m1a

2
1.

(93)

It follows that

x2, y2, z2( 􏼁 � A m2 � m1( 􏼁, n2 � n1( 􏼁, b2 < b1( 􏼁, a2 � a1( 􏼁􏼂 􏼃.

(94)

If b2 × n2 is also in (92), then for i � 1 and 2, we replace
(xi, yi, zi) with (xi+1, yi+1, zi+1) as mentioned above.

In this case, z1 − x1 � z2 − x2 � z3 − x3. z1 > z2 > z3 and

x3, y3, z3( 􏼁 � A m3 � m2 � m1( 􏼁, n3 � n2 � n1( 􏼁,􏼂

b3 < b2 < b1( 􏼁, a3 � a2 � a1( 􏼁􏼃.
(95)

Continuing in this way, since the bi × ni are positive
integers, there exists p such that bj × nj is in (92)
for j � 1, . . ., p-2, but bp− 1 × np− 1 is not in (92), and by Case
16, z1 − x1 � zp− 1 − xp− 1 > zp − xp. It follows that k � p and
the conjecture on z1 − x1 in general is established.

Repeating the previous argument with (xk, yk, zk) in
place of (x1, y1, z1), we have that z1 − x1 > zk − xk > zm −

xm for some m> k. Continuing in this manner, we construct
a strictly decreasing sequence of positive integers which is
impossible; so yN � 0 for some N.

We deduce that either (xt, yt, zt) is a binary root (or
a copartner of a binary root) for some t or the sequence
(xn, yn, zn) descends to (1,0, 1).

Conclusion to the proof ofTeorem 4 is given as follows:
Let d be a square-free positive integer, G � G(d)∗ or G(d)∗∗

and suppose that (x, y, z) is a primitive solution to (1). We
will show that G satisfes Defnition 2 of a generating set by
using the proof mentioned above to determine integers ki in

[1, μ(d)], ji in [0, 3] and positive integer n such that
S(ki, d).e(ji)(1≤ i≤ n) is in G for the descent

e j1( 􏼁.S k1, d( 􏼁( 􏼁... e jn( 􏼁.S kn, d( 􏼁( 􏼁.(x, y, z) � Kr, (96)

where r is either (1, 0, 1) or a primitive binary root, and
K � gcd [(e(j1).S(k1, d)) . . . (e(jn).S(kn, d)). (x, y, z)].
Taking inverses by Lemma 10, we then have

S kn, d( 􏼁. e jn( 􏼁( 􏼁... S k1, d( 􏼁. e j1( 􏼁( 􏼁.r � P ×
(x, y, z)

K
,

(97)

where P is the square of the product of the terms (d-2 ki + 1)/
δ(d) over all ki defned above that are strictly less than μ(d).
Te coefcient of (x, y, z) is 1 whenever the product is over
the empty set. Finally, since (x, y, z) is primitive and the left
side is an integer triplet, the coefcient of (x, y, z) must be
a positive integer and hence G is a generating set.

6. Trees of Primitive Solutions

A tree of the primitive solutions to (1) is an infnite network
of nodes where each node branches (in our case via ascent
matrix multiplications) to a number of subsequent nodes,
with the totality giving all and only primitive solutions
without duplication. ByTeorem 4, trees exist when d is 2, 6,
or any odd square-free positive integer. For any other even
square-free d, the primitive solutions are attained from
a fnite forest of such trees.

Specifcally, for any given node (x, y, z), there is
a unique path via descent matrices back through the tree to
either (1, 0, 1) or a primitive binary root, i.e., if (x, y, z) is
not a root, then exactly one of the matrices g in M(d)∗ or
M(d)∗∗ exists such that lnv[g]. (x, y, z) produces a new
node (x′, y′, z′) that satisfes Defnition 1.

In the classical case d � 1, the tree of primitive solutions
is derived by simply taking all possible ascending products of
three generators stemming from (1, 0, 1). Tis is possible
since products always produce distinct primitive solutions in
this case. For square-free d> 1, families of generators are
defned for the primitive solutions that satisfy the re-
quirements for a tree structure with four exceptions that may
easily be remedied by adjusting or removing improper
branches.

Let G denote G(d)∗ or G(d)∗∗, and let g � S(k, d). e(j)

be in G. Reversing the descent notation of Defnition 1,
assume that (x′, y′, z′) is a primitive solution of (1), g

(x′, y′, z′) � (x, y, z) and, as in the proof ofTeorem 4, e(j).
S(k, d). (x, y, z) � i′(x′, y′, z′) satisfes the Fermat’s descent
method for some positive integer i′. Unlike the case d � 1, it
is necessary to consider the following anomalies:

(a1) Te components of (x, y, z) may not all be
positive.
(a2) Te components of (x, y, z) may be positive but
not relatively prime.

Example 6. Let d � 10.Ten, q � 3 and r � 0 so byTeorem
12, w � (x′, y′, z′) � A(5, 2, 2, 1) � (3, 4, 13) is a primitive
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binary root. Moreover, since 2(q − 1)>p(d), by Teorem 4,
G(10)∗ is a generating set for the primitive solution to (1)

and the frst level of its corresponding tree of solutions
(x, y, z) is

(S(q − 1, d).e(1)).w � (− 43, 6, 47), (S(q, d).e(1)).w � 5(1, 6, 19), (S(q, d).e(3)).w � 25(13, 6, 23), (S(q + 1, d).e(1)).w

� 9(13, 6, 23), (S(q + 1, d). e(3)). w � (597, 190, 847), (S(q + 1, d). e(2)).w

� (507, 154, 703), (S(μ(d), d). e(0)).w � (123, 16, 133), (S(μ(d), d).e(1)).w

� (237, 28, 253), (S(μ(d), d). e(3)). w � (397, 36, 413), (S(μ(d), d).e(2)). w � (283, 24, 293).

(98)

Te frst node satisfes (a1) and must be pruned. Te
second, third, and fourth nodes satisfy (a2) so their
common divisors 5, 25, and 9 must be dropped.
Consequently, there are two paths to (13, 6, 23) which
we show in (a4)(ii) below always corresponds to j � 1
and j � 3 when they exist. Tus, by convention, we
keep the node with j � 1 and eliminate the other one.
Te next situation does not occur with the pre-
determined generators of parametric interval descent
but may arise when taking all possible products in the
ascending development of a tree. In (a3), we must
again prune (x, y, z). In practice, one simply checks
each new node for the adverse conditions.
(a3) For some odd square-free d, there may exist g in G

such that the binary root conditions z′ − x′ � z − x and
z′ > z in part (c) of Defnition 1 hold:

Example 7. Let d≥ 7 be odd, (x′, y′, z′) �

A(d, 1, 1 + 2(d − q), 1)/2, and g � S(μ(d), d). e(0). Ten
(x, y, z) � g. (x′, y′, z′) � A(d, 1,2q − 1,1)/2, z′ − x′ � d �

z − x and 2z′ � [2d − (2q − 1)]2 + d> 2z � (2q − 1)2 + d

since by the defnition of q, z′-z � 2d [d- (2q-1] >0.

(a4)Tere are duplicate nodes in the frst level of the
derived tree that must be pruned.Tey arise from the
subsets

S(q + s, d). e(3).w, S(q + s + 1, d). e(1).w􏼈 􏼉(0≤ s≤ r)

(99)

for some primitive root w defned as follows:
(i) For odd square-free d≥ 13, the nearest nodes in the

abutting sets agree when w � (1, 0, 1):

S(q + s + 1, d). e(1).w � S(q + s + 1, d) . e(3). w (0≤ s< r),

(100)

since e(1).w � e(3).w.

(ii) For even square-free d≥ 10 and standard binary root
w � A(d/2, 2, k, 1) as defned in Teorem 12, there
exists a unique s in [0, r] such that

S(q + s, d).e(3).w

gcd [S(q + s, d).e(3).w]
coincides with

S(q + s + 1, d).e(1).w

gcd [S(q + s + 1, d).e(1).w]
.

(101)

Proof. Since q + s � d/2 − k in Teorem 12, uniqueness of s

will follow from the defnition of w. For the proof of (ii), we
will need an analog of the statement

e(3). S
d

2
− k, d􏼠 􏼡􏼠 􏼡.A

d

2
, 2,

d

2
− k, 1􏼠 􏼡 � A

d

2
, 2, k, 1􏼠 􏼡,

(102)

given inTeorem 12. Taking inverses by Lemma 10,
it follows that

A
d

2
, 2,

d

2
− k, 1􏼠 􏼡 � (2k + 1)

− 2S
d

2
− k, d􏼠 􏼡 . e(3).A

d

2
, 2, k, 1􏼠 􏼡 .

(103)

By an argument similar to the proof of the statement
given above from Teorem 12,

e(1). S
d

2
− k + 1, d􏼠 􏼡􏼠 􏼡.A

d

2
, 2,

d

2
− k, 1􏼠 􏼡 � A

d

2
, 2, k, 1􏼠 􏼡.

(104)

Moreover, by Lemma 10 again,

A
d

2
, 2,

d

2
− k, 1􏼠 􏼡 � (2k − 1)

− 2
S

d

2
− k + 1, d􏼠 􏼡.

e(1).A
d

2
, 2, k, 1􏼠 􏼡.

(105)

Finally, by (103) and (105), we have the integer
equations
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(2k + 1)
− 2

S
d

2
− k, d􏼠 􏼡. e(3).A

d

2
, 2, k, 1􏼠 􏼡

� (2k − 1)
− 2

S
d

2
− k + 1, d􏼠 􏼡. e(1).A

d

2
, 2, k, 1􏼠 􏼡

� A
d

2
, 2,

d

2
− k, 1􏼠 􏼡.

(106)

Dividing both sides by their gcds, (ii) follows.
When d is odd, duplicate nodes may also be
a consequence of distinct paths from (1,0, 1) to
a common node, that are initiated by the generators
given above:

(iii) Te interval decomposition in the proof ofTeorem
4 is disjoint except for the intervals corresponding
to the descent matrices e(3). S(q + s, d) and
e(1).S(q + s + 1, d) when d is odd. If
(x, y, z) � A(m, n, b, a) is a primitive solution to (1)
such that bn is in the intersection (a(2(q + s) +

1) + 1-v (d), a(2(q + s) − 1 + v(d))], of these in-
tervals, then there exist two distinct paths from
(1,0, 1) to (x, y, z). □

Example 8. Example 6 provides a one-step illustration of
(a4)(ii).

For (a4)(iii), let d � 11 and s � − 1. Ten, q � 3 and
p(d)< 2q − 1-v(d). If a � 10, b � 39 and n � 1, the previous
intersection is approximately (35.858,44.142) and we obtain
the following distinct paths from (1, 0, 1) to
(x, y, z) � A(11, 1, 39, 10):

162 × 97(x, y, z) � (S(3, 11). e(1)). (S(3, 11). e(2)). (S(2, 11). e(3)). (S(6, 11). e(0)). (S(3, 11). e(2)).

(S(3, 11). e(2)). (S(6, 11). e(0)). (S(3, 11). e(2)). (S(2, 11). e(3)). (S(3, 11). e(2)). (S(3, 11). e(3)).

(S(3, 11). e(2)). (1, 0, 1)

16 × 94(x, y, z) � (S(2, 11). e(3)). (S(3, 11). e(2)). (S(3, 11). e(2)). (S(6, 11). e(2)). (S(6, 11). e(2)).

(S(6, 11). e(2)). (S(3, 11). e(2)).

(S(3, 11). e(3)). (S(3, 11). e(2)). (1, 0, 1).

(107)

We then select the frst path with last ascent matrix
having j � 1 by convention and prune the branch including
and emanating from (x, y, z) on the second path.

7. Conclusion

By the bxn-interval decomposition of (ap(d),∞) in the
proof of Teorem 4, the only way that distinct paths may
arise from (1,0, 1) to (x, y, z) is by (a4). Moreover, the
only nontrivial anomalies when d is even are (a1), (a2),
and (a4)(ii). By the parametric interval method of de-
scent, after some modifcations at each level, the
primitive solutions of (1) satisfy requirements for one or
more tree structures with generating sets G(d)∗ or
G(d)∗∗
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Supplementary Materials

A supplementary fle contains a Mathematica program
SqFr[d, (x, y, z)] for any square-free positive integer d and
primitive solution (x, y, z) of the Diophantine equation x2 +

dy2 � z2 that computes directly from Teorem 4: a de-
composition of a positive multiple of (x, y, z) into a product
of generators acting on either (1, 0, 1) or a primitive binary
root. As an alternative to the algorithm of Corollary 16, SqFr
is executed with Examples 2–5 and the results are then
checked with the defnition of a generating set and compared
with Corollary 16. Moreover, SqFr determines the de-
composition of Example 8 (a4)(iii). (Supplementary
Materials)
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