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We use the exponential Ornstein–Uhlenbeck model to predict the stock price dynamics over some fnite time horizon of interest.
Te predictions are the key to the investors in a fnancial market because they provide vital reference information for decision
making. We estimated all the parameters of the model (mean reversion speed, long-run mean, and the volatility) using the data
from Stanbic Uganda Holdings Limited. We used the parameters to forecast the stock price and the associated mean absolute
percentage error (MAPE). Te predictions were compared against those by the ARMA-GARCH model. We also found the 95%
prediction intervals before and during the COVID-19 pandemic. Results indicate that the exponential Ornstein–Uhlenbeck
stochastic model gives very accurate and reliable predictions with a MAPE of 0.4941%. All the forecasted stock prices were within
the prediction region established.Tis was not the case during the COVID-19 pandemic; the predicted stock prices are higher than
the actual prices, indicating the severe impact COVID-19 inficted on the stock market.

1. Introduction

Investments into a stock are considered as being too risky
because of the stock price fuctuations. A prediction of the
price dynamics of a stock would minimise the high risk to
the traders in the stock market and would provide advance
information to investors to make the right decisions. Making
intelligent investments is the key to the prosperity of any
investor.

A stock market is a well-organised place at which stock
shares and other fnancial securities are traded. In Uganda,
this occurs at the Uganda Securities Exchange (USE) under
tight supervision by the Uganda Capital Markets Authority.
Te market brings together investors who provide capital
and companies that require the capital in a centralised
market place. In January 2000, USE listed its frst equity:
Uganda Clays Limited (UCL). More companies have been
listed at the exchange since then such as Stanbic Bank
Uganda (SBU).

Stanbic Uganda Holdings Limited is one of the largest
fnancial institutions in Uganda licensed under the Financial
Institutions’ Act, 2004 and was listed on the Uganda

Securities Exchange Limited on 25 January, 2007. It is
uniquely identifed by the sticker symbol “SBU” and has
International Securities Identifcation Number (ISIN) as
UG0000000386. It is one of the liquid stocks at USE and
provided permission to utilise her data for this study. It is
one of the listed companies that duly comply with the listing
rules. Tere is an increased transparency that results from
a listing on USE. In addition, listing provides a company
with equity fnancing opportunities to grow the business
from expansion of operations to acquisitions of more capital
base through issuance of public shares. Listed companies
beneft from more favorable borrowing terms from fnancial
institutions. Improved liquidity in the public market leads to
better valuation than would be through private
arrangements.

Te daily stock prices at USE are so volatile, and while
purchasing a stock, it does not guarantee anything in return
at the next period. Terefore, it makes stocks more risky in
investment but investors can gain high return when the
listed companies make profts. Wrong decision in choosing
a stock may end up in capital loss to the investor.Tis view is
also shared by [1]. Stock trading has a high rate of risk, and
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the fuctuation of stock prices afect the investors’ decisions
and capital. However, unlike safe investments, risky in-
vestments provide best returns. In [2], details are provided
that indicate that risky investments are dangerous but still
investors go for them because of the high returns. When the
infnite ruin probability of an insurance company that
invested in a risky asset (large volatility) was computed, ruin
was imminent. However, the case of a nonrisky investment
gave ruin probability that decayed exponentially.

Stock price fuctuations are infuenced by many factors
such as policy adjustments, economic environment, in-
ternational situations, and disease outbreaks like COVID-
19. Predicting stock prices gives crucial trading in-
formation about market efciency, and it reduces in-
vestment risks; besides, it guides investors on how to
design a suitable portfolio. Stock prices can be well
modelled by random walks because of their up and down
movements. Tis randomness may be best captured by
Brownian motion, B(t). However, Brownian motion has
an expected value of zero which cannot be related to stock
prices. Moreover, Brownian motion goes negative, hence
not a good model for stock prices. Several models have
been suggested to replace Brownian motion. We shall take
all processes and random variables in this study to be
defned on the fltered probability space
(Ω,F, Ft t∈R+,P) satisfying the usual conditions. Here,
Ft is right continuous and P-complete. To expound on
the variables in the special space, Ω is a sample space with
elements denoted by ω; F is a σ-algebra on Ω; P is
a measure with compact support on [0, 1]; and Ft t∈R+ is
a fltration. A fltration is an increasing and right con-
tinuous class of sub σ-algebras ofF. Te interpretation of
the σ-feld F is that it is the information available to an
agent at time t with F0 being the information available at
time 0, (the initial information). Whenever s≤ t,Fs ⊂ Ft.

Te geometric Brownian motion (GBM), sometimes
called the exponential Brownianmotion or the Black Scholes
model, is a modifcation of B(t) that ensures positivity all the
time. It is one of the mathematical models for predicting the
future price of a stock. A stochastic process X(t){ }t∈R+ is said
to follow a GBM process if it satisfes the stochastic dif-
ferential equation (SDE):

dX(t)

X(t)
� μ(X(t), t)dt + σ(X(t), t)dB(t), (1)

where B(t) is anFt-adapted Brownianmotion, μ (X(t), t) is
the drift, and σ (X(t), t) is the volatility. For constants ξ and
Υ, both parameters satisfy the following:

|μ(x, t)| +|σ(x, t)|≤ ξ(1 +|x|), x ∈ R, (2)

and

|μ(x, t) − μ(y, t)| +|σ(x, t) − σ(y, t)|≤Υ|x − y|, x, y ∈ R.

(3)

Details on existence and solutions to stochastic difer-
ential equations can be found in [3]. Itô’s lemma provides
the solution to equation (1) as follows:

X(t) � X(0) exp μ −
σ2

2
 t + σB(t) , X(0) � x0,

(4)

where x0 is the value of the process at time zero. Reference
[1] used this model to predict future closing prices of small
sized companies in Bursa Malaysia, and reference [4] also
used this model to predict stock prices of the Walmart
company at the New York Stock Exchange. Te results
showed acceptable predictions; however, the assumption of
constant volatility and drift needs to be revisited to capture
the real world scenarios. Finer details on stock price
modelling using geometric Brownian motion are well de-
scribed in [5].

Te Ornstein–Uhlenbeck (OU) model is classifed as the
simplest mean-revertingmodel by [6].TeOU is also known
as the arithmetic Ornstein–Uhlenbeck model and is used as
an alternative to GBMwhen a tendency of reversion towards
an equilibrium point is required. A stochastic process
X(t){ }t∈R+ is said to follow an arithmetic Orn-
stein–Uhlenbeck process if it satisfes the following SDE:

dX(t) � κ(θ − X(t))dt + σdB(t), (5)

where κ is the speed of mean reversion, θ is the mean-
reversion level (long-run mean), and σ is the volatility. For
times s< t,

X(t) � X(s) exp −κ(t − s){ } + θ[1 − exp −κ(t − s){ }]

+ 
t

s
σ exp −κ(t − u){ }dB(u).

(6)

Consequently, X(t) is normally distributed with mean as
follows:

x exp −κ(t − s){ } + θ[1 − exp −κ(t − s){ }], (7)

and variance as follows:

σ2

2κ
[1 − exp −2κ(t − s){ }]. (8)

Te OU model is a well-known example of continuous
time models. It can be used to model data with Gaussian and
difusion behaviour [7]. Chaiyapo and Phewchean [8] used
the OUmodel to predict commodity prices inTailand at the
Tai commodity market. Mariani et al. [9] developed a 3-
component superposed OU model and applied it to fnancial
markets. Tey underscored the need to study stock behav-
iours to both investors and governments. In the same article,
they note that research methods that use the OU model to
predict stock prices have some deviations from the expected
behaviour and could be best handled using non-Gaussian
processes [10]. In their work, they estimated the model pa-
rameters and weights. Te improved OU model performed
better than the OUmodel.TeOUmodel with Levy noise has
been studied recently by [11]. Gamma-related OU processes
and their simulation appear in [12]. At times, theOU is unable
to predict accurate prices when speculation is present in
a market, and additionally, the spot prices (stock prices)
predicted by the OU can have negative values [13]. Rogers in
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[14] noted that in the Ornstein–Uhlenbeck (Vasicek) model
of interest rates, there is a possibility of negative rates which
can result in substantial mispricing. A closely related model
suitable for modelling the structure of interest rates is the
Cox–Ingersoll–Ross model. Te parameters in this model
have the same meaning as in the OU process.

Te Cox–Ingersoll–Ross model (CIR) was introduced in
1985 [15]. Te SDE for the CIR model is given by the fol-
lowing equation:

dX(t) � κ(θ − X(t))dt + σ
����
X(t)


dB(t), X(0)> 0,

(9)

where X(0) is the value of the interest rate at time zero. Te
CIR model always takes non-negative values due to its square
root element. Orlando et al. in [16] predicted future interest
rates using the CIRmodel.Tey found out that the CIRmodel
was efcient and able to follow very closely the structure of
market interest rates and to predict future interest rates. Te
model is sensitive to the underlying parameters. During
a period of low volatility, the CIR can be an incredibly useful
and accurate model. However, if the model is used to predict
interest rates during a time frame in which volatility extends
beyond the parameters chosen, the CIR is limited in its scope
and reliability. Te expectation and variance of X(t) given
that X(s) � x are given by the following equation:

x exp −κ(t − s){ } + θ(1 − exp −κ(t − s){ }), (10)

and

xσ2

κ
(exp −κ(t − s){ } − exp −2κ(t − s){ })

+
θσ2

2κ
(1 − 2 exp −κ(t − s){ } + exp −2κ(t − s){ }),

(11)

respectively.
Other models for stock price prediction are the time series

models. Time series forecasting is widely used for nonstationary
data whose statistical properties such as the mean and standard
deviation are not constant over time but instead vary over time.
Time series analysis mainly employs the following models: AR
(autoregressive),MA (moving average), ARMA (autoregressive
moving average), and ARIMA (autoregressive integrated
moving Average) and its seasonal modifcation SARIMA,
generalized autoregressive conditional heteroscedasticity
(GARCH) models, and their combinations. Tese models are
widely used for stock market analysis, sales forecasting, eco-
nomic forecasting, astronomy, sales forecasting, and weather
forecasting, among others. Time series analysis is the most
common and fundamental traditional method used to perform
the task of stock price forecasting. An efort to describe these
models can be found in Vochozka et al. [17]. Te combination
of the AR (m) and MA (n) models forms the ARMA (m, n)

model of autoregressive order m, and moving average order n

is expressed as follows:

X(t) � ε(t) + 
m

i�1
ϕ(i)X(t − i) + 

n

i�1
c(i)ε(t − i), (12)

where X(t) is a stock price, ϕ(i) are the parameters of the
autoregressive component of order m, c(i) are the pa-
rameters of the moving average component of order n, and
ε(t), ε(t − 1), . . . are independent and identically distributed
white noise error terms that are usually normally distributed
random variables with zero expectation and variance σ2. Te
orderm and n are non-negative integers.TeGARCHmodel
aims at capturing the volatility that the ARMA cannot. Tis
model is usually carried out because fnancial data do not
have a constant variance across time but instead show signs
of volatility clustering. Li and Zhang in [18] predicted CYTS
stock prices using the GARCH model. Te general form for
GARCH (p, q) model is as follows:

σ2(t) � η + 

p

i�1
β(i)σ2(t − i) + 

q

j�1
α(j)ε2(t − j), (13)

where η is the long-run volatility with condition η> 0 and
β(i)≥ 0; i � 1, . . . , p, and α(j)≥ 0; j � 1, . . . , q are param-
eters of the model. An ARMA error whose conditional
variance follows a generalized autoregressive conditional
heteroskedasticity (GARCH) process is called an ARMA-
GARCH model (mixed ARMA-GARCH model). Specif-
ically, each component of the mixed model can be denoted
as an ARMA model with a residue term ξ which is as-
sumed to be Gaussian white noise whose variance is
denoted by σ2. However, limitations of time series models
are as follows: the difculty to accurately identify the
correct model to represent the data and a poor perfor-
mance for long-term forecasts. Next, we describe the
exponential Ornstein–Uhlenbeck model that we used to
predict the stock prices at USE. Te main contribution to
the literature is in the use of the exponential Orn-
stein–Uhlenbeck model to predict stock prices at a stock
market and how to compute the price-acceptable band/
region. Tis model is superior to Brownian motion,
geometric Brownian motion, mean-reverting OU model,
Cox–Ingersoll–Ross model, and the time series models.
Te work is based on mathematical fnance and stochastic
diferential equations.

2. The Exponential Ornstein–Uhlenbeck Model

A stochastic process X(t){ }t∈R+ is said to follow an expo-
nential Ornstein–Uhlenbeck (EOU) process if its dynamics
are governed by the following SDE:

dX(t) � κ(θ − logX(t))X(t)dt + σX(t)dB(t), (14)

where all the parameters carry the same meaning as in
equation (5).

Te solution to equation (14) by Itô’s Lemma is
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logX(t) � (logX(s))e
− κ(t− s)

+ θ −
σ2

2κ
  1 − e

− κ(t− s)
  + 

t

s
σe

− κ(t− u)dB(u),

fromwhich,X(t) � exp (logX(s))e
−κ(t−s)

+ θ −
σ2

2κ
  1 − e

−κ(t−s)
 + 

t

s
σe

−κ(t−u)dB(u).

(15)

Te expected value of X(t) given that X(s) � x is

exp exp −κ(t − s){ }log x + θ −
σ2

2κ
 (1 − exp −κ(t − s){ }) +

σ2

4κ
(1 − exp −2κ(t − s){ }) , (16)

and its variance is

exp
σ2

2κ
(1 − exp −2κ(t − s){ }) − 1  × exp 2 exp −κ(t − s){ }log x + 2 θ −

σ2

2κ
 (1 − exp −κ(t − s){ })

+
σ2

2κ
(1 − exp −2κ(t − s){ }).

(17)

Schwartz [19] used the exponential Ornstein–Uhlenbeck
process for WTI crude oil, gold, and copper. Equation (14) is
a modifcation of the mean-reverting model of Dixit and
Pindyck in [6]. Tis modifcation was proposed by [19]. Te
Dixit and Pindyck model and equation (14) both do not have
negative values of spot prices. Mej́ıa Vega in [13] modelled
the spot prices of gold using the exponential Orn-
stein–Uhlenbeck process and the data used were from
Bloomberg.

3. Materials and Methods

A spreadsheet of the historical daily stock prices of Stanbic
Bank Uganda was downloaded from the Wall Street Journal
(WSJ) under the section: “Research and Ratings” of SBU at
USE on WSJ. Te daily historical data of SBU from 4th July
2011 to 4th July 2017 were used to determine the parameters

of the model and later; the prediction of stock prices for the
next 100 days was carried out. Te following url was used to
download the historical prices of SBU at USE from WSJ:
https://www.wsj.com/market-data/quotes/UG/XUGA/SBU/
historical-prices.

To determine the parameters of the exponential Orn-
stein–Uhlenbeck model, we used the natural logarithms of
the closing stock prices of SBU. Let Var(logX(t)) � σ2 and
s< t, then

logX(t) ∼ N logX(s)e
− κ(t− s)

+ θ −
σ2

2κ
  1 − e

− κ(t− s)
 , σ2 .

(18)

Te equation of the conditional probability density of
logX(t) under the exponential Ornstein–Uhlenbeck model
in equation (14) is given by the following equation:

f(lnX(t) | lnX(s); θ, κ, σ) �
1

����
2πσ2

 exp −
lnX(t) − lnX(s)e

− κ(t− s)
+ θ 1 − e

− κ(t− s)
   

2

2σ2
⎛⎝ ⎞⎠, (19)

where θ � (θ − σ2/2κ). We took the time step (t − s) � ∆t for 0≤ s< t,
logX(t) � lnX(i) and logX(s) � lnX(i − 1) for
i � 1, 2, . . . , n. Hence,
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f(ln X(i) | ln X(i − 1); θ, κ, σ)

�
1

����
2πσ2

 exp −
1
2σ2

ln X(i) − ln X(i − 1)e
− κ∆t

+ θ 1 − e
− κ∆t

   
2

 .

(20)

Let lnX(i) � φi and lnX(i − 1) � φi−1, i � 1, . . . , n. Te
likelihood function L of a set of observations
φ1,φ2, . . . ,φn  is given by the following equation:

L θ, κ, σ; φi(  �
1

����
2πσ2

 exp
− φi − φi− 1 e

− κ∆t
+ θ 1 − e

− κ∆t
   

2

2σ2
⎛⎝ ⎞⎠.

(21)

If the observations φ1,φ2, . . . ,φn  are independent and
identically distributed, then the joint log-likelihood function
is given by the following equation:



n

i�0
ln L θ, κ, σ;φi(  

� −
n

2
ln(2π) − n ln (σ)

−
1
2σ2



n

i�1
φi − φi−1e

−κ∆t
− θ 1 − e

−κ∆t
  

2
.

(22)

Te maximum of the joint-log-likelihood function is
obtained by taking the partial derivatives with respect to
each parameter and equate them to zero. Taking the partial
derivative of equation (22) with respect to θ,

θ �


n
i�0φi − 

n
i�0φi−1e

− κ∆t

n 1 − e
−κ△t

 
. (23)

Taking the partial derivative of equation (22) with re-
spect to κ,

κ � −
1
∆t

ln


n
i�1 φi − θ  φi−1 − θ  


n
i�1 φi−1 − θ 

2
⎛⎜⎝ ⎞⎟⎠. (24)

Taking the partial derivative of equation (22) with re-
spect to σ,

σ2 �
1
n



n

i�1
φi − θ − e

− κ∆t φi− 1 − θ  
2
. (25)

To simplify equations (23)–(25), we let φ2 � 
n
i�1φi,

φ1 � 
n
i�1φi−1,φ1,1 � 

n
i�1φ2

i−1φ1,2 � 
n
i�1φi−1φi, and φ2,2 �


n
i�1φ2

i , for i � 1, 2, . . . , n so that

θ �
φ2φ1,1 − φ1φ1,2

n φ1,1 − φ1,2  − φ2
1 − φ2φ1 

,

κ � −
1
∆t

ln
φ1,2 − θφ1 − θφ2 + nθ

2

φ1,1 − 2θφ1 + nθ
2

⎛⎝ ⎞⎠,

σ2 �
1
n

φ2,2 − 2e
− κ∆tφ1,2 + e

− 2κ∆tφ1,1 − 2θ 1 − e
− κ△t

 

· φ2 − e
− κ∆tφ1  + n θ

2
1 − e

− κ△t
 

2
,

σ2 � σ2
2κ

1 − e
−κ∆t

 
2 ,

(26)

and

θ � θ +
σ2

2κ
. (27)

Te mean absolute percentage error (MAPE) is given by
the following equation:

MAPE �
1
n



n

i�1

|X(t) − F(t)|

X(t)
× 100%, (28)

where n is the number of period forecast,X(t) is the actual value
in time period t, and the forecast at time t is denoted by F(t).
MAPE was computed and used to evaluate the forecasting
accuracy of the exponential Ornstein–Uhlenbeck model in each
time period. Te prediction intervals of the predicted closing
stock prices in each time period were established and utilised in
plotting a confdence band for the predicted stock prices before
and during the outbreak of COVID-19.

A prediction interval can be written as X(t + h | t)

± ωσh, where the multiplier ω depends on the coverage
probability. To get a prediction interval, it is necessary to
have an estimate of σh.

4. Results and Discussion

We obtained the parameters of the exponential Orn-
stein–Uhlenbeck model using historical data of SBU. Excel
software was used to compute the values of
φ1,φ2,φ1,1,φ2,2, andφ1,2 for 1306 days (from 4th July 2011 to
4th July 2017).
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For i � 1, 2, . . . , n � 1306, φ2 � 4314.3071,
φ1 � 4314.4125, φ1,1 � 14287.9049, φ1,2 � 14286.1493, and
φ2,2 � 14287.1993.

Te values of φ2,φ1,φ1,1,φ2,2, and φ1,2 were substituted
in equations (23)–(25) to obtain the values of θ, σ, and κ.
Hence, the values of θ and σ were obtained using the es-
timated values of θ, σ, respectively.

Te parameter values were the following (all rounded to
4 decimal places): κ � 0.0409, θ � 3.3283, and σ � 0.0468.

Te long-term mean of the logarithm of the prices was
3.3283, the mean-reversion speed of the log-prices which is
the rate at which the log-prices revert to their long-term
mean was 0.0409. Te percentage volatility of the logarithm
of the stock prices which indicates the rate at which prices
move up and down was 0.0468.

Te stock prices of the next 100 days from 4th July 2017
were predicted (that is to say, closing stock prices from 6th
July 2017 to 5th January 2018). Te discretized form of
equation (15) was used to predict the closing stock prices
using the Monte Carlo simulations, where the average of
1000 simulated stock prices on a particular day was taken to
be the predicted stock price on that day. We calculated the
prediction interval with a multiplier of 1.96 which gave
a probability of 95% of the predicted value to capture the true
value. We computed the standard deviation of the forecast
distribution using Matlab and computed the prediction
interval on each day. Figure 1 shows a sample path of the
prediction intervals together with the simulated stock prices
and the actual closing stock prices.

Te closing stock prices and predicted closing stock
prices are shown in Figure 1, and the prediction interval
captured all the actual values. Before the COVID-19 out-
break, the MAPE was 0.4941%, indicating reliable pre-
dictions. Tis value was diferent at each run but the trend
was the same.

Riding on this accuracy, we predicted stock prices during
the days of COVID-19 outbreak (100 days from 9th De-
cember 2019 to 24th July 2020). Te Monte Carlo simula-
tions using equation (14) were carried out where the average
of 1000 simulated stock prices on each day was taken to be
the predicted stock price on that day. Again, we calculated
the prediction interval with a multiplier of 1.96 which was
expected to have a probability of 95% of the predicted value
to capture the true value in that period of time. Figure 2
shows a plot of the prediction interval together with the
simulated stock prices and the actual closing stock prices.
Te MAPE value obtained for the 100 days during
COVID-19 was 11.4579% which indicated that the model
was a good forecast for that time period. As expected, the
actual stock values are far way below what they would have
been in absence of COVID-19.

We made a comparison to predictions using the tradi-
tional mixed ARMA (m, n) + GARCH (p, q) model. We
used the model with the smallest MAPE value of 0.6012%.
Figure 3 shows a plot of the predicted and actual stock prices
for the 100 days after 4th July 2017.

Te value of the MAPE showed that the ARMA (0,1) +

GARCH (1,0) model is also highly accurate for SBU data
(before the outbreak of COVID-19) though it was tiresome

to fnd out which of the mixed ARMA-GARCH models
would best ft available data. However, the MAPE value for
the exponential Ornstein–Uhlenbeck model was smaller
than the one of the ARMA (0, 1) + GARCH (1,0) model.

Table 1 shows part of the predicted stock prices obtained
while using both the exponential Ornstein–Uhlenbeck
model (EOU) and the mixed ARMA (0,1) + GARCH (1,0)

model (MAG). In Table 1, F(t) represents the predicted
stock price and the corresponding MAPE is also indicated.

Te MAPE value for all the 100 days before the outbreak
of COVID-19 of the exponential Ornstein–Uhlenbeck
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Upper prediction interval
Lower prediction interval
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Figure 2: Actual stock prices, predicted stock prices, and lower and
upper prediction intervals during COVID-19.
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Figure 1: Te actual stock prices, the predicted stock prices, and
lower and upper prediction intervals.
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model was 0.4941% while that of the mixed ARMA (0,1) +

GARCH(1,0) model was 0.6012%. Both of the two models
were highly accurate before the outbreak of COVID-19 but
the exponential Ornstein–Uhlenbeck model outperformed
the ARMA (0,1) + GARCH (1,0) model.

5. Conclusion

Te parameters of the exponential Ornstein–Uhlenbeck
model that were obtained using the logarithms of the stock
prices of SBU were the following; κ � 0.0409, θ � 3.3283,

and σ � 0.0468. Te estimated parameters were used to
predict the stock prices of SBU. One thousand values of stock
prices were predicted for each day, and their average was
taken to be the predicted stock price on that day. Tis was
carried out using Monte Carlo method. Te predicted stock
prices before the outbreak of COVID-19were very close to the
actual values and in the run that we used (diferent predictions
were obtained for each run); the MAPE value which was
0.4941% showed that the exponential Ornstein–Uhlenbeck
model was highly accurate for the data set that was used. Te
prediction interval that was established captured all the actual
values. Te predicted stock prices during the outbreak of
COVID-19 were a bit close to the actual values and in the run
that we used, and the MAPE value which was 11.4579%
showed that the exponential Ornstein–Uhlenbeck model was

a good forecast model (but not highly accurate) for the data
set that was used. Te prediction interval in this case did not
capture the actual values. Tis indicates that the stock prices
were afected by the outbreak of COVID-19.

Comparison of the forecasting accuracy before the
outbreak of COVID-19 of the exponential Orn-
stein–Uhlenbeck model with that of the mixed ARMA-
GARCHmodel whose MAPE value was 0.6011621% showed
that the exponential Ornstein–Uhlenbeck model out-
performs the mixed ARMA (0,1) + GARCH (1,0). Namu-
gaya et al. [20] studied the GARCH approach in details to
model stock volatility on USE. Tey employed diferent
univariate generalised autoregressive conditional hetero-
scedastic (GARCH) models, both symmetric and asym-
metric. Te models included GARCH (1, 1), GARCH-M,
EGARCH (1, 1), and TGARCH (1, 1). Tey used quasi
maximum likelihood (QML) method to estimate the models
and then the best performing model obtained using two
model selection criteria: Akaike information criterion (AIC)
and Bayesian information criterion (BIC).

Further research to predict stock prices using equation
(14) can involve restrictions on the parameters of the model
by defning an interval where each parameter falls and
varying the parameters to establish conditions on the in-
tervals when they can give appropriate and more accurate
results. Further research can also employ machine-learning

Table 1: Actual closing stock prices and predicted stock prices using the exponential Ornstein–Uhlenbeck model and the mixed
ARMA-GARCH model and their MAPE for 12 days before the outbreak of COVID-19.

Date Actual price F (t) of EOU MAPE EOU F (t) of MAG MAPE MAG
06/07/2017 27 27. 485 0.0485 27.  57 0.0057
07/07/2017 27 27. 667 0.0667 27. 998 0.0998
10/07/2017 27 26.9771 0.0229 27. 998 0.0998
11/07/2017 27 26.975 0.0250 27. 998 0.0998
12/07/2017 27 27. 898 0.0898 27. 998 0.0998
13/07/2017 27.25 27. 851 0.1649 27. 998 0.1502
14/07/2017 27 27. 377 0.0377 27. 998 0.0998
17/07/2017 27 27.1 5 0.1050 27. 998 0.0998
18/07/2017 27.25 27. 6 1 0.1899 27. 998 0.1502
19/07/2017 27 27.1141 0.1141 27. 998 0.0998
20/07/2017 27.25 27.13 1 0.1199 27. 998 0.1502
21/07/2017 27.25 27. 231 0.2269 27. 998 0.1502
Te bold values under F (t) of EOU are the predicted closing stock prices using the EOU model and each has been compared against the actual closing stock
price.Te bold values under F (t) of MAG are the predicted closing stock prices using the mixed ARMA-GARCHmodel and each has been compared against
the actual closing stock price.
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Figure 3: Predicted and actual prices using the mixed ARMA (0,1) + GARCH (1,0) model.
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techniques to obtain the parameters (range of the param-
eters) of the exponential Ornstein–Uhlenbeck model. An-
other suggested modifcation is a 3-component superposed
exponential Ornstein–Uhlenbeck model as was the case on
the OU model in [9]. One can also compare the results with
those from the state-of-the-art (SOTA) models (BERT, GPT,
ELMo, RoBERTa, and XLNet). Tese models, recent in
trends, are advantageous in that they increase task precision
and reliability, in addition to reducing generation time.

Data Availability

A spreadsheet of the historical daily stock prices of Stanbic
Bank Uganda is available for download from the Wall Street
Journal (WSJ) under the section: “Research and Ratings” of
SBU at USE onWSJ. Te following url was used to download
the historical prices of SBU at USE from WSJ. \newline\url
{https://www.wsj.com/market-data/quotes/UG/XUGA/SBU/
historical-prices}.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Te authors were funded by the Eastern Africa Universities
Mathematics Programme (EAUMP), Sida Phase IV project
316-2014: $ Capacity Building in Mathematics and its Ap-
plications. Additional fnancial support came from the
NORHED II: Mathematics for Sustainable Development
Project.

References

[1] S. N. Z. Abidin and M. M. Jafar, “A review on geometric
Brownian motion in forecasting the share prices in Bursa
Malaysia,”World Applied Sciences Journal, vol. 17, no. 1, 2012.

[2] A. Flolova, Y. Kabanov, and S. Pergamenshchikov, “In the
insurance business risky investments are dangerous,” Finance
and Stochastics, vol. 6, 2002.

[3] B. Øksendal, Stochastic Diferential Equations: An In-
troduction with Applications, Springer-Verlag, Berlin, Ger-
many, 5th edition, 2003.

[4] C. T. Guloksuz, “Geometric Brownian motion approach to
modelling stock prices,” FORCE: Focus on Research in Con-
temporary Economics, vol. 2, no. 1, 2021.

[5] A. Dmouj, Stock Price Modelling: Teory and Practice, Vrije
Universiteit Faculty of Sciences, AmsterdamTeNetherlands,
2006.

[6] A. Dixit and R. Pindyck, Investment under Uncertainty,
Princeton University Press, Princeton, NJ, USA, 1994.

[7] J. Obuchowski and A. Wylomanska, “Ornstein-Uhlenbeck
process with non-Gaussian structure,” Acta Physica Polonica
B, vol. 44, 2013.

[8] N. Chaiyapo and N. Phewchean, “An application of Ornstein-
Uhlenbeck process to commodity pricing in Tailand,” Ad-
vances in Diference Equations, vol. 2017, 2017.

[9] M. C. Mariani, P. K. Asante, O. K. Tweneboah, andW. Kubin,
“A 3-component superposed Ornstein-Uhlenbeck model
applied to fnancial stock markets,” Research in Mathematics,
vol. 9, no. 1, 2022.

[10] S. Habtemicael and I. SenGupta, “Ornstein-Uhlenbeck pro-
cesses for geophysical data analysis,” Physica A: Statistical
Mechanics and Its Applications, vol. 399, 2014.

[11] M. Mohammadi and P. Nabati, “Modelling fnancial markets
using combined ornstein-uhlenbeck process with Levy noize,”
Financial Research Journal, vol. 23, no. 3, 2021.

[12] P. Sabino and N. C. Petroni, “Gamma-related Ornstein-
Uhlenbeck processes and their simulation,” Journal of Sta-
tistical Computation and Simulation, vol. 91, no. 6, 2020.

[13] C. A. Mej́ıa Vega, “Calibration of the exponential Ornstein-
Uhlenbeck process when spot prices are visible through the
maximum log-likelihood method, example with gold prices,”
Advances in Diference Equations, vol. 2018, 2018.

[14] L. Rogers, “Gaussian errors,” Risks, vol. 9, no. 1, 1996.
[15] J. C. Cox, J. E. Ingersoll, and S. A. Ross, “An intertemporal

general equilibrium model of asset prices, econometrica,”
Journal of the Econometric Society, 1985.

[16] G. Orlando, R. Mininni, and M. Bufalo, “A new approach to
forecast market interest rates through the CIR model,” Studies
in Economics and Finance, vol. 37, no. 2, 2019.

[17] M. Vochozka, S. Janek, and Z. Rowland, “Cofee as an
identifer of infation in selected US agglomerations,” Fore-
casting, vol. 5, 2023.

[18] Y. Li and L. Zhang, “Modelling and forecasting cyts stock
prices using GARCH model,” Frontiers in Economics and
Management Research, vol. 2, no. 1, 2021.

[19] E. S. Schwartz, “Te stochastic behavior of commodity prices:
implications for valuation and hedging,” Te Journal of Fi-
nance, vol. 52, no. 3, 1997.

[20] J. Namugaya, P. G. O. Weke, and W. M. Charles, “Modelling
stock returns volatility on Uganda securities exchange,”
Applied Mathematical Sciences, vol. 8, no. 104, 2014.

8 International Journal of Mathematics and Mathematical Sciences

https://www.wsj.com/market-data/quotes/UG/XUGA/SBU/historical-prices
https://www.wsj.com/market-data/quotes/UG/XUGA/SBU/historical-prices



