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In this paper, we introduce and investigate a class of biunivalent functions, denoted by H(n, r, α), that depends on the
Ruscheweyh operator and defned by means of Horadam polynomials. For functions in this class, we derive the estimations for the
initial Taylor–Maclaurin coefcients |a2| and |a3|. Moreover, we obtain the classical Fekete–Szegö inequality of functions be-
longing to this class.

1. Introduction

Let A be the family of all analytic functions f that are
defned on the open unit disk D � z ∈ C: |z|< 1{ } and
normalized by the conditions f(0) � 0 and f′(0) � 1. Any
function f ∈ A has the following Taylor–Maclaurin series
expansion:

f(z) � z + 􏽘

∞

n�2
anz

n
, where z ∈ D. (1)

Let S denote the class of all functions f ∈ A that are
univalent inD. Let the functions f and g be analytic inD, we
say the function f is subordinate by the function g in D,
denoted by f(z)≺g(z) for all z ∈ D, if there exists
a Schwarz function w, with w(0) � 0 and |w(z)|< 1 for all
z ∈ D, such that f(z) � g(w(z)) for all z ∈ D. In particular,
if the function g is univalent over D, then f(z)≺g(z)

equivalent to f(0) � g(0) and f(D) ⊂ g(D). For more
information about the subordination principle, we refer the
readers to the monographs [1–3].

It is well known that univalent functions are injective
functions. Hence, they are invertible, and the inverse
functions may not be defned on the entire unit disk D. In
fact, the Koebe one-quarter theorem tells us that the image of
D under any function f ∈ S contains the disk D(0, 1/4) of

center 0 and radius 1/4. Accordingly, every function f ∈ S
has an inverse f− 1 � g which is defned as

g(f(z)) � z, z ∈ D,

f(g(ω)) � ω, |ω|< r(f); r(f)≥
1
4
.

(2)

Moreover, the inverse function is given by

g(ω) � ω − a2ω
2

+ 2a
2
2 − a3􏼐 􏼑ω3

− 5a
3
2 − 5a2a3 + a4􏼐 􏼑ω4

+ · · · · .
(3)

For this reason, we defne the class Σ as follows. A
function f ∈ A is said to be biunivalent if both f and f− 1

are univalent in D. Terefore, let Σ denotes the class of all
biunivalent functions in A which are given by equation
(1). For example, the following functions belong to the
class Σ:

z

1 − z
, − log(1 − z), log

�����
1 + z

1 − z

􏽲

. (4)

However, Koebe function, 2z − z2/2 and z/1 − z2, does
not belong to the class Σ. For more information about
univalent and biunivalent functions, we refer the readers to
the articles [4–6], the monographs [7–9], and the references
therein.
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Recently, many researchers have studied the geometric
function theory in complex analysis, and the typical problem
in this feld is studying a functional made up of combina-
tions of the initial coefcients of the functions f ∈ A. For
a function in the classS, it is well known that |an| is bounded
by n. Moreover, the coefcient bounds give information
about the geometric properties of those functions. For in-
stance, the bound for the second coefcients of the class S
gives the growth and distortion bounds for the class. In
addition, the Fekete–Szegö functional arises naturally in the
investigation of univalency of analytic functions. In the year
1933, Fekete and Szegö [10] found the maximum value of
|a3 − λa2

2|, as a function of the real parameter 0≤ λ≤ 1 for
a univalent function f. Since then, the problem of dealing
with the Fekete–Szegö functional for f ∈ A with any
complex λ is known as the classical Fekete–Szegö problem.
Tere are many researchers investigated the Fekete–Szegö
functional and the other coefcient estimates problems, for
example, see the articles [4–6, 10–20] and the references
therein.

2. Preliminaries

In this section, we present some information that are curial
for the main results of this paper. In the year 1965, for
a, b, p, q ∈ F, Horadam [21] introduced the sequence Wn �

Wn(a, b; p, q) that is defned by the following recurrence
relation:

Wn+2 � pWn+1 + qWn, for n≥ 2, (5)

with the initial values W0 � a and W1 � b. Te characteristic
equation of this sequence is given by

t
2

− pt − q � 0. (6)

In addition, the generating function of Horadam se-
quence is

f(t) �
a + t(b − ap)

1 − pt − qt2
. (7)

Te Horadam sequences generalize many famous se-
quences such as Fibonacci, Lucas, Pell, Pell-Lucas, and
Jacobsthal sequences. Tese sequences have been studied for
a long time. For more information about these sequences, we
refer the readers to the articles [22, 23] and the
monograph [24].

In the year 1985, Horadam and Mahon defned the
Horadam polynomials hn(r) � hn(a, b; p, q) by the follow-
ing recurrence relation:

hn(r) � prhn−1(r) + qhn−2(r), for n≥ 3, (8)

with initial values

h1(r) � a, h2(r) � br,

h3(r) � pbr2 + qr.
(9)

Moreover, the generating function of Horadam poly-
nomials is given by

Π(r, z) � 􏽘
∞

n�1
hn(r)z

n− 1
�

a +(b − ap)rz
1 − prz − qz2

. (10)

For particular values of a, b, p, and q, the Horadam
polynomials lead to many known polynomials. In the fol-
lowing, we list some special cases of Horadam Polynomials.

(i) If a � b � p � q � 1, we get Fibonacci polynomials
Fn(r) whose recurrence relation is

Fn(r) � rFn−1(r) + Fn−2(r); withF1(r) � 1, F2(r) � r.

(11)

(ii) If a � 2 and b � p � q � 1, we get Lucas poly-
nomials Ln(r) whose recurrence relation is

Ln−1(r) � rLn−2(r) + Ln−3(r); with L0(r) � 2, L1(r) � r.

(12)

(iii) If a � q � 1 and b � p � 2, we get Pell polynomials
Pn(r) whose recurrence relation is

Pn(r) � 2rPn−1(r) + Pn−2(r); withP1(r) � 1, P2(r) � 2r. (13)

(iv) If a � b � p � 2 and q � 1, we get Pell–Lucas
polynomials Qn(r) whose recurrence relation is

Qn−1(r) � 2rQn−2(r) + Qn−3(r); withQ0(r) � 2, Q1(r) � 2r. (14)
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(v) If a � b � p � r � 1 and q � 2y, we get Jacobsthal
polynomials Jn(y) whose recurrence relation is

Jn(y) � Jn−1(y) + 2yJn−2(y); with J1(y) � 1, J2(y) � 1. (15)

(vi) If a � 2, b � p � r � 1 and q � 2y, we get
Jacobsthal–Lucas polynomials Jn(y) whose re-
currence relation is

Jn−1(y) � Jn−2(y) + 2yJn−3(y); withJ0(y) � 2,J1(y) � 1. (16)

(vii) If a � 1 and b � p � 2, and q � −1, we get Che-
byshev polynomials Hn(r) of the second kind
whose recurrence relation is

Hn−1(r) � 2rHn−2(r) − Hn−3(r); withH0(r) � 1, H1(r) � 2r. (17)

(viii) If a � b � 1 and p � 2, and q � −1, we get Che-
byshev polynomials Tn(r) of the frst kind whose
recurrence relation is

Tn−1(r) � 2rTn−2(r) − Tn−3(r); withT0(r) � 1, T1(r) � r. (18)

For more information about Horadam polynomials and
its special interesting cases, we refer the readers to the ar-
ticles [5, 6, 11, 22, 25–29], the monograph [24], and the
references therein.

In the year 1975, Ruscheweyh [30] introduced the op-
erator R which is defned, using the Hadamard product, as
follows:

R
λ
f(z) � f(z)∗

z

(1 − z)
1− λ, (19)

where f ∈ A, z ∈ D, and real number λ≥ − 1. For
λ � n ∈ N0 � N∪ 0{ }, we get the Ruscheweyh derivative Rn

of order n of the function f:

R
n
f(z) � z

z
n− 1

f(z)􏼐 􏼑
(n)

n!
. (20)

Moreover, the Taylor–Maclaurin series of Rnf is given
by

R
n
f(z) � z + 􏽘

∞

k�2
δ(n, k)akz

k
, (21)

δ(n, k) �
Γ(n + k)

(k − 1)!Γ(n + 1)
. (22)

We say that a function f ∈ Σ in the subclassH(n, r, α) if
it fulflls the subordination conditions, associated with the
Horadam polynomials, for all z, w ∈ D and for α> 0:

R
n
f(z)( 􏼁

′
+ αz R

n
f(z)( 􏼁

″ ≺Π(r, z) + 1 − a, (23)

and

R
n
g(w)( 􏼁

′
+ αw R

n
g(w)( 􏼁

″ ≺Π(r, w) + 1 − a. (24)

Te following lemma (see for details, [20]) is a well-
known fact, so we omit its proof.

Lemma 1. Let K, L ∈ R, and p, q ∈ C. If |p|<R and |q|<R,

|(K + L)p +(K − L)q|≤
2|K|R, if |K|≥ |L|,

2|L|R, if |K|≤ |L|.
􏼨 (25)
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Our investigation in this paper is motivated by the work
of the researchers presented in the papers [31, 32]. In this
presenting paper, we investigate a subclass of biunivalent
functions Σ in the open unit disk D, which we denote by
H(n, r, α)with α> 0, r ∈ R, and n ∈ N0. For functions in this
subclass, we derive upper bounds for the initial Tay-
lor–Maclaurin coefcients |a2| and |a3|. Furthermore, we
examine the corresponding Fekete–Szegö functional prob-
lem for functions belong to this subclass.

3. Initial Coefficient Estimates for the Function
Class H(n, r, α)

In this section, we provide bounds for the initial Tay-
lor–Maclaurin coefcients for the functions belong to the
class H(n, r, α) which are given by equation (1).

Theorem 2. Let the function f given by (1) be in the class
H(n, r, α). Ten,

a2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
|br|

����
2|br|

􏽰

��������������������������������������������������������������
3(1 + 2α)

2
(n + 2)b − 8p(1 + α)

2
(n + 1)􏼐􏽨 􏽩(n + 1)br2 − 8qa(1 + α)

2
(n + 1)

2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽱 , (26)

and

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2(n!)|br|

3(1 + 2α)(n + 2)!
+

b
2
r
2

4(1 + α)
2
(n + 1)

2. (27)

Proof. Let f belong to the class H(n, r, α). Ten, using (5)
and (6), we can fnd two analytic functions u and v on the
unit disk D such that

R
n
f(z)( 􏼁

′
+ αz R

n
f(z)( 􏼁

″ ≺Π(r, u(z)) + 1 − a, (28)

and

R
n
g(w)( 􏼁

′
+ βw R

n
g(w)( 􏼁

″ ≺Π(r, v(w)) + 1 − a, (29)

where the analytic functions u and v are given by

u(z) � 􏽘
∞

n�1
unz

n
, where z ∈ D,

v(w) � 􏽘
∞

n�1
vnw

n
, wherew ∈ D,

(30)

such that

u(0) � v(0) � 0, (31)

and for all z, w ∈ D

|u(z)|< 1,

|v(z)|< 1.
(32)

Moreover, it is well known that (see, for details, [7]) for
all j ∈ N,

uj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1,

vj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ 1.
(33)

Now, upon comparing the coefcients in both sides of
(28) and (29), we obtain the following equations:

2(1 + α)δ(n, 2)a2 � h2(r)u1, (34)

3(1 + 2α)δ(n, 3)a3 � h2(r)u2 + h3(r)u
2
1, (35)

−2(1 + α)δ(n, 2)a2 � h2(r)v1, (36)

and

3(1 + 2α)δ(n, 3) 2a
2
2 − a3􏼐 􏼑 � h2(r)v2 + h3(r)v

2
1. (37)

In view of equations (34) and (36), we get the following
equations:

u1 � −v1, (38)

and

8(1 + α)
2
[δ(n, 2)]

2
a
2
2 � h2(r)􏼂 􏼃

2
u
2
1 + v

2
1􏼐 􏼑. (39)

Moreover, if we add equations (35) and (37), we get

6(1 + 2α)δ(n, 3)a
2
2 � h2(r)􏼂 􏼃 u2 + v2( 􏼁 + h3(r)􏼂 􏼃 u

2
1 + v

2
1􏼐 􏼑.

(40)

In view of equation (39), equation (40) can be written as

a
2
2 �

h2(r)􏼂 􏼃
3

u2 + v2( 􏼁

6(1 + 2α)δ(n, 3) h2(r)􏼂 􏼃
2

− 8(1 + α)
2
[δ(n, 2)]

2
h3(r)

.

(41)

Using equations (22) and (41) becomes

a
2
2 �

b
3
r
3

u2 + v2( 􏼁

3(1 + 2α)(n + 2)(n + 1)b − 8p(1 + α)
2
(n + 1)

2
􏽨 􏽩br2 − 8qa(1 + α)

2
(n + 1)

2. (42)
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Using the facts |u2|≤ 1 and |v2|≤ 1, we get inequality
(26), which is the desired estimate of a2.

Next, we turn our attention to fnd an upper bound for
|a3|. Subtracting equation (37) from equation (35), we get

6(1 + 2β)σ(n, 3) a3 − a
2
2􏼐 􏼑 � h2(r) u2 − v2( 􏼁 + h3(r) u

2
1 − v

2
1􏼐 􏼑.

(43)

In view of equations (38) and (39), we obtain

a3 �
h2(r) u2 − v2( 􏼁

6(1 + 2α)δ(n, 3)
+

h2(r)􏼂 􏼃
2

u
2
1 + v

2
1􏼐 􏼑

8(1 + α)
2
[δ(n, 2)]

2.
(44)

Finally, using equation (22) and the facts |u2|≤ 1 and
|v2|≤ 1, we get

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤
2|br|

3(1 + 2α)(n + 2)(n + 1)
+

b
2
r
2

4(1 + α)
2
(n + 1)

2, (45)

which gives the estimate (27). Tis completes the proof of
Teorem 2.

Taking α � 1, we get the following corollary of Teorem
2. Tis proof is similar to the proof of previous theorem, so
we omit the proof’s details. □

Corollary  . Let the function f given by (1) be in the class
H(n, r, 1). Ten,

a2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤
|br|

����
2|br|

􏽰

��������������������������������������������

[[27(n + 2)b − 32p(n + 1)](n + 1)br2 − 32qa(n + 1)
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

􏽱 ,

a3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 ≤
2(n!)|br|
9(n + 2)!

+
b
2
r
2

16(n + 1)
2.

(46)

4. Fekete–Szegö Problem for the Function
Class H(n, r, α)

In this section, we consider the classical Fekete–Szegö
problem for our presenting class H(n, r, α).

Theorem 4. Let the function f given by (1) be in the class
H(n, r, α). Ten, for some λ ∈ R,

a3 − λa
2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2(1 − λ)b
4
r
4

Φ(n, r, α, a, b, p, q)
, if |1 − λ|≥Θ,

2|br|n!

3(1 + 2α)(n + 2)!
, if |1 − λ|≤Θ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(47)

where

Φ(n, r, α, a, b, p, q) � 3(1 + 2α)
2
(n + 2)(n + 1)b − 8p(1 + α)

2
(n + 1)

2
􏼐􏽨 􏽩br2 − 8qa(1 + α)

2
(n + 1)

2
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌,

Θ �
3(1 + 2α)

2
(n + 2)b − 8p(1 + α)

2
(n + 1)􏼐􏽨 􏽩br2 − 8qa(1 + α)

2
(n + 1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

3b
2
r
2
(1 + 2α)(n + 2)

.

(48)

Proof. For some real number λ, using equations (39) and
(43), we have

a3 − λa
2
2 �

h2(r) u2 − v2( 􏼁

6(1 + 2α)δ(n, 3)
+(1 − λ)a

2
2. (49)

Now, using equation (41), we obtain

a3 − λa
2
2 � h2(r)

u2 − v2

6(1 + 2α)δ(n, 3)
+

(1 − λ) h2(r)􏼂 􏼃
2

u2 + v2( 􏼁

6(1 + 2α)δ(n, 3) h2(r)􏼂 􏼃
2

− 8(1 + α)
2
[δ(n, 2)]

2
h3(r)

􏼢 􏼣. (50)

Te last expression can be written as follows:

a3 − λa
2
2 � h2(r) Δ(n, r, λ, α) −

n!

3(1 + 2α)(n + 2)!
􏼠 􏼡u2 + Δ(n, r, λ, α) +

n!

3(1 + 2α)(n + 2)!
􏼠 􏼡v2􏼢 􏼣, (51)
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where

Δ(n, r, λ, α) �
(1 − λ) h2(r)􏼂 􏼃

2

6(1 + 2α)δ(n, 3) h2(r)􏼂 􏼃
2

− 8(1 + α)
2
[δ(n, 2)]

2
h3(r)

. (52)

Using Lemma 1, we get the following equation:

a3 − λa
2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2 h2(r)‖Δ(n, r, λ, α)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, if |Δ(n, r, λ, α)|≥
n!

3(1 + 2α)(n + 2)!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

2 h2(r)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌n!

3(1 + 2α)(n + 2)!
, if |Δ(n, r, λ, α)|≤

n!

3(1 + 2α)(n + 2)!

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(53)

Simplifying the last inequality, we get the desired in-
equality (47), and this completes the proof of Teorem 4.

Te following corollary is just a consequence ofTeorem
4. Taking α � 1, we get the following Fekete–Szegö
inequality. □

Corollary 5. Let the function f given by (1) be in the class
H(n, r, 1). Ten, for some λ ∈ R,

a3 − λa
2
2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤

2(1 − λ)b
4
r
4

27(n + 2)(n + 1)b − 32p(n + 1)
2

􏽨 􏽩br2 − 32qa(n + 1)
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
, if |1 − λ|≥Θ,

2|br|n!

9(n + 2)!
, if |1 − λ|≤Θ,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(54)

where

Θ �
[27(n + 2)b − 32p(n + 1)]br2 − 32qa(n + 1)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

9b
2
r
2
(n + 2)

. (55)

 . Conclusion

Tis research paper has investigated a new subclass of
biunivalent functions, defned in terms of the Ruscheweyh
derivative Rn of order n, associated with the Horadam
polynomials. For functions belong to this function class, the
author has derived estimates for the Taylor–Maclaurin initial
coefcients and Fekete–Szegö functional problem. Te work
presented in this paper will lead to many diferent results for
subclasses defned by the means of special cases of Horadam
polynomials, such as Fibonacci polynomials, Lucas poly-
nomials, Pell polynomials, and Chebyshev polynomials of
frst and second kinds. Moreover, the presented work in this
paper will inspire researchers to extend its concepts to
harmonic functions and symmetric q-calculus.
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[15] Ş. Altinkaya and S. Yalçin, “On the Chebyshev coefcients for
a general subclass of univalent functions,” Turkish Journal of
Mathematics, vol. 42, no. 6, pp. 2885–2890, 2018.
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defned by q-Ruscheweyh diferential operator associated with
Horadam polynomials,” Palestine Journal of Mathematics,
vol. 11, no. 2, pp. 352–361, 2022.

[30] S. Ruscheweyh, “New criteria for univalent functions,” Pro-
ceedings of the American Mathematical Society, vol. 49, no. 1,
pp. 109–115, 1975.

[31] K. I. Abdullah and N. H. Mohammed, “Bounds for the co-
efcients of two new subclasses of bi-univalent functions,”
Science Journal of University of Zakho, vol. 10, no. 2, pp. 66–69,
2022.

[32] W. Al-Rawashdeh, “Fekete-Szegö functional of a subclass of
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