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Fractional-order derivative modeling continues to receive great interest among researchers across the globe. In this study,
Tuberculosis-COVID-19 coinfection is studied using Atangana–Baleanu fractional-order derivatives defned in Caputo sense. We
confrmed the existence and singularity of the solution and investigated the model’s equilibrium points. Additionally, we ex-
amined the model’s stability in terms of the Ulam–Hyers and generalized Ulam–Hyers stability criteria. Te basic reproduction
number R0 was calculated using the next-generation matrix approach. We also looked into the model’s disease-free equilibrium
point’s regional stability. Numerical scheme for simulating the fractional-order system with Mittag–Lefer Kernels are presented.
Numerical simulations are given to validate the model. Results of the simulation showed a decline in the number of COVID-19
infections within the population when the fractional operator was reduced.

1. Introduction

A viral pneumonia-like sickness known as COVID-19,
which is still a pandemic, frst appeared in Wuhan, China, in
December 2019, and it has since spread to 230 other
countries [1, 2]. As of 23rd July 2022, there had been
574,241,843 confrmed cases and 6,401,850 fatalities as
a result of the disease [3]. Te efects of COVID-19 on the
health of persons with underlying health issues such as
cancer, cerebrovascular disease, heart failure, coronary ar-
tery disease, cardiomyopathies, diabetes mellitus, tubercu-
losis, and hypertension are now well established [4].

A bacterial infection called tuberculosis (TB) is con-
tracted by breathing microscopic droplets from an infected
person’s cough or sneeze. Although the stomach (abdomen),
glands, bones, and neurological system can also be harmed,
the lungs are the organs most commonly afected [5]. In
2018, 1.7 billion people, or over 23 percent of the world’s
population, were infected with tuberculosis. Te most lethal

infectious illness in the world is tuberculosis, which claims
1.5 million lives per year. A TB bacteria infection does not
always result in illness. Latent tuberculosis infection (LTBI)
and TB disease are as a result two TB-related conditions. TB
infection can be fatal if not properly treated. Research
conducted by [6] indicates that TB causes 13% of COVID-19
fatalities.

Te dynamics of the spread of the disease can be studied
using the framework provided by the works in [7], although
there is currently little study on the modeling of TB and
COVID-19 coinfection.Tis study suggests using fractional-
order derivatives to investigate how COVID-19 and tu-
berculosis are transmitted. Worldwide, academics’ interest
in fractional-order derivative modeling is still very high
[7–18]. Leibniz believed fractional calculus to be a paradox,
yet it has since developed into a topic of interest for nu-
merous scholars from a variety of felds. As a result, several
novel concepts had been developed, leading to signifcant
divisions in the past with regard to fractional calculus [19].
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Fractional-order derivatives have been used to model
diseases such as measles [20], tuberculosis [21], HIV/AIDS
[17, 22], polio [18] and many more. A fractional-order
diferential equation model in the Caputo sense was pro-
posed by Lichae et al. [22] to explore the HIV-1 infection of
CD4+ T-cells and the impact of medication therapy. Using
the fractional operators Caputo and the Atangana–Baleanu,
authors in [21] created a unique fractional model to examine
the dynamics of the tuberculosis model with two age groups
of humans, namely, children and adults. Te Atanga-
na–Baleanu fractional derivative, which has its formulation
based on the renowned Mittag–Lefer kernel, was used by
Karaagac and Owalabi [18] in place of the conventional
polio model.

In some recent investigations, this fatal COVID-19
epidemic was mathematically modeled utilizing some of
these practical derivative operators [23–29]. Using the
fractional operators Caputo and the Atangana–Baleanu,
authors in [24], formulated a fractional-order SEIRD model
to study the spread of the disease in Italy. In order to analyze
the dynamics of the COVID-19 outbreak in Pakistan, Aba
Oud et al. [25] developed a fractional epidemic model in the
Caputo sense that took quarantine, isolation, and envi-
ronmental efects into account. To investigate the
COVID-19 epidemic in Nigeria, the authors of [26] for-
mulated an autonomous nonlinear Atangana–Baleanu
fractional-order diferential equation model. A nonlinear
COVID-19 epidemiological model of the Caputo type was
suggested by Ullah et al. [27] to investigate the importance of
lockdown dynamics in restricting the transmission of in-
fectious disease. To study the novel coronavirus outbreak,
Mekonen et al. [28] suggested an SEIQRDP fractional-order
deterministic model defned by Caputo derivative. In [29],
a new nonlinear SEIQR fractional-order pandemic model
for the Coronavirus disease (COVID-19) with Atanga-
na–Baleanu derivative was formulated.

It has been established that the memory efects are
connected to fractional-order, making it more useful for
modeling epidemic diseases [24]. Based on the literature’s
existing COVID-19 and TB studies, we recreated the work in
[7] using a fractional-order derivatives defned in Atanga-
na–Baleanu in Caputo sense. Te dynamics of the TB-
COVID-19 coinfection disease are poorly represented by the
classical model proposed in [7], which falls short of best
portraying nonlocal behaviour. Te Atangana–Baleanu and
Caputo derivatives, have a number of desirable properties,

such as a nonlocal and nonsingular kernel, which allows
a better explanation of the crossover behaviour in the model.
Te other operators, such as Caputo and Caputo-Fabrizio,
which lack these characteristics, may or may not be able to
adequately characterize the dynamics of the cormobidity
model. To the best of our knowledge, Modeling TB-
COVID-19 using the Atangana–Baleanu and Caputo frac-
tional derivatives has never been explored.

Afterwards, the article is divided into the following
sections: In Section 2, we designed and investigated
a mathematical model utilizing the fractional-order de-
rivative defned in the Caputo meaning of Atanga-
na–Baleanu, and then we presented a few defnitions in
fractional calculus. Additionally, we talked about themodel’s
stability analysis in the context of Ulam–Hyers and gen-
eralized Ulam–Hyers stability criteria. We identifed the
qualitative characteristics of the model in Section 3. Using
the next-generation method, we calculated the fundamental
reproduction number. As in [7], we ascertained the equi-
librium points and stability of the disease-free equilibrium
point. A numerical scheme for the fractional-order model is
implemented in Section 4. Te numerical simulation of the
model is covered in Section 5 of the study. We looked into
how the diferent compartments are afected by the
fractional-order operator. Finally, we examined and sum-
marized the fndings of our developed fractional-order
model in Section 6.

2. Model Formulation

In this section, we used fractional derivatives defned in the
senses of Atangana–Baleanu and Caputo to improve the TB
and COVID-19 comorbidity model provided in [7]. Te
population comprises of eight (8) mutually exclusive classes,
namely, susceptible individuals S(t), latent TB infected
individuals LT(t), active TB infected individuals IT(t),
COVID-19 asymptomatic individuals IA(t), COVID-19
symptomatic individuals IS, latent TB and COVID-19
coinfected individuals LTC(t), active TB and COVID-19
coinfected individuals ITC, and recovered population from
both TB and COVID-19 R(t). We considered all the as-
sumptions in [7]. We defned the fractional-order operator
as b, where 0< b≤ 1. Te schematic diagram of the model is
given in Figure 1.

Te following fractional derivatives describe the fol-
lowing model:
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ABC
b D

b
t S � λb

− λT + λC + μb
􏼐 􏼑S,

ABC
b D

b
t LT � λTS − μb

+ αb
+ ηbλC + ωb

􏼐 􏼑LT,

ABC
b D

b
t IT � αb

LT + q
bσb

LTC + n
bτb

ITC − δb
T + c

b
+ μb

+ θb
􏼐 􏼑IT,

ABC
b D

b
t IA � λCS − φb

+ ϵbλT + πb
+ μb

􏼐 􏼑IA,

ABC
b D

b
t IS � φb

IA + p
bσb

LTC + m
bτb

ITC − ]b
+ μb

+ δb
C + ψb

􏼐 􏼑IS,

ABC
b D

b
t LTC � ηbλCLT + ϵbλTIA − δb

C + ρb
+ μb

+ σb
􏼐 􏼑LTC,

ABC
b D

b
t ITC � ρb

LTC + θb
IT + ]b

IS − μb
+ δb

TC + τb
􏼐 􏼑ITC,

ABC
b D

b
t R � ωb

LT + πb
IA + c

b
IT + ψb

IS + σb 1 − p
b

+ q
b

􏼐 􏼑􏼐 􏼑LTC + 1 − m
b

+ n
b

􏼐 􏼑􏼐 􏼑τb
ITC − μb

R,

(1)

with force of infection

λT(t) � βb
1

IT(t) + ITC(t)

N(t)
􏼠 􏼡, λC(t) � βb

2
IA(t) + IS(t) + LTC(t) + ITC(t)

N(t)
􏼠 􏼡, (2)

and non-negativity initial conditions S(0)≥ 0, LT(0)≥ 0,

IT(0)≥ 0, IA(0)≥ 0, IS(0)≥ 0, LTC(0)≥ 0, ITC ≥ 0, and
R(0)≥ 0.Te parameter and description are given in Table 1.

2.1. Preliminaries. In this section, we reviewed the funda-
mental defnitions of fractional calculus that were provided
in [8] and were applied in this work.

Defnition 1. Te fractional derivative of order b is defned
by Liouville and Caputo (LC) in [8, 11, 30] as follows:

C
b D

b
t h(t) �

1
Γ(1 − b)

􏽚
t

0
(t − p)

− b
h
•

(p)dp, 0< b≤ 1,

zh(p)

zt
� h

•

(p), b � 1.

(3)
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Figure 1: Schematic diagram of the tuberculosis-COVID-19 model.
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Defnition 2. Te Liouville–Caputo sense defnition of the
Atangana–Baleanu fractional derivative is given in [8, 9].

ABC
b D

b
t h(t) �

B(b)

(1 − b)
􏽚

t

0
Eb − b

(t − p)
b

1 − b
􏼠 􏼡􏼠 􏼡h

•

(p)dp,

(4)

where B(b) � 1 − b + b/Γ(b) is the normalized function.

Defnition 3. Regarding the Atangana–Baleanu–Caputo
derivative, the relevant fractional integral is defned as
follows [8]:

ABC
b I

b
t h(t) �

(1 − b)

B(b)
h(t) +

b

B(b)Γ(b)
􏽚

t

0
(t − p)

b− 1
h(p)dp.

(5)

Tey computed the Laplace transform of both de-
rivatives and obtained the following equation [15]:

L 0
ABC

D
b
t h(t)􏽮 􏽯 �

B(b)H(q)q
b

− q
b− 1

h(0)

(1 − b) q
b

+ b/1 − b􏼐 􏼑
. (6)

where L is the Laplace transform operator.

Theorem 1. For a function h ∈ C[a, b], the following results
holds [8, 12]: ‖b

ABCDb
t r(t)‖<B(b)/(1 − b)‖h(t)‖, where

‖h(t)‖ � maxa≤t≤b|h(t)|.

Furthermore, the Atangana–Baleanu–Caputo de-
rivatives fulfl the following Lipschitz condition [8, 12]:

b
ABC

D
b
,th1(t)− b

ABC
D

b
t h2(t)

�����

�����<ω h1(t) − h2(t)
����

����. (7)

2.2. Hyers–Ulam Stability

Defnition 4. Equation (1)’s ABC fractional system is con-
sidered to be Hyers–Ulam stable if for every Φi > 0, i ∈ Nk

there exists constants λi > 0, i ∈ Nk satisfying the following
equation:

F(t) −
1 − b

B(b)
Φi(b, t, F(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φi(b, ς, F(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λi, (8)

and there exist F
•

(t) where

Table 1: Parameter and description.

Parameter Description
λ Recruitment rate
β2 Transmission rate of COVID-19
β1 Transmission rate of TB disease
α Te rate at which latent TB infected individuals becomes active TB
φ Te rate at which asymptomatic individuals becomes symptomatic
μ Natural death rate
δT Death rate due to TB disease
δC Disease-induced death rate of COVID-19
θ COVID-19 infection rate from the TB infected individuals
π Recovery rate of asymptomatic individuals
ψ Recovery rate of symptomatic individuals
σ Te rate at which individuals leave the LTC compartment
c Te recovery rate of TB infected individuals
τ Te rate at which individuals move from the coinfected class
ρ Transfer rate of latent TB-COVID-19 patients to coinfected TB-COVID-19
η Rate at which latent TB individuals contract COVID-19
ϵ Te rate at which asymptomatic individuals become exposed to TB
v Disease-induced death rate
ω Recovery rate of TB latent infected individuals
n Recovery rate of ITC individuals from COVID-19
m Recovery rate of ITC individuals from COVID-19
p Recovery rate of LTC individuals from COVID-19
q Recovery rate of LTC individuals from TB

4 International Journal of Mathematics and Mathematical Sciences



F
•

(t) �
1 − b

B(b)
Φi(b, F(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φi(b, ς, F

•

(ς))dς, (9)

such that

|F(t) − F
•

(t)|≤ ξiλi. (10)

Now considering the system (1), we have the following
equation:

S(t) −
1 − b

B(b)
Φ1(b, t, S(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ1(b, ς, S(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ1,

LT(t) −
1 − b

B(b)
Φ2 b, t, LT(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ2(b, ς, L(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ2,

IT(t) −
1 − b

B(b)
Φ3 b, t, IT(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ3 b, ς, IT(τ)( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ3,

IA(t) −
1 − b

B(b)
Φ4 b, t, IA(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ4 b, ς, IA(τ)( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ4,

IS(t) −
1 − b

B(b)
Φ5 b, t, IS(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ5 b, ς, IS(τ)( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ5,

LTC(t) −
1 − b

B(b)
Φ6 b, t, LTC(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ6 b, ς, LTC(τ)( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ6,

ITC(t) −
1 − b

B(b)
Φ7 b, t, ITC(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ7 b, ς, ITC(τ)( 􏼁dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ7,

R(t) −
1 − b

B(b)
Φ8(b, t, R(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − ς)b− 1Φ8(b, ς, R(τ))dτ

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ λ8,

(11)

and there exist S
•

(t), LT

•

(t), IT

•

(t), IA

•

(t),􏼚

IS

•

(t), LTC

•

(t), ITC

•

(t), R
•

(t)􏼛, where
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S
•

(t) �
1 − b

B(b)
Φ1(b, t, S(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ1(b, τ, S
•

(τ))dτ,

• LT(t) �
1 − b

B(b)
Φ2 b, t, LT(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ2(b, τ, L
•

(τ))dτ,

• IT(t) �
1 − b

B(b)
Φ3 b, t, IT(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ3 b, τ, I
•

T(τ)􏼒 􏼓dτ,

• IA(t) �
1 − b

B(b)
Φ4 b, t, IA(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ4 b, τ, I
•

A(τ)􏼒 􏼓dτ,

• IS(t) �
1 − b

B(b)
Φ5(b, t, Q(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ3 b, τ, • IS(τ)( 􏼁dτ,

• LTC(t) �
1 − b

B(b)
Φ6 b, t, LTC(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ6 b, τ, • LTC(τ)( 􏼁dτ,

• ITC(t) �
1 − b

B(b)
Φ7 b, t, ITC(t)( 􏼁 +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ7 b, τ, • ITC(τ)( 􏼁dτ,

R
•

(t) �
1 − b

B(b)
Φ8(b, t, R(t)) +

b

B(b)Γ(b)
× 􏽚

t

0
(t − τ)

b− 1Φ8(b, τ, R
•

(τ))dτ,

(12)

such that

|S(t) − S
•

(t)|≤ ξ1λ1, LT(t) − • LT(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ2λ2, IT(t) − • IT(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ3λ3, IA(t) − • IA(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ4λ4,

IS(t) − • IS(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ5λ5, LTC(t) − • LTC(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ6λ6, ITC(t) − • ITC(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ ξ7λ7, |R(t) − R
•

(t)|≤ ξ8λ8.
(13)

3. Analysis of the Coinfection Model

Te disease-free equilibrium (E0) is the steady state solution
where there is no infection in the population.Tis is given as
follows:

E0 � S
0
, L

0
T, I

0
T, I

0
A, I

0
S, L

0
TC, I

0
TC, R

0
􏼐 􏼑 �

λb

μb
, 0, 0, 0, 0, 0, 0, 0⎛⎝ ⎞⎠.

(14)

Te endemic equilibrium (E1) of system (1) is
E1 � (S∗, L∗T, I∗T, I∗A, I∗S , L∗TC, I∗TC, R∗), where

S
∗

�
λb

λT + λC + μb
, L
∗
T �

λTS
∗

αb
+ ηbλC + μb

+ ωb
, I
∗
A �

λCS
∗

πb
+ μb

+ φb
+ ϵbλT

,

I
∗
T �

αL
∗
T + qσb

LTC + nτb
I
∗
TC

c
b

+ μb
+ δb

T + θb
, I
∗
S �

φb
L
∗
A + pσb

L
∗
TC + mτb

I
∗
TC

βgA
∗

+ v
b

+ μb
+ φb

+ δb
C􏼐 􏼑

,

L
∗
TC �

ηbλCL
∗
T + ϵQ∗

μ
,

I
∗
TC �

ρb
L
∗
TC + θb

I
∗
T + ]b

I
∗
S

μb
+ δb

TC + τb
􏼐 􏼑

,

R
∗

�
ωb

L
∗
T + πb

I
∗
A + c

b
I
∗
T + ψb

I
∗
S + σb 1 − p

b
+ q

b
􏼐 􏼑􏼐 􏼑L

∗
TC + 1 − m

b
+ n

b
􏼐 􏼑􏼐 􏼑τb

I
∗
TC

μb
.

(15)
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We now determine the system’s basic reproduction
number which is the total number of secondary cases that
can be produced by a single infected person over the course
of an illness in a population that is completely susceptible
[14]. Denote F and V, respectively, as matrices for the newly
created diseases and the transition terms we found using the
next-generation operator approach [14].

F �

0 βb
1 0 0 0 βb

1

0 0 0 0 0 0

0 0 βb
2 βb

2 βb
2 βb

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

V �

A1 0 0 0 0 0

− αb
A2 0 0 − qσb

− nτb

0 0 A3 0 0 0

0 0 − φ A4 − pσ − mτb

0 0 0 0 A5 0

0 − θb 0 − v 0 A6

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(16)

where A1 � μb + αb + ωb, A2 � μb + θb + δT
b + cb, A3 � μb +

φb + πb A4 � μb + v + δb
C + ψb, A5 � μb + δb

C + ρb + σb, and
A6 � μb + τb + δb

TC

Te basic reproduction number is the largest eigenvalue
of the next-generation matrix FV− 1 given by the following
equation:

R0 � max R1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, R2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏽮 􏽯, (17)

where

R1 �
A1J4 + αb

A3J1 −

�������������������������������������

αb
A
2
3J

2
1 − 2αb

A1A3J1J3 + 4φbαb
A1A3J

2
2 + A

2
1J

2
4

􏽱

2A1A2A3mv
bτb

+ A4 nθbτb
− A2A6􏼐 􏼑

,

R2 �
A1J4 + αb

A3J1 +

�������������������������������������

αb
A
2
3J

2
1 − 2αb

A1A3J1J3 + 4φbαb
A1A3J

2
2 + A

2
1J

2
4

􏽱

2A1A2A3mv
bτb

+ A4 nθbτb
− A2A6􏼐 􏼑

,

(18)

where

J1 � − βb
1 A4A6 + θb

A4 − mv
bτb

􏼐 􏼑, J2 � − βb
2θ

b
A4 + mτb

􏼐 􏼑, J3 � − βb
1v

b
A2 + nτb

􏼐 􏼑,

J4 � − βb
2A2 A4A6 + φb

A6 + v
bφb

− mv
bτb

􏼐 􏼑 − nθbτb
A4 + φb

􏼐 􏼑,

J5 � − βb
1 ρb

A4 A2 + v
bτb

􏼐 􏼑 + qσb
A4 A6 + θb

􏼐 􏼑 + A2pqv
b

+ v
bρbτb

(np − mq)􏼐 􏼑,

J6 � − βb
2 A2A4 A6 + ρb

􏼐 􏼑 + A2mτb ρb
− v

b
􏼐 􏼑 + c2pσ

b
A6 + v

b
􏼐 􏼑 + J7􏼐 􏼑,

J7 � qθbσb
A4 + mτb

􏼐 􏼑 − nθbτb
A4 + pσb

􏼐 􏼑.

(19)

3.1. Local Stability of the Disease-Free Equilibrium Point.
Te Jacobian matrix of the system (1) evaluated at the
disease-free equilibrium point is as follows:
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J �

− μb 0 − βb
1 − βb

2 − βb
2 − βb

2 − βb
1 − βb

2 0

0 − A1 βb
1 0 0 0 βb

1 0

0 αb
− A2 0 0 qσb

nτb 0

0 0 0 βb
2 − A3 βb

2 βb
2 βb

2 0

0 0 0 φb
− A4 pσb

mτb 0

0 0 0 0 0 − A5 0 0

0 0 θb 0 v
b ρb

− A6 0

0 ωb
c

b πb ψb
(1 − (p + q))σb

(1 − (m + n))τb
− μb

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (20)

Te frst three eigenvalues of system (20) can be obtained
from the frst and eight columns and the sixth row given as
λ1,2 � − μb and λ3 � − A5. Te remaining fve eigenvalues are
obtained from the characteristic equation of the following
reduced matrix:

J �

− A1 βb
1 0 0 βb

1

αb
− A2 0 0 nτb

0 0 βb
2 − A3 βb

2 βb
2

0 0 φb
− A4 mτb

0 θb 0 v
b

− A6

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

Te characteristic equation of system (21) is as follows:

ξ5 + b1ξ
4

+ b2ξ
3

+ b3ξ
2

+ b4ξ + b5 � 0, (22)

where

b1 � βb
2 + A2 + A6 − A1 − A3 − A4􏼐 􏼑,

b2 � βb
2φ

b
+ A4 βb

2 − A3􏼐 􏼑 + p1p2 + αbβb
1 + nτbθb

− p3􏼐 􏼑,

b3 � αbβb
1 A6 + θb
􏼐 􏼑 + A1 nθτ − A2A6( 􏼁 − βb

2φ
b

+ p1A4 βb
2 − A3􏼐 􏼑 − p2 αbβb

1 + nτbθb
− p3􏼐 􏼑,

b4 � − βb
2φ

b
+ A4 βb

2 − A3􏼐 􏼑􏼐 􏼑 αbβb
1 + nτbθb

− p3􏼐 􏼑 − p2 αbβb
1 A6 + θb
􏼐 􏼑 + A1 nθbτb

− A2A6􏼐 􏼑􏼐 􏼑,

b5 � βb
2φ

b
+ A4 βb

2 − A3􏼐 􏼑􏼐 􏼑 αbβb
1 A6 + θb
􏼐 􏼑 + A1 nθbτb

− A2A6􏼐 􏼑􏼐 􏼑,

p1 � A2 + A6 − A1,

p2 � A3 + A4 + βb
2,

p3 � A2A6 + A1 A2 + A6( 􏼁.

(23)

Tus, using the Routh–Hurwitz stability criterion, the
roots of characteristic (22) is stable if it satisfes the following
condition:

bi > 0, i � 1, 2, 3, 4, 5,

b1b2b3 > b3
2

+ b1
2
b4,

b1b4 − b5( 􏼁 b1b2b3 − b3
2

− b1
2
b4􏼐 􏼑> b5 b1b2 − b3( 􏼁

2
+ b1b5

2
.

(24)

Theorem  . Te disease-free equilibrium point of the model
is locally asymptotically stable if the condition given in
equation (24) holds.

4. Numerical Scheme of the
Fractional Derivative

Let us consider the following general initial value problem:

b
ABC

D
b
t [ζ(t)] � r(t, ζ(t)), ζ(0) � ζo. (25)
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Applying the fundamental theorem of fractional calculus
to (25), we obtained the following equation:

ζ(t) − ζ(0) �
1 − b

G(b)
h(t, ζ(t)) +

b

Γ(b)G(b)
􏽚

t

0
(h(τ, ζ(τ))(t − τ)

b− 1dς,

(26)

where G(b) � 1 − b + b/Γ(b) is a normalised function and at
tx+1, and we have the following equation:

ζx+1 � ζo +
(1 − b)Γ(b)

(1 − b)Γ(b) + b
h tx, ζ tx( 􏼁( 􏼁 +

b

Γ(b) + b(1 − Γ(b))
􏽘

x

y�0
􏽚

t

ty

h × tx+1 − ς( 􏼁
b− 1

. (27)

Implementing two-step Lagrange’s interpolation poly-
nomial on the interval [tx, tx+1] [10], we have the following
equation:

H �
h ty, ζy􏼐 􏼑

u
τ − ty− 1􏼐 􏼑 −

h ty− 1, ζy− 1􏼐 􏼑

u
τ − ty􏼐 􏼑. (28)

Equation (28) is replaced with equation (24) and by
performing the steps given in [9], we obtained the following
equation:

F tx+1( 􏼁 � F t0( 􏼁 +
Γ(b)(1 − b)

Γ(b)(1 − b) + b
h tn, ζ tx( 􏼁( 􏼁 +

1
(b + 1)Γ(b) + b

􏽘

x

y�0
u

b
h ty, ζ ty􏼐 􏼑􏼐 􏼑(x + 1 − y)

b

× T − h
b
h ty− 1, ζ ty− 1􏼐 􏼑􏼐 􏼑(x + 1 − y)

b+1
(x − y + 2 + b) − (x − y)

b
(x − y + 1 + b).

(29)

To obtain high stability, we replaced the step size u in
equation (29) with ϕ(u) such that ϕ(u) � u + O(u2),
0< ϕ(u)≤ 1 [13].

Te new scheme which is called the nonstandard
two–step Lagrange interpolation method (NS2LIM) is given
as follows:

ζ tx+1( 􏼁 � ζ t0( 􏼁 +
Γ(b)(1 − b)

Γ(b)(1 − b) + b
h tx, ζ tx( 􏼁( 􏼁 +

1
(b + 1)(1 − b)Γ(b) + b

P

× T − φ(h)
b
h ty− 1, ζ ty− 1􏼐 􏼑􏼐 􏼑(x + 1 − y)

b+1
(x − y + 2 + b)

− (x − y)
b
(x − y + 1 + b),

(30)

where T � (x − y + 2 + b) − (x − y)b(x − y + 2 + 2b)

P � 􏽘
x

y�0
φ(u)

b
h ty, ζ ty􏼐 􏼑􏼐 􏼑(x + 1 − y)

b
. (31)

5. Numerical Simulation

In this study, we have replaced the time-ordinary derivative
described in [7] with the time-dependent fractional-order
derivatives in equation (1) and the model (1) was solved us-
ing the numerical scheme described in equation (27) using the
parameter values given in Table 2 below. Te initial conditions
are S(0) � 10, 0000, LT � 100, IT � 2, IA � 10, IS � 3, LTC �

3, ITC � 2, andR � 3 [7]. Computational simulations for the
proposed method of this study is performed using MATLAB
and the results are displayed in Figure 2–9.

Te dynamic behaviour of each compartment during
a 120-day period is shown in Figures 2-9. As the fractional
operator b falls from 1.0 to 0.4, the population of susceptible
people shrinks. Te susceptible population is found to
rapidly decline and approach zero during the frst 20 days of
the outbreak when b � 0.4 (see Figure 2). Figures 3 and 4
show that as the fractional operator value lowers from 1.0,
the number of people with latent and active tuberculosis
decreases more quickly. Te number is quite small and falls
to zero even before the frst 10 days of the outbreak, as can be
seen at b � 0.4. Figure 5 shows that COVID-19 asymp-
tomatic persons attain their highest peak on the tenth day at
b � 0.6 before rapidly declining. After the frst 20 days and
through the end of the time, the population is steady at the
integer value. Additionally, it begins to degrade more
quickly around b � 0.4 and reaches zero on the tenth day.
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Table 2: Parameter values.

Parameter Value Source
λ 500 [7]
β2 0.659 [7, 28]
β1 0.6 [7, 27]
α 0.25 [7, 27]
φ 0.02 [7]
μ 0.0477 [7, 28]
δT 0.01 [7, 27]
δC 0.023 [7, 28]
θ 0.001 [7]
π 0.05 [7]
ψ 0.5 [7]
σ 0.01 [7]
c 0.516 [7]
τ 0.003 [7]
ρ 0.02 [7]
η 0.03 [7]
ϵ 0.03 [7]
v 0.002 [7]
ω 0.09 [7, 26]
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Figure 2: Behaviour of the susceptible individuals at diferent values of b.
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Figure 3: Behaviour of the latent TB infected individuals at diferent values of b.
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Figure 4: Behaviour of the active TB infected individuals at diferent values of b.
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Figure 5: Behaviour of the COVID-19 asymptomatic individuals at
diferent values of b.
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Figure 6: Behaviour of the COVID-19 symptomatic individuals at
diferent values of b.
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Figure 7: Behaviour of the latent TB-COVID-19 coinfected in-
dividuals at diferent values of b.
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Figure 8: Behaviour of the active TB-COVID-19 coinfected in-
dividuals at diferent values of b.
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Te dynamics of the COVID-19 symptomatic compartment
for the frst 120 days are shown in Figure 6.Te population is
observed to be constant across the duration at b � 0.8. Te
population becomes zero before the frst 20 days at b � 0.4. A
drop in the value of the fractional operator b from 1.0 to 0.4
has an impact on the number of people who recover from the
disease as well (see Figure 9). Additionally, a decrease in the
fractional operator value causes a quicker decline in the
proportion of people with latent and active TB-COVID-19
coinfections (see Figures 7 and 8)

6. Conclusion

Based on the integer-order model of [7], we have presented
a fractional-order epidemic model for the dynamics of the
TB-COVID-19 coinfection. Tis study presented the qual-
itative analysis of the fractional-order model. We proved the
asymptotic stability of the disease-free equilibrium and
determined the basic reproduction number using the next-
generation approach. Furthermore, we proved the unique-
ness of the solution and established the stability of the model
using Ulam–Hyers stability criteria. A numerical scheme for
simulating the fractional-order system with Mittag–Lefer
Kernels is presented. Finally, a numerical simulation was
performed to validate the model. Results of the simulation
showed a decline in the number of COVID-19 infections
within the population when the fractional operator was
reduced. Te analysis of the model is far from complete.
Researchers can extend this model to capture stochastic
dynamics of the method used.
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