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Let G be a group and R be a G-graded ring with non-zero unity.Te goal of our article is reconsidering some well-known concepts
on graded rings using a group homomorphism α: G⟶ G. Next is to examine the new concepts compared to the known
concepts. For example, it is known that (R, G) is weak if whenever g ∈G such that Rg = 0, then Rg−1 = 0. In this article, we also
introduce the concept of α-weakly graded rings, where (R, G) is said to be α-weak whenever g ∈G such that Rg = 0, and Rα(g) = 0.
Note that if G is abelian, then the concepts of weakly and α-weakly graded rings coincide with respect to the group homo-
morphism α(g)=g− 1. We introduce an example of non-weakly graded ring that is α-weak for some α. Similarly, we establish and
examine the concepts of α-non-degenerate, α-regular, α-strongly, α-frst strongly graded rings, and α-weakly crossed product.

1. Introduction

Let G be a group and R be a ring with unity 1. If additive
subgroups Rg of R such that R= ⊕

g∈G
Rg and RgRh ⊆Rgh exist

for all g, h ∈G, then R is said to be G-graded. A G-graded
ring R is denoted by (R, G). Te elements of Rg are called
homogeneous of degree g andRe.Te identity component of
R is a subring of R with 1 ∈Re. For x ∈R, it can be written
uniquely as 􏽐g∈Gxg where xg is the component of x in Rg

and xg = 0 except fnitely many.
Te set of all homogeneous elements of R is ∪

g∈G
Rg and is

denoted by h(R). Te support of (R, G) is defned by

supp(R, G)= g ∈G: Rg ≠ 0􏽮 􏽯. Let R be a graded ring and let I

be an ideal of R. If I= ⊕
g∈G

(I∩Rg), i.e., if whenever x ∈ I,
then xg ∈ I for all g ∈G. Ten I is said to be a graded ideal.
An ideal of a graded ring is not necessarily graded (see [1, 2]).

Te concepts of faithful, non-degenerate, regular, and
strongly graded rings have been introduced and examined in
[2]; (R, G) is said to be faithful if for all g, h ∈G,

ag ∈Rg − 0{ }, we have agRh ≠ 0{ } and Rhag ≠ 0{ }. It is clear if
(R, G) is faithful, then supp(R, G)=G. (R, G) is said to be
non-degenerate if for all g ∈G, ag ∈Rg − 0{ }, we have
agRg−1 ≠ 0{ } and Rg−1ag ≠ 0{ }. Otherwise, (R, G) is said to be
degenerate. (R, G) is said to be regular if for all g ∈G,
ag ∈Rg, we have ag ∈ agRg−1ag. Evidently, every regular
graded ring is considered non-degenerate graded, and every
faithful graded ring is said to be non-degenerate. (R, G) is
said to be strong if RgRh =Rgh for all g, h ∈G. Undoubtedly,
every strongly graded ring is faithful. Firstly, strongly graded
rings have been introduced and investigated in [3]; (R, G) is
said to be frst strongly if 1 ∈RgRg−1 for all g ∈ supp(R, G).
Terefore, every strongly graded ring is frst strong. We can
certainly say that if (R, G) is strong, then supp(R, G)=G. On
the other hand, if (R, G) is frst strong, then supp(R, G) is
a subgroup of G. Surely, (R, G) is frst strong if and only if
supp(R, G) is a subgroup of G and RgRh =Rgh for all
g, h ∈ supp(R, G). Additionally, in [3], the concept of second
strongly graded rings was introduced; (R, G) is second
strong if supp(R, G) is a monoid in G and RgRh =Rgh for all
g, h ∈ supp(R, G). Apparently, every strongly graded ring is
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second strong. Furthermore, every frst strongly graded ring
is second strong. In fact, if (R, G) is second strong and
supp(R, G) is a subgroup of G, then (R, G) is frst strong.
Moreover, (R, G) is frst strong if and only if (R, G) is second
strong and non-degenerate. Furthermore, (R, G) is strong if
and only if (R, G) is second strong and faithful. In [4], the
concept of weakly graded rings was proposed and in-
vestigated; (R, G) is said to be weak if g ∈G with Rg = 0{ },
and Rg−1 = 0{ }. Every non-degenerate graded ring is weak,
and if supp(R, G) is a subgroup of G, then (R, G) is weak.
Terefore, we say that every frst strongly graded ring is
weak, and every strongly graded ring is weak. On the other
hand, a second strongly graded ring is not necessarily weak,
and a weakly graded ring is not necessarily second strong
(see [4]). Following [2], (R, G) is said to be a crossed product
if Rg contains a unit for all g ∈G. On the other hand, the
concept of weakly crossed product (crossed product over the
support) has been proposed in [5] and was investigated in [4]
where (R, G) is said to be a weakly crossed product if Rg

contains a unit for all g ∈ supp(R, G). It is clear that if (R, G)

is a crossed product, then (R, G) is a weakly crossed product.
However, the converse is not necessarily true. If |G|≥ 2, then
the trivial graduation of R (Re =R and Rg = 0 otherwise) is
a weakly crossed product, but it is not a crossed product
since for g≠ e, Rg does not contain units. For more ter-
minology, see [6–9].

In this article, we also reconsider some of the afore-
mentioned concepts using a group homomorphism
α: G⟶ G and examine the new concepts compared to the
aforementioned concepts. In Section 2, we introduce the
concepts of α-non-degenerate and α-regular graded rings
and examine them in comparison to non-degenerate and
regular graded rings. (R, G) is said to be α-non-degenerate.
If for all g ∈G, ag ∈Rg − 0{ }, we have agRα(g) ≠ 0{ } and
Rα(g)ag ≠ 0{ }. Otherwise, (R, G) is said to be α-degenerate.
Clearly, if G is abelian, then the concepts of non-degenerate
and α-non-degenerate graded rings coincide regarding the
group homomorphism α(g)=g− 1. However, Example 1
introduces a degenerate graded ring that is α-non-
degenerate for some α. In Section 3, we establish the con-
cepts of α-strongly and α-frst strongly graded rings and
study them in comparison to strongly and frst strongly
graded rings. If RgRα(g) =Rgα(g), for all g ∈G, then (R, G) is
said to be α-strong. It is clear that every strongly graded ring
is α-strong, for every α. However, if (R, G) is α-strong, then
(R, G) is not necessarily strong, as we see in Example 3 where
(R, G) is said to be α-frst strong if RgRα(g) =Rgα(g), for all
g ∈ supp(R, G). Clearly, every α-strongly graded ring is
α-frst strong. However, the converse is not necessarily true,
as we see in Example 4.

Additionally, if (R, G) is frst strong and α(supp(R, G))⊆
supp(R, G), then (R, G) is α-frst strong. However, if (R, G) is
α-frst strong, then (R, G) is not necessarily frst strong, even if
α(supp(R, G))⊆ supp(R, G), as mentioned in Example 3;
(R, G) is α-frst strong since it is α-strong, and
α(supp(R, G))⊆ supp(R, G), but (R, G) is not frst strong since
supp(R, G) is not a subgroup of G. In Section 4, we present the
concepts of α-weakly graded rings and α-weakly crossed
products and study them in comparison to weakly graded rings

and weakly crossed products. (R, G) is said to be α-weak if
whenever g ∈G such that Rg = 0{ }, then Rα(g) = 0{ }. It is clear
that if G is abelian, then the concepts of weakly and α-weakly
graded rings coincide regarding the group homomorphism
α(g)=g− 1. However, Example 5 is a non-weakly graded ring
that is α-weak for some α. (R, G) is said to be α-weakly crossed
product if Rα(g) contains a unit for all g ∈ supp(R, G). Te
concepts of weakly crossed product and α-weakly crossed
product coincide with respect to the identity homomorphism.
However, Example 8 is on non-weakly crossed product that is
α-weakly crossed product for some α.

2. α-Non-Degenerate and α-Regular
Graded Rings

In this section, we introduce the concepts of α-non-
degenerate and α-regular graded rings and examine them
compared to non-degenerate and regular graded rings.

Defnition 1. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. Ten,

(1) (R, G) is added to be α-non-degenerate if for all
g ∈G, ag ∈Rg − 0{ }, we have agRα(g) ≠ 0{ } and
Rα(g)ag ≠ 0{ }. Otherwise,R is said to be α-degenerate.

(2) (R, G) is expressed to be α-regular if for all g ∈G,
ag ∈Rg, we have ag ∈ agRα(g)ag.

Clearly, if G is abelian, then the concepts of non-
degenerate and α-non-degenerate (regular and α-regular)
graded rings coincide regarding the group homomorphism
α(g)=g− 1. However, the next example introduces a de-
generate graded ring that is α-non-degenerate for some α.

Example 1. Let R=K[X], where K is a feld, and G=Z. Ten
R is G-graded by Rn =KXn, n≥ 0 and Rn = 0{ }. Consider the
group homomorphism α: G⟶ G such that α(n)= 2n. Let
n ∈G and an ∈Rn − 0{ },Rn ≠ 0{ }; thenRn =KXn, and an = aXn,
for some a ∈K − 0{ }. SinceRn ≠ 0{ }, n≥ 0, and α(n)= 2n is also
a non-negative integer, Rα(n) =R2n =KX2n, which implies that
an Rα(n) = aXnKX2n ≠ 0{ } as 0≠ aX3n ∈ an Rα(n). Similarly,
Rα(n) an ≠ 0{ }. Hence, (R, G) is α-non-degenerate. On the other
hand, (R, G) is degenerate since X ∈R1 − 0{ } with XR1−1 =X

R−1 = 0{ }.

Remark 2. Clearly, every faithful graded ring is α-non-
degenerate, for every α. However, if (R, G) is α-non-de-
generate, then (R, G) is not necessarily faithful as in Ex-
ample 1, where (R, G) is α-non-degenerate, but (R, G) is
not faithful since supp(R, G)≠G.

Theorem 3. Every α-regular graded ring is α-non-
degenerate.

Proof. Let (R, G) be α-regular. Suppose that g ∈G and
ag ∈Rg − 0{ }. Tis gives us 0≠ ag ∈ agRα(g)ag as (R, G) is
α-regular, which implies that agRα(g) ≠ 0 and Rα(g)ag ≠ 0,
and therefore (R, G) is α-non-degenerate. □
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Remark 4. If (R, G) is α-non-degenerate, then (R, G) is not
necessarily α-regular as in Example 1, (R, G) is α-non-de-
generate, and (R, G) is not α-regular since X ∈R1 with
X ∉ XRα(1)X=XR2X=XKX2X=KX4.

Theorem 5. Let (R, G) be α-non-degenerate such that α2 = I.
If Rg = 0{ }, for some g ∈G, then Rα(g) = 0{ }.

Proof. Assume that Rα(g) ≠ 0. Ten there is aα(g) ∈Rα(g) −

0{ }; therefore, since (R, G) is α-non-degenerate, 0≠ aα(g)

Rα(α(g)) = aα(g)Rg, which implies that Rg ≠ 0{ }, which is
a contradiction. Hence, Rα(g) = 0{ }. □

Theorem 6. Let (R, G) be α-non-degenerate such that α2 = α.
Suppose that H= g ∈G: g2 ∈Ker(α)􏼈 􏼉. If I will be a graded
right (left) ideal of R with Ie = 0{ }, then Iα(g) = 0{ }, for all
g ∈H.

Proof. Let g ∈H.Ten Iα(g)Rα(g) = (I∩Rα(g)) Rα(g) ⊆ I Rα(g)

∩Rα(g)Rα(g) ⊆ I∩Rα(g)α(g) = I∩Rα(g2) = I∩Re = Ie = 0{ }. So,
Iα(g) Rα(g) = 0{ }. Let aα(g) ∈ Iα(g). Ten aα(g) Rα(g) = 0{ }. If
aα(g) ≠ 0, then aα(g) ∈Rα(g) − 0{ }, and since (R, G) is α-non-
degenerate, 0≠ aα(g)Rα(α(g)) = aα(g)Rα(g), which is a contra-
diction. So, aα(g) = 0, and therefore Iα(g) = 0{ }. □

Corollary 7. Let (R, G) be α-non-degenerate such that
α2 = α. Suppose that g2 = e, for all g ∈G. If I is a graded right
(left) ideal of R with Ie = 0{ }, then Iα(g) = 0{ }, for all g ∈G.

Proof. Let g ∈G. Ten g2 = e, and so g2 ∈Ker(α), which
implies that g ∈H, where H= g ∈G: g2 ∈Ker(α)􏼈 􏼉, so
H=G, and hence the result holds by Teorem 6. □

Corollary 8. Let (R, G) be α-non-degenerate, where α is the
identity homomorphism. Suppose that g2 = e, for all g ∈G. If I

will be a graded right (left) ideal of R with Ie = 0{ }, then I= 0{ }.

Proof. By Corollary 7, Ig = 0{ }, for all g ∈G, which implies
that I= 0{ }.

Te next example shows that the condition “(R, G) is
α-non-degenerate regarding the identity homomorphism”
in Corollary 8 is necessary. □

Example 2. Consider R= a 0
b c

􏼠 􏼡: a, b, c ∈K􏼨 􏼩, where K is

a feld, and G=Z2 that satisfes g2 = e, for all g ∈G.

Ten R is G-graded by R0 =
K 0
0 K

􏼠 􏼡 and R1 =
0 0
K 0􏼠 􏼡.

Now, I=R
0 0
1 0􏼠 􏼡= 0 0

K 0􏼠 􏼡 is a graded left ideal of R

that satisfes

Ie = I0 =
0 0

0 0
􏼨􏼠 􏼡􏼩, but I≠

0 0

0 0
􏼨􏼠 􏼡􏼩. (1)

Note that (R, G) is α-degenerate with respect to the

identity homomorphism since A1 =
0 0
1 0􏼠 􏼡 ∈R1−

0 0
0 0􏼨􏼠 􏼡􏼩 with A1Rα(1) =A1R1 = 0 0

0 0􏼨􏼠 􏼡􏼩.

Theorem 9. Let (R, G) be α-non-degenerate, where α is the
identity homomorphism. Suppose that g2 = e, for all g ∈G. If
Re is a feld, then R is graded simple.

Proof. Let I be a graded ideal of R. If Ie = 0{ }, then
by Corollary 8, I= 0{ }. Suppose that Ie ≠ 0{ }. Ten Ie is
a non-zero ideal of Re, and then Ie =Re. Assume that g ∈G.
Ten Rg =RgRe =RgIe =Rg(I∩Re)⊆RgI∩RgRe ⊆ I∩Rg

⊆ I. So, Rg ⊆ I, for all g ∈G, which implies that R⊆ I, and
hence I=R. Tus, R is graded simple. □

Corollary 10. Let (R, G) be α-non-degenerate, where α is the
identity homomorphism. Suppose that g2 = e, for all g ∈G. If
Re is a feld, then R is graded Artinian and graded Noetherian.

Theorem 11. Consider R=K[X], where K is a feld. If R is
G-graded such that Re ⊆K, then either (R, G) is not α-non-
degenerate regarding the identity homomorphism or there is
g ∈G such that g2 ≠ e.

Proof. Since Re ⊆K, Re is a commutative ring with unity. Let
0≠ r ∈Re. Ten 0≠ r ∈K, and then r is unit in K, and hence
r− 1 ∈Re−1 =Re by ([4], Lemma 3.4). Hence, Re is a subfeld of
K. Let f be a non-constant homogeneous element of R. Ten
Ia = 〈rfn+a: r ∈R, n ∈N〉 (a ∈N) is a graded ideal of R with
I1 ⊃ I2 ⊃ . . ., but fn ∉ In for all n ∈N; let a ∈N and g ∈ Ia+1.
Ten g= rfn+(a+1) for some r ∈R and n ∈N and then
g= rf(n+1)+a ∈ Ia. Suppose that fn ∈ In for some n ∈N. Ten
fn = rft+n for some t ∈N and then, since R is an integral
domain, 1= rft, a contradiction since t ∈N and f is non-
constant. Terefore, there is no s ∈N with In = Is for all n≥ s,
i.e., R is not Artinian. Hence, by Corollary 10, either (R, G) is
not α-non-degenerate regarding the identity homomorphism
or there exists g ∈G such that g2 ≠ e. □

Remark 12. In Example 1, R=K[X] is graded where Re =K

is a feld, and one can prove that (R, G) is α-non-degenerate
regarding the identity homomorphism. Absolutely, g2 ≠ e,
for all g ∈G.

Theorem 13. Let R be a graded ring such that R has no zero
divisors. Suppose that α: G⟶ G is a group homomorphism
and H= g ∈G: g2 ∈Ker(α)􏼈 􏼉. If I will be a graded right (or
left) ideal of R with Ie = 0{ }, then Iα(g) = 0{ }, for all g ∈H.

Proof. Let g ∈H. Ten Iα(g)Rα(g) = (I∩Rα(g))Rα(g) ⊆ IRα(g)

∩Rα(g)Rα(g) ⊆ I∩Rα(g)α(g) = I∩Rα(g2) = I∩Re = Ie = 0{ }. So,
Iα(g)Rα(g) = 0{ }, and then either Iα(g) = 0{ } or Rα(g) = 0{ }. If
Rα(g) = 0{ }, then Iα(g) = I∩Rα(g) = 0{ }. Hence, Iα(g) = 0{ }, for
all g ∈H. □
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Proposition 14. If (R, G) is α-non-degenerate, then
α(supp(R, G))⊆ supp(R, G).

Proof. Let h ∈ α(supp(R, G)). So there exists g ∈ supp(R, G)

such that α(g)= h, and then there exists ag ∈Rg − 0{ }, and so
agRα(g) ≠ 0, which implies that Rα(g) ≠ 0, and hence
h= α(g) ∈ supp(R, G). □

Remark 15. Example 2 shows that the converse of Propo-
sition 14 is not necessarily true as α(supp(R, G)) = supp
(R, G), but (R, G) is α-degenerate.

Theorem 16. Let R be a graded ring such that R has no zero
divisors and α: G⟶ G be a group homomorphism. Tus,
α(supp(R, G))⊆ supp(R, G) if and only if (R, G) is α-non-
degenerate.

Proof. Suppose that α(supp(R, G))⊆ supp(R, G). Let g ∈G
and ag ∈Rg − 0{ }. Ten g ∈ supp(R, G), and so α(g)

∈ supp(R, G), which implies that agRα(g) ≠ 0{ } and
Rα(g)ag ≠ 0{ }. Hence, (R, G) is α-non-degenerate. Te con-
verse holds by Proposition 14.

Let R and S be two G-graded rings. Ten a ring ho-
momorphism f: R⟶ S is said to be a graded homo-
morphism if f(Rg)⊆ Sg, for all g ∈G [2]. Note that if
f: R⟶ S is a ring homomorphism and g ∉ supp(R, G),
then f(Rg)=f( 0{ })= 0{ }⊆ Sg. So, f being graded homo-
morphism is equivalent to f(Rg)⊆ Sg for all g ∈ supp(R, G).
We have the following. □

Lemma 17. If f: R⟶ S is a graded epimorphism, then
f(Rg)= Sg for all g ∈G.

Proof. Let g ∈G. Ten f(Rg)⊆ Sg as f is a graded homo-
morphism. Let ag ∈ Sg. If ag = 0, then ag =f(0) ∈f(Rg).
Suppose that ag ≠ 0. Since f is onto, there exists m ∈R − 0{ }

such that f(m) = ag. Suppose that m=􏽐
n
i= 1mgi

, where
mgi
∈Rgi

, gi ≠gj for i≠ j. Ten ag =f(m) =􏽐
n
i= 1

f(mgi
)=􏽐

k
i= 1f(mgti

), where 1≤ ti ≤ n andf(mgti
)≠ 0 for all

1≤ i≤ k. Since f(mgti
) ∈ Sgti

, ag ∈ Sg ∩􏽐
k
i= 1Sgti

. Tus,
g=gt1

= · · · =gtn
and hence k= 1 and f(mgti

)=f(mg)= ag.
Tus, Sg ⊆f(Ag), and hence f(Rg)= Sg. □

Theorem 18. Let f: R⟶ S be a graded isomorphism.Ten
(R, G) is α-non-degenerate if and only if (S, G) is α-non-
degenerate.

Proof. Suppose that (R, G) is α-non-degenerate. Let g ∈G
and sg ∈ Sg − 0{ }. By Lemma 17, f(Rg)= Sg. So, there exists
ag ∈Rg − 0{ } such that f(ag)= sg. Since R is α-non-de-
generate, agRα(g) ≠ 0, and then 0≠f(agRα(g))= sgSα(g).
Similarly, Sα(g)sg ≠ 0, and hence (S, G) is α-non-degenerate.
Conversely, let g ∈G and ag ∈Rg − 0{ }. Assume that
f(ag)= sg. Ten sg ∈ Sg − 0{ }, and then sgSα(g) ≠ 0, which

implies that 0≠f− 1(sgSα(g))= agRα(g). Similarly,
Rα(g)ag ≠ 0, and hence (R, G) is α-non-degenerate. □

3. α-Strongly and α-First Strongly Graded Rings

In this section, we establish the concepts of α-strongly and
α-frst strongly graded rings and study them in comparison
to strongly and frst strongly graded rings.

Defnition 19. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. Terefore, (R, G) is said to be
α-strong if RgRα(g) =Rgα(g), for all g ∈G.

It is clear that every strongly graded ring is α-strong, for
every α. However, if (R, G) is α-strong, then (R, G) is not
necessarily strong, as we see in the following example.

Example 3. Let R=K[X], where K is a feld, and G=Z. Ten
R is G-graded by Rn =KXn, n≥ 0 and Rn = 0{ } otherwise.
Consider the group homomorphism α: G⟶ G such that
α(n)= 2n. Let n be a non-negative integer. Ten RnRα(n)

=RnR2n =KXnKX2n =KX3n =R3n =Rn+2n =Rn+α(n). Let n be
a negative integer. Ten RnRα(n) = 0{ }=R3n = Rn+α(n). So,
RnRα(n) =Rn+α(n), for all n ∈Z, and hence (R, G) is α-strong.
On the other hand, (R, G) is not considered strong since
R−1R1 = 0{ }≠R0.

Proposition  0. Let R be a graded ring. Ten (R, G) is
strongly graded if and only if RgRg−1 =Re, for all g ∈G.

Proof. Suppose that RgRg−1 =Re, for all g ∈G. Let g, h ∈G.
Ten Rgh =RghRe =RghRh−1Rh ⊆Rghh−1Rh ⊆RgRh ⊆Rgh, and
RgRh =Rgh. Hence, (R, G) is strong. Te converse is clear.

Te next result is a consequence of Proposition 20. □

Corollary  1. If G is abelian, then strongly graded and
α-strongly graded rings coincide regarding the group homo-
morphism α(g)=g− 1.

Theorem   . Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. If 1 ∈RgRα(g), for all g ∈G, then
(R, G) is strong, and hence (R, G) is α-strong. Moreover, G is
abelian.

Proof. Let g ∈G. Ten 0≠ 1 ∈RgRα(g) ∩Re ⊆Rgα(g) ∩Re, and
then gα(g)= e, which implies that α(g)=g− 1. So,
1 ∈RgRg−1 . Now, let x ∈Re. Ten x= 1.x ∈RgRg−1

Re ⊆RgRg−1 . Tus, Re ⊆RgRg−1 ⊆Re, which implies that
RgRg−1 =Re, and thus (R, G) is strong by Proposition 20, and
hence (R, G) is α-strong. Moreover, since α(g)=g− 1, for all
g ∈G and α is homomorphism, then G is abelian. □

Defnition 23. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. Ten (R, G) is said to be α-frst
strong if RgRα(g) =Rgα(g), for all g ∈ supp(R, G).
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Clearly, every α-strongly graded ring is α-frst strong.
However, the converse is not necessarily true, as we see in the
following example.

Example 4. Let R=M2(K), where K is a feld, and G=Z4
and consider the identity homomorphism α on G. Ten R is
G-graded by

R0 =
K 0

0 K
􏼠 􏼡,

R2 =
0 K

K 0
􏼠 􏼡,

R1 =R3 = 0{ }, and, so supp(R, G)= 0, 2{ }.

(2)

By easy calculations, we fnd that R0Rα(0) =R0 =R0+α(0)

and R2Rα(2) =R0 =R2+α(2). So, (R, G) is α-frst strong. On the
other hand, (R, G) is not α-strong since R1Rα(1) = 0{ } ≠R2
=R1+α(1).

Remark 24. Clearly, if (R, G) is a frst strong and α: G⟶ G

is a group homomorphism with
α(supp(R, G))⊆ supp(R, G), then (R, G) is α-frst strong.
However, if (R, G) is α-frst strong, then (R, G) is not
necessarily frst strong, even if α(supp(R, G))⊆ supp(R, G),
as in Example 2. (R, G) is α-frst strong since it is α-strong,
and α(supp(R, G))⊆ supp(R, G), but (R, G) is not frst
strong since supp(R, G) is not a subgroup of G.

Proposition  5. Let (R, G) be frst strong. If (R, G) is α-non-
degenerate, then (R, G) is α-frst strong.

Proof. Apply Proposition 14 and Remark 24. □

Proposition  6. Let R be a graded ring. Ten (R, G) is frst
strong if and only if RgRg−1 =Re, for all g ∈ supp(R, G).

Proof. Suppose thatRgRg−1 =Re, for all g ∈ supp(R, G).Ten
as 1 ∈Re, 1 ∈RgRg−1 , for all g ∈ supp(R, G), and hence (R, G)

is frst strong. Te converse is clear.
Te next result is a consequence of Proposition 26. □

Corollary  7. If G is abelian, then the frst strongly graded
and α-frst strongly graded rings coincide regarding the group
homomorphism α(g)=g− 1.

Theorem  8. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. If 1 ∈RgRα(g), for all g ∈ supp(R, G),
then (R, G) is frst strong, and hence (R, G) is α-frst strong.
Furthermore, supp(R, G) is an abelian subgroup of G.

Proof. Let g ∈ supp(R, G). Ten 0≠ 1 ∈RgRα(g) ∩Re

⊆Rgα(g) ∩Re, and then gα(g)= e, which suggests that
α(g)=g− 1. So, 1 ∈RgRg−1 , and thus (R, G) is frst strong. So,
supp(R, G) is a subgroup of G, and then α(supp
(R, G))= (supp(R, G))− 1 ⊆ supp(R, G), which implies that
(R, G) is α-frst strong by Remark 24. Since α(g)=g− 1, for
all g ∈ supp(R, G) and α is homomorphism, then supp(R, G)

will be an abelian subgroup of G. □

Theorem  9. Let R be a graded ring such that R is an integral
domain. Ten gh= hg, for all g, h ∈ supp(R, G).

Proof. Let g, h ∈ supp(R, G). Ten 0{ }≠RgRh ⊆Rgh, and
then, since R is commutative, 0{ }≠RgRh =RhRg ⊆Rhg. So,
0{ }≠RgRh ⊆Rgh ∩Rhg, which implies that gh= hg. □

Theorem 30. Let R be a graded ring over a fnite group G. If
(R, G) is second strong, then (R, G) is α-frst strong, for every α.

Proof. Let α: G⟶ G be a group homomorphism. Assume
that g ∈ supp(R, G). Since G is fnite, g− 1 =gn, for some
positive integer n, and then g− 1 =gn ∈ supp(R, G) since
supp(R, G) is a monoid, and hence supp(R, G) is a subgroup
of G, and then since (R, G) is second strong, (R, G) is frst
strong. Since G is fnite, α(g)=gm, for some positive integer
m, and then α(g) ∈ supp(R, G).

Hence, α(supp(R, G))⊆ supp(R, G), which implies that
(R, G) is α-frst strong by Remark 24. □

4. α-Weakly Graded Rings and α-Weakly
Crossed Products

In this section, we present the concepts ofα-weakly graded rings
and α-weakly crossed products and study them in comparison
to weakly graded rings and weakly crossed products.

Defnition 31. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. Ten (R, G) is said to be α-weak if
whenever g ∈G such that Rg = 0{ }, then Rα(g) = 0{ }.

Clearly, if G is abelian, then the concepts of weakly and
α-weakly graded rings coincide regarding the group ho-
momorphism α(g)=g− 1. However, the following example
is on non-weakly graded ring that is α-weakly for some α.

Example 5. Let R=K[X] and G=Z. Ten R is G-graded by
Rn =KXn, n≥ 0 and Rn = 0{ }. Otherwise, consider the group
homomorphism α: G⟶ G such that α(n)= 2n. Let n ∈G
be such that Rn = 0{ }. Ten n is a negative number, and then
α(n)= 2n is also a negative number, which implies that
Rα(n) = 0{ }. Hence, (R, G) is α-weak. On the other hand,
(R, G) is not weak since R−1 = 0{ } but R−1−1 =R1 ≠ 0{ }.

Theorem 3 . Let (R, G) be α-non-degenerate such that
α2 = I. So (R, G) is α-weak.

Proof. Apply Teorem 5.
Te later result is a consequence of Teorem 32. □

Corollary 33. Let R be a graded ring and α: G⟶ G be
a group homomorphism such that α2 = I. If (R, G) is faithful,
then (R, G) is α-weak.

Te following result is a consequence of Teorems 3
and 32.

Corollary 34. Let R be a graded ring and α: G⟶ G be
a group homomorphism such that α2 = I. If (R, G) is α-reg-
ular, (R, G) is α-weak.
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Theorem 35. Let R be a graded such that R has no zero
divisors and α: G⟶ G be a group homomorphism such that
α2 = I. Ten (R, G) is α-non-degenerate if and only if (R, G) is
α-weak.

Proof. Suppose that (R, G) is α-weak. Let g ∈G and
ag ∈Rg − 0{ }. Ten Rg ≠ 0{ }. If Rα(g) = 0{ }, then as R is
α-weak, 0{ }=Rα(α(g)) =Rg, which is a contradiction. So,
Rα(g) ≠ 0{ }, and thus agRα(g) ≠ 0{ } and Rα(g)ag ≠ 0{ }, and
hence (R, G) is α-non-degenerate. Te converse holds from
Teorem 32. □

Theorem 36. Let R be a graded ring and α: G⟶ G be
a group homomorphism such that α2 = I. Ten
α(supp(R, G))⊆ supp(R, G) if and only if (R, G) is α-weak.

Proof. Suppose that α(supp(R, G))⊆ supp(R, G). Let g ∈G
such that Rg = 0{ }. If Rα(g) ≠ 0{ }, α(g) ∈ supp(R, G), and then
g= α(α(g)) ∈ α(supp(R, G))⊆ supp(R, G), which is a con-
tradiction. So, Rα(g) = 0{ }, and therefore (R, G) is α-weak.
Conversely, let h ∈ α(supp(R, G)). Ten there is g ∈ supp
(R, G) such that h= α(g). If Rα(g) = 0{ }, then Rg = Rα(α(g))

= 0{ }, which is a contradiction. So, Rα(g) ≠ 0{ }, and then
h ∈ supp(R, G), and hence α(supp(R, G)) ⊆ supp (R, G). □

Proposition 37. Every strongly graded ring is α-weak, for
every α.

Proof. Let (R, G) be strong and α: G⟶ G be a group
homomorphism. Ten supp(R, G)=G, and hence (R, G) is
α-weak.

Similarly, one can prove the following. □

Proposition 38. Every faithful graded ring is α-weak, for
every α.

Te next example shows that an α-weakly graded ring is
not necessarily strongly graded or faithful graded or even
frst strongly graded.

Example 6. Let R=M3(K) and G=Z7. Ten R is G-graded
by

R0 =

K 0 0

0 K 0

0 0 K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, R1 =

0 K 0

0 0 K

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, R2 =

0 0 K

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

R5 =

0 0 0

0 0 0

K 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, R6 =

0 0 0

K 0 0

0 K 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

R3 =R4 = 0{ }.

(3)

Clearly, (R, G) is α-weak regarding the identity homo-
morphism, but (R, G) is not strong and not faithful since
supp(R, G)≠G. Also, (R, G) is not frst strong since
supp(R, G) is not a subgroup of G.

Also, the next example is on a non-strongly graded ring
that is α-weakly graded, for every α.

Example 7. Let R=K[X] and G=Z3. Ten R is G-graded by
R0 = 〈1, X3, X6, . . . .〉, R1 = 〈X, X4, X7, . . . .〉 and
R2 = 〈X2, X5, X8, . . . .〉. Since supp(R, G)=G, (R, G) is
α-weak, for every α. On the other hand, (R, G) is not strong
since R1R2 ≠R0 as 1 ∈R0 such that 1 ∉ R1R2.

Defnition 39. Let R be a G-graded ring and α: G⟶ G be
a group homomorphism. Ten (R, G) is said to be α-weakly
crossed product if Rα(g) contains a unit for all
g ∈ supp(R, G).

Clearly, the concepts of weakly crossed product and
α-weakly crossed product coincide regarding the identity
homomorphism. However, the following example is a non-
weakly crossed product that is α-weakly crossed product for
some α.

Example 8. Let R=K[X] and G=Z. Ten R is G-graded by
Rn =KXn, n≥ 0 and Rn = 0{ } otherwise. Consider the group
homomorphism α: G⟶ G such that α(n)= 0, for all n ∈G.
Let n ∈ supp(R, G). Ten Rα(n) =R0 contains a unit. Hence,
(R, G) is α-weakly crossed product. On the other hand,
(R, G) is not weakly crossed product since 1 ∈ supp(R, G)

with R1 does not contain any unit.

Proposition 40. Let R be a G-graded ring and α: G⟶ G be
the group homomorphism α(g)= e, for all g ∈G. Ten (R, G)

is α-weakly crossed product.

Proof. Let g ∈ supp(R, G). Ten Rα(g) =Re contains a unit.
Hence, (R, G) is α-weakly crossed product. □

Proposition 41. Let (R, G) be α-weakly crossed product.
Ten α(supp(R, G))⊆ supp(R, G).

Proof. Let h ∈ α(supp(R, G)). Ten there is g ∈ supp(R, G)

such that α(g)= h. Since (R, G) is α-weakly crossed product,
Rα(g) contains a unit, and then Rα(g) ≠ 0, which implies that
h= α(g) ∈ supp(R, G). Tus, α(supp(R, G))

⊆ supp(R, G). □

Remark 42. Te converse of Proposition 41 is not necessarily
true; as in Example 6, (R, G) is not α-weakly crossed product
regarding the identity homomorphism since 2 ∈ supp(R, G)

with Rα(2) =R2 does not contain any unit, but α(supp
(R, G))= supp(R, G).

Theorem 43. Let R be a graded ring such that R has no zero
divisors. If (R, G) is α-weakly crossed product, then (R, G) is
α-non-degenerate.

Proof. Let g ∈G and ag ∈Rg − 0{ }. Ten g ∈ supp(R, G), and
then Rα(g) contains a unit, which implies that Rα(g) ≠ 0. So,
agRα(g) ≠ 0 and Rα(g)ag ≠ 0. Hence, (R, G) is α-non-
degenerate.

Te next example introduces a α-non-degenerate graded
ring that is not a α-weakly crossed product. □
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Example 9. Let R=M2(K), where K is a feld, and G=Z.
Ten R is G-graded by

R0 =
K 0

0 K
􏼠 􏼡, R1 =

0 K

0 0
􏼠 􏼡, R−1 =

0 0

K 0
􏼠 􏼡,

Rn = 0{ }.

(4)

Otherwise, one can prove that (R, G) is α-non-
degenerate regarding the group homomorphism α(n)=−n,
but (R, G) is not α-weakly crossed product since
−1 ∈ supp(R, G) with Rα(−1) =R1 does not contain any unit.

Theorem 44. If (R, G) is α-weakly crossed product and
α2 = I, then (R, G) is α-weak.

Proof. Let g ∈G such that Rg = 0{ }. If Rα(g) ≠ 0{ }, then
α(g) ∈ supp(R, G), and then Rg =Rα(α(g)) contains a unit,
which is a contradiction. So, Rα(g) = 0{ }, and hence (R, G) is
α-weak.

Te next example is on α-weakly graded ring that is not
α-weakly crossed product. □

Example 10. Let R=M3(K), where K is a feld, and G=Z2.
Ten R is G-graded by

R0 =

K 0 K

0 K 0

K 0 K

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

R1 =

0 K 0

K 0 K

0 K 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(5)

Clearly, (R, G) is α-weak, for every α, but (R, G) is not
α-weakly crossed product regarding the identity homo-
morphism since 1 ∈ supp(R, G) with Rα(1) =R1 does not
contain any unit.

Proposition 45. If (R, G) is α-weakly crossed product, then
for all g ∈ supp(R, G), there exists a unit r ∈Rα(g) such that
Rα(g) =Rer (i.e., Rα(g) is a cyclic Re-module).

Proof. Let ∈ supp(R, G). Ten Rα(g) contains a unit, say r.
Let x ∈Rα(g). Ten x=x.1=x.r− 1.r ∈Rα(g)R(α(g))−1r=
Rα(g)Rα(g−1)r⊆Rα(g)α(g−1)r=Rα(gg−1)r=Rα(e)r=Rer. So,
Rα(g) ⊆Rer⊆ReRα(g) ⊆Rα(g). Hence, Rα(g) =Rer.

Similarly, one can prove the following. □

Proposition 46. If (R, G) is α-weakly crossed product, then
for all ∈ supp(R, G), there exists a unit r ∈Rα(g) such that
Rα(g) = rRe.

Theorem 47. If (R, G) is α-weakly crossed product, then
Rα(g) is isomorphic to Re, as an Re-module, for all
g ∈ supp(R, G).

Proof. Let g ∈ supp(R, G). Ten by Proposition 46,
Rα(g) = rRe, for some unit r ∈Rα(g), and then f: Re⟶Rα(g)

such that f(x)= rx is an Re-isomorphism. □

5. Conclusion

Let G be a group, α: G⟶ G be a group homomorphism,
and R be a G-graded ring. In this article, we established and
investigated the perceptions of α-weakly, α-non-degenerate,
α-regular, α-strongly, α-frst strongly graded rings, and
α-weakly crossed product. We have indeed examined these
notions comparable to weakly, non-degenerate, regular,
strongly, frst strongly graded rings, and weakly crossed
product.
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