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We study the space of prime fuzzy ideals (and the space of maximal fuzzy ideals as a subspace) equipped with the hull-kernel
topology in partially ordered sets. Mainly, we investigate the conditions for which the fuzzy prime spectrum of a poset is compact,
Hausdorf, and normal, respectively.

1. Introduction

Partially ordered sets (posets) play a fundamental role in
various branches of mathematics, providing a rich frame-
work for studying order relations and their associated
structures. In 1995, Halaś [1] introduced the general theory
of ideals in a partially ordered set as an abstraction of ideals
in lattices. Other scholars have also been proposed diferent
defnitions for ideals in a poset. For instance, closed or
normal ideals of a poset were introduced by Birkhof in [2].
Later in 1954, Frink [3] proposed the defnition of ideals in
a poset using lower and upper cones. Venkatanarasimhan
[4] has also developed the theory of semiideals in a poset
which are known by the name down sets. In 1979, Enré [5]
has come up with a new defnition of ideals in a poset called
m-ideals, generalizing almost all defnitions proposed by
other scholars. In 1995, Halaś and Rachunek [6] have studied
primness in the class of ideals of a poset. Further in-
vestigations have been conducted by Erné [7] providing
several characterizing theorems for prime and maximal
ideals. Te theory of prime ideals has been also extended to
the class of n-normal posets by Halaš et al. [8] and to the class
of 0-distributive lattices by Joshi and Mundlik [9].

In 2016, Mundlik et al. [10] studied the hull-kernel to-
pology on prime ideals in posets. Te hull-kernel topology is
a well-known topology that provides a powerful tool for

analyzing the convergence, compactness, and connectedness
properties in the class of ideals.

In recent years, the study of fuzzy sets and their ap-
plications in algebraic structures, particularly in lattices and
ordered algebras, has gained signifcant attention, leading to
the exploration of fuzzy ideals and their properties. Fuzzy
sets allow for the representation of partial membership,
capturing the idea that elements can belong to a set to
varying degrees. Tis concept has proven to be a powerful
tool in modeling uncertainty and vagueness, making it
particularly well-suited for analyzing posets where precise
membership may not always be applicable. In this context,
the notion of fuzzy ideals and flters in posets has been
studied by Assaye Alaba et al. [11, 12] as a natural extension
of fuzzy ideals in lattices. Fuzzy ideals provide a fexible
framework for studying the behavior of fuzzy subsets that
possess certain desirable properties within a poset.Tey ofer
a more comprehensive understanding of the structure and
relationships between elements, allowing for a deeper ex-
ploration of the underlying order relations. Tey further
investigate the primness and maximality conditions in the
class of fuzzy ideals in a general poset in [13]. In addition,
they obtained sufcient conditions for the existence of fuzzy
prime ideals in a poset as in the lattice of its fuzzy ideals.

Te space of fuzzy prime ideals, called the hull-kernel
topology for fuzzy prime ideals, has been studied by many
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authors in diferent classes of general algebraic structures
such as rings (see [14]), modules (see [15]), hemirings (see
[16]), semirings and Γ-Semirings (see [17]), distributive
lattices (see [18]), C-algebras (see [19]), etc. Tis topology
provides a powerful tool to explore and hence to utilize the
important topological properties that the class of fuzzy
prime ideals possesses inherently.

Te motivation behind this study lies in the desire to
identify the natural properties of the fuzzy prime spectrum of
a poset and to understand the conditions under which the
fuzzy prime spectrum of a poset exhibits the well-known
topological properties such as compactness, Hausdorfness,
and normality. Compactness, for example, is a fundamental
property in topology that has implications in various areas of
mathematics, including measure theory and mathematical
analysis. By characterizing the conditions under which the
fuzzy prime spectrum is compact, we can identify posets
where the space of fuzzy prime ideals behaves in a particularly
well-behaved manner. Hausdorfness, another crucial topo-
logical property, ensures the separation of points in a space,
allowing for distinctness and uniqueness. Investigating the
conditions for Hausdorfness in the hull-kernel topology for
fuzzy prime ideals provides insights into the relationships
between diferent elements within the poset and sheds light on
the structure of fuzzy prime ideals. Furthermore, the study of
normality in the fuzzy prime spectrum of a poset is motivated
by its fundamental role in topology. Normal spaces possess
certain desirable properties, enabling the existence of certain
types of continuous functions and preserving important to-
pological properties. By examining the conditions for which
the fuzzy prime spectrum becomes a normal space, we
contribute to the understanding of the broader topological
structure of fuzzy ideals in partially ordered sets.

It is known that the unit interval [0, 1] has so many
important properties: lattice theoretic property as well as
topological properties. For instance, it forms a complete
residuated lattice with three standard product and residuum
operations (Lukasiewicz operations, Godel operations and
Goguen (product) operations). By abstracting its lattice
properties, Goguen [20] was frst to defne the concept of
L-fuzzy sets by replacing the unit interval [0, 1] by a general
complete lattice L in the defnition of fuzzy subsets. Swamy
and Swamy [21] mentioned that complete Brouwerian lat-
tices are the most appropriate candidates to have the truth
values of general fuzzy statements. Taking this into con-
sideration, we prefer complete Brouwerian lattices to be the
set of truth degrees for our fuzzy statements.

2. Preliminaries

A partially ordered set (or shortly a poset) is a system (Z, ≤)
consisting of a nonempty set Z together with a partial or-
dering “≤” on Z, where by a partial ordering on Z, we
mean a subset ≤ of Z × Z which is transitive
(∀x, y, z ∈ Z, [(x, y) ∈≤ and (y, z) ∈≤]⟹ (x, z) ∈≤), an-
tisymmetric (∀x, y ∈ Z, [(x, y) ∈≤ and (y, x) ∈≤]⟹x �

y), and refexive (∀x ∈ Z, (x, x) ∈≤). If ≤ is a partial or-
dering on Z and y, z ∈ Z, then we write y≤ z instead of
(y, z) ∈≤. For H⊆Z, an element p in Z is said to be an

upper bound (respectively, a lower bound) of H if h≤p

(respectively, p≤ h) for all h ∈ H. We will denote by Hu

(respectively, Hl) the set of all upper bounds (respectively,
lower bounds) of H. We write Hul (respectively, Hlu), to
denote Hu{ }l (respectively, Hl􏼈 􏼉

u). For any p, q ∈ Z, we will
use standard notations pl and (p, q)l to denote the sets p􏼈 􏼉

l

and p, q􏼈 􏼉
l. In a dual manner, p􏼈 􏼉

u and p, q􏼈 􏼉
u will be

denoted by pu and (p, q)u, respectively. For sets S and T in
a poset Z, one can easily verify that S⊆ Sul and S⊆ Slu.
Moreover, S⊆T⟹ [Su ⊇Tu and Sl ⊇Tl]. It is also obvious
that pul � pl and plu � pu for all p ∈ Z. For S⊆Z, its inf-
mum (or greatest lower bound) is a lower bound p0 of S such
that x≤p0 for all lower bounds x of S. Similarly, the
supremum (least upper bound) of S is an upper bound q0 of
S such that q0 ≤y for all upper bounds y of S. We write
p0 � inf S (respectively, p0 � sup S) to say that p0 is the
infmum (respectively, the supremum) of S. For p, q ∈ Z, if
the infmum (respectively, the supremum) of the set p, q􏼈 􏼉

exists, then it will be denoted by p∧ q (respectively, p∨q). A
poset Z is said to have the least (respectively, the greatest)
element if there is an element in Z denoted by 0 (re-
spectively, 1) such that 0≤x (respectively, x≤ 1) for all
x ∈ Z. By a bounded poset, we mean a poset having both the
least and the greatest elements.

An element p in a bounded poset Z is said to be com-
plemented if there is q ∈ Z such that (p, q)lu � (p, q)ul � Z. If
every element of Z is complemented, then we say that Z is
complemented. By a Boolean poset, we mean a distributive
complemented poset. More details about Boolean posets can
be found in [22].

An element p∗ in a poset Z with 0 is said to be the
pseudocomplement of p ∈ Z, if (p, p∗)l � 0{ }, and for
x ∈ Z, (p, x)l � 0{ } implies x≤p∗. A poset Z with least
element 0 is said to be pseudocomplemented if for all p ∈ z,
there is p∗ ∈ Z such that (p, p∗) � 0{ } and for x ∈ Z,
(p, x) � 0{ } implies x≤p∗. In this case, p∗ is unique and is
called the pseudocomplement of p in Z [23]. Given a poset
Z, by a u-ideal of Z, we mean an ideal I of Z such that
(p, q)u ∩ I≠∅ for all p, q ∈ I [6]. In a dual manner, a flter F

of Z is called an l-flter provided that (p, q)l ∩F≠∅ for all
p, q ∈ F [1]. A proper ideal (respectively, a proper flter P)
of Z is called prime if for all p, q ∈ Z, (p, q)l ⊆P implies
p ∈ P or q ∈ P [6].

3. Fuzzy Prime Spectrum of a Poset

Te present paper is the continuation of Assaye Alaba
et al.’s work [11–13], and so we will follow the same no-
tations, defnitions, and results on fuzzy ideals, u-fuzzy
ideals, fuzzy flters, l-fuzzy flters, prime fuzzy ideals, prime
fuzzy flters, maximal fuzzy ideals, and maximal fuzzy
flters in a poset.

A fuzzy subset μ of Z ∈ Pos0 (respectively,Pos1) is a fuzzy
ideal (respectively, a fuzzy flter) if μ(0) � 1(respectively, μ(1) �

1) and for any p, q ∈ Z, μ(z)≥ μ(p)∧ μ(q), for all
z ∈ (p, q)ul(respectively, z ∈ (p, q)lu).

A fuzzy ideal μ of Z ∈ Pos0 (respectively,Pos1) is a u-
fuzzy ideal (respectively, an l-fuzzy flter) if an for any
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p, q ∈ Z, there exists z ∈ (p, q)u (respectively, z ∈ (p, q)l)

such that μ(z) � μ(p)∧ μ(q).
For our work, we collect some useful notations from

[10–13]:

(1) Br denotes the family of all nontrivial complete
Brouwerian lattices.

(2) For L ∈ Br, we denote by p(L) the set of all prime
elements of L.

(3) Pos denotes the collection of all posets.
(4) Pos0 denotes the collection of all posets with the

least element 0.
(5) Pos1 denotes the collection of all posets with the top

element 1.
(6) PosB denotes the collection of all bounded posets.
(7) For L ∈ Br and Z ∈ Pos, we write μ ∈ LZ to say that

μ is an L-fuzzy subset of Z (or simply a fuzzy subset
if there is no confusion on L); that is, μ: Z⟶ L is
a mapping.

(8) For Z ∈ Pos, NF(Z) is the set of normalized
fuzzy subsets of Z; that is, NF(Z) �

μ ∈ LZ: μ(p) � 1 for somep ∈ Z􏼈 􏼉.
(9) For Z ∈ Pos, FI(Z) is the set of all fuzzy ideals

of Z.
(10) For Z ∈ Pos,FIu(Z) is the set of all u-fuzzy ideals

of Z.
(11) For Z ∈ Pos, FF(Z) is the set of all fuzzy flters

of Z.
(12) For Z ∈ Pos, FFl(Z) is the set of all l-fuzzy flters

of Z.
(13) For Z ∈ Pos,PFI(Z) is the set of all prime fuzzy

ideals of Z.
(14) For Z ∈ Pos,PFF(Z) denotes the set of all prime

fuzzy flters of Z.
(15) For Z ∈ Pos, MFI(Z) is the set of all maximal

fuzzy ideals of Z.
(16) For Z ∈ Pos, MFF(Z) denotes the set of all

maximal fuzzy flters of Z.
(17) PMFP � Z ∈ Pos0: every maximal fuzzy filter of Z􏼈

is prime}
(18) Pl

MFP � Z ∈ PMFP: every maximal u − fuzzy filter of􏼈

Z ismaximal}
(19) PMIP � Z ∈ Pos1: everymaximal fuzzy ideal of Z􏼈

is prime}
(20) Pu

MIP � Z ∈ PMIP: everymaximal u − fuzzy ideal of􏼈

Z ismaximal}.

Defnition 1. For μ ∈NF(Z), its generalized complement
denoted by μc is a fuzzy subset of Z defned as follows:

μc
(z) �

∧
y∈Z

μ(y), if μ(z) � 1,

1, otherwise,

⎧⎪⎨

⎪⎩
(1)

for all z ∈ Z.

Lemma 2. Let Z ∈ Pos and μ ∈ FI(Z) with
Im(μ) � 1, α{ }, for some α ∈ p(L). Ten, μ ∈ PFI(Z) if
and only if μc ∈ FFl(Z).

Proof. Suppose that μ ∈ PFI(Z). Ten, it was proved in
[13] that the level set μ∗ � p ∈ Z: μ(p) � 1􏼈 􏼉 is a prime ideal
of Z. In this case, μc is of the form

μc
(z) �

1, if z ∉ μ∗,

α, otherwise,
􏼨 (2)

for all z ∈ Z. Now, we fst show that μc ∈ FF(Z). Clearly, we
have μc(1) � 1. Let p, q ∈ Z and x ∈ (p, q)lu. If p ∈ μ∗ or
q ∈ μ∗, then it follows that μc(x)≥ α � μc(p)∧ μc(q). Oth-
erwise, ifp ∉ μ∗ and q ∉ μ∗, then being μ∗ a prime ideal, we get
(p, q)l ⊈ μ∗. So, there exists y ∈ (p, q)l such that y ∉ μ∗. Since
x ∈ (p, q)lu ⊆yu, we have y≤x, and hence, x ∉ μ∗. Tus,

μc
(x) � 1 � μc

(p)∧ μc
(q). (3)

Terefore, μc ∈ FF(Z). To show μc ∈ FFl(Z), let
p, q ∈ Z. If p ∉ μ∗ and q ∉ μ∗, then μc(p)∧ μc(q) � 1. Again,
since μ∗ is a prime ideal, we have (a, b)l ⊈ μ∗. So, there is
x ∈ (p, q)l such that x ∉ μ∗ and so

μc
(x) � 1 � μc

(p)∧ μc
(q). (4)

Let p ∈ μ∗ or q ∈ μ∗. Ten, since 0 ∈ (p, q)l ⊆pl, ql ⊆ μ∗,
we have ∅≠ (p, q)l ⊆ μ∗, and hence, μc(x) � α �

μc(p)∧ μc(q), for all x ∈ (p, q)l. Hence, in either cases, there
exists x ∈ (p, q)l such that μc(x) � μc(p)∧ μc(q). Tus,
μc is an l-fuzzy flter, and hence, μc ∈FFl(Z).

Conversely, assume that μc ∈ FFl(Z). Ten, by Te-
orem 3.3 of [13], it is enough to check that the set μ∗ �

x ∈ Z: μ(x) � 1􏼈 􏼉 is a prime ideal of Z. It is clear that μ∗ is
a proper ideal of Z. Let p, q ∈ Z such that (p, q)l ⊆ μ∗. Tis
implies that μc(x) � α for all x ∈ (p, q)l. Since μc is an
l-fuzzy flter, there exists y ∈ (p, q)l such that

μc
(y) � μc

(p)∧ μc
(q). (5)

So that μc(p)∧ μc(q) � α. Since α is prime and hence
irreducible in L, we have either μc(p) � α or μc(q) � α, i.e.,
either p ∈ μ∗ or q ∈ μ∗. So, μ∗ is a prime ideal. Hence, it is
proved. □

Lemma 3. Let Z ∈ Pos and μ ∈ FF(Z) with
Im(μ) � 1, α{ }, for some α ∈ p(L). Ten, μ ∈ PFF(Z) if
and only if μc ∈ FIu(Z).

Lemma 4. For any p ∈ Z and α ∈ L, [pα) (the fuzzy flter
generated by pα) where pα is a fuzzy subset of Z called a fuzzy
point of Z given by

pα(z) �
α, if z � p,

0, if otherwise,
􏼨 (6)

which belongs to the class FFu(Z).
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Te next lemma proves existence of prime fuzzy ideals in
posets from Pl

MFP.

Lemma 5. Let Z ∈ Pl
MFP. If L has dual atoms, then the class

PFI(Z) is nonempty.

Proof. Let 0≠p ∈ Z and α a dual atom in L. Put

F � σ ∈ l − FF(Z): pα􏼂 􏼁⊆ σ, σ(0) � α􏼈 􏼉, (7)

where [pα) is a fuzzy flter of Z generated by the fuzzy point
pα which is characterized by

pα􏼂 􏼁(z) �

1, if z � 1,

α, if z ∈ [p) − 1{ },

0, if z ∉ [p),

⎧⎪⎪⎨

⎪⎪⎩
(8)

for all z ∈ Z. Now, since 0≠p ∈ Z and (0]∩ [p) � ∅, by
Zorn’s lemma, there exists a maximal l-flter [F⊇p) such
that (0]∩F � ∅. Defne a fuzzy subset of Z by

μF(z) �
1, if z ∈ F,

α, otherwise,
􏼨 (9)

for all z ∈ Z. Ten, it is clear that μF is an l-fuzzy flter
containing [pα) and μF(0) � α, and hence, μF ∈ F. Tus, F
is nonempty and hence form a poset together with the
inclusion ordering of fuzzy sets. Moreover, it can be easily
verifed that it satisfes the hypothesis of Zorn’s lemma. So,
by applying Zorn’s lemma, we can fnd a maximal member,
let say η inF. Now, we show that η is maximal in the set of all
l-fuzzy flters. Let θ be a proper element in l-FF(Z) such that
η⊆ θ. Ten, α � η(0)≤ θ(0). Since α is a dual atom, we have
either θ(0) � α or θ(0) � 1. If θ(0) � 1, then
1 � θ(0)≤ θ(z), for all z ∈ Z. Hence, θ(z) � 1, for all z ∈ Z,

which contradicts to the fact that θ is proper. Terefore,
(0) � α, and also, it is clear that [pα)⊆ θ and so θ ∈ F. Tus,
by maximality of η in F, we get η � θ. Tis proves that η is
maximal in l-FF(Z).

Due to the assumption that every maximal l-fuzzy flter
is maximal among all fuzzy flters, we have that η is
a maximal fuzzy flter. Further, as Z ∈ Pl

MFP, so η is a prime
fuzzy flter. Tus, η would be a two-valued fuzzy set and can
be characterized as

η(z) �
1, if z ∈ η∗,

β, otherwise,
􏼨 (10)

for all z ∈ Z, where β ∈ p(L). It further yields that ηc is a u-
fuzzy ideal. Moreover, ηc is a prime fuzzy ideal and is de-
scribed as

ηc
(z) �

1, if z ∈ Z − η∗,

β, otherwise,
􏼨 (11)

for all z ∈ Z. Terefore, the setPFI(Z) of all prime fuzzy
ideals of Z is nonempty.

Let Z ∈ Pos, and θ be any fuzzy subset of Z. Defne sets
by:

Υ(θ) � μ ∈ PFI(Z): θ⊆ μ􏼈 􏼉 and

􏽘(θ) � μ ∈ PFI(Z): θ⊈ μ􏼈 􏼉 � PFI(Z) − Υ(θ).

(12)
□

Lemma 6. Let Z ∈ Pos. Ten, for any θ, σ ∈ FI(Z):

η⊆ θ⇒ 􏽘(η)⊆ 􏽘(θ) and􏽘(η) � 􏽘((η]). (13)

Proof. Let μ ∈ Σ(η). Tis implies that η⊈ μ. Since η⊆ θ, it is
clear that θ⊈ μ, and hence, μ ∈ 􏽐 (θ). Terefore,
􏽐 (η)⊆ 􏽐 (θ) and again as η⊆ (η], we clearly have
􏽐 (η)⊆ 􏽐((η]). To show the other inclusion, let
μ ∈ 􏽐((η]). Ten, (η⊈ μ]. Now, we claim that η⊈ μ. Sup-
pose that η⊆ μ. Tis implies that (η]⊆ (μ] � μ, which is
a contradiction. Hence, the claim is true. Terefore,
μ ∈ Σ(η), and hence, Σ((η)⊆Σ(η). Terefore,
Σ(η) � Σ((η]). □

Theorem 7. Te collection C � Σ(θ): θ ∈ FI(Z){ } forms
a topology on PFI(Z).

Proof. Since Σ(χ 0{ }) � ∅ and Σ(1) � PFI(Z),C contains
both ∅ and PFI(Z). Let Σ(θ1),Σ(θ2) ∈ C.

Ten, since Σ(θ1)∩Σ(θ2) � Σ(θ1 ∩ θ2) ∈ C, C is closed
under fnite intersection. Further, let Σ(θi): i ∈ Δ􏼈 􏼉⊆C.

Ten Σ(∪ i∈∆θi) � Σ((∪ i∈Δθi]) ∈ C. Now we claim that
∪ i∈∆Σ(θi) � Σ(∪ i∈∆θi). Let μ ∈ ∪ i∈∆Σ(θi). Ten,
μ ∈ Σ(θi) for some i ∈∆; that is, θi ⊈ μ for some i ∈∆. Since
θi ⊆ (∪ i∈∆θi], we get (∪ i∈∆θi]⊈ μ so that μ ∈ Σ((∪ i∈∆θi) �

Σ(∪ i∈∆θi). Hence, ∪ i∈∆Σ(θi)⊆Σ(∪ i∈∆θi). To prove the
other inclusion, let μ ∈ Σ(∪ i∈∆θi). Ten, ∪ i∈∆θi ⊈ μ. Tis
implies that θi ⊈ μ for some i ∈∆ so that μ ∈ Σ(θi)⊆ ∪ i∈∆
Σ(θi), and hence, ∪ i∈∆Σ(θi)⊆Σ(∪ i∈∆θi). Terefore,
∪ i∈∆Σ(θi) � Σ(∪ i∈∆θi) � Σ((∪ i∈∆θi]) ∈ C. Hence, C is
closed under arbitrary unions. Terefore, (PFI(Z),C) is
a topological space.

Te topological space (PFI(Z),C) is called the
spectrum of prime fuzzy ideals of the poset Z, and it is
denoted by Spec(Z). □

Remark 8. For any fuzzy ideal θ of a poset Z, the sets 􏽐 (θ)

and Υ(θ), respectively, are open sets and closed sets in the
topological space Spec(Z).

Lemma 9. Let p, q ∈ Z and α, β ∈ L − 0{ }. Ten, there exists
z ∈ (p, q)l such that

Σ pα( 􏼁∩Σ qβ􏼐 􏼑 � Σ zα∧ β􏼐 􏼑. (14)

Proof. Suppose that μ ∈ Σ(pα)∩Σ(qβ). Ten, μ ∈ Σ(pα)

and μ ∈ Σ(qβ). Tis implies that pα ⊈ μ and qβ ⊈ μ. Tus, we
have α≰ μ(p) and β≰ μ(q). Since Im(μ) � 1, c􏼈 􏼉, where c is
a prime element, μ(p) � μ(q) � c. Tis implies that p ∉ μ∗
and ∉μ∗. But as μ∗ is a prime ideal, we have (p, q)l ⊈ μ∗,
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and hence, there exists z ∈ (x, y)l such that z ∉ μ∗. Tus,
μ(z) � c and α≰ μ(z) and β≰ μ(z). By primness of c, we
have α∧ β≰ μ(z), and hence, zα∧ β ⊈ μ, that is, μ ∈ Σ(zα∧ β),
so there exists z ∈ (p, q)l such that

Σ pα( 􏼁∩Σ qβ􏼐 􏼑⊆Σ zα∧ β􏼐 􏼑. (15)

To show the other inclusion, let μ ∈ Σ(zα∧ β) for some
z ∈ (p, q)l. Ten, zα∧ β ⊈ μ, that is, α∧ β≰ μ(z). Tis implies
that α≰ μ(z) and β≰ μ(z), otherwise if α≤ μ(z) or β≤ μ(z),
we have α∧ β≤ μ(z), which is a contradiction. Again, since
z ∈ (p, q)l, we clearly have μ(p)≤ μ(z) and μ(q)≤ μ(z), and
hence, α≰ μ(p) and β≰ μ(q). Tus, pα ⊈ μ and qβ ⊈ μ, and so
we have μ ∈ Σ(pα)∩Σ(qβ) and hence

Σ zα∧ β􏼐 􏼑⊆Σ pα( 􏼁∩Σ qβ􏼐 􏼑. (16)

Tis proves the lemma. □

Corollary  0. Let Z be a meet semilattice. Ten, for any
p, q ∈ Z and, β ∈ L − 0{ }, we have

Σ pα( 􏼁∩Σ qβ􏼐 􏼑 � 􏽘 (p∧ q)α∧ β􏼐 􏼑. (17)

Lemma   . Let Z ∈ Pl
MFP. Te collection

B � Σ pα( 􏼁􏼈 : p ∈ Z, α ∈ L − 0{ }, (18)

forms a basis for the open sets of PFI(Z).

Proof. Let Σ(θ) be any open set in (PFI(Z),C) and
μ ∈ Σ(θ). Ten, θ⊈ μ. Ten, there exists p ∈ Z such that
θ(p)≰ μ(p). If we put θ(p) � α, we have pα ⊆ θ and pα ⊈ μ
so that μ ∈ Σ(pα)⊆Σ(θ). Tus, the collection Σ(pα):􏼈

p ∈ Z, α ∈ L − 0{ }} forms a basis for the open sets of X. □

For any subset Y ofPFI(Z), denoteY, the closure ofY

in PFI(Z), the smallest closed set containing Y.

Lemma  2. LetZ ∈ Pos. For any∅≠Y⊆PFI(Z), we have

Y � Υ ∩
μ∈Y

μ􏼠 􏼡. (19)

Proof. Clearly, Υ(∩ μ∈Yμ) is a closed set of PFI(Z) and
Y⊆Υ(∩ μ∈Yμ). We show that any closed set F containing Y

also contains Υ(∩ μ∈Yμ). Since F is closed, by Remark 8, F �

Υ(θ) for some fuzzy ideal θ of Z. As Y⊆Υ(θ), we have θ⊆ μ
for every μ ∈ Y. Terefore, θ⊆ ∩ μ∈Yμ, and thus,
Υ(∩ μ∈Yμ)⊆Υ(θ) � F. Hence, Υ(∩ μ∈Yμ) is the smallest
closed set containing Y. Terefore, Y � Υ(∩ μ∈Yμ). □

Defnition 13. A topological space X is defned to be

(1) A T0-space if for any x≠y ∈ X, there exists an open
set H in X such that either x ∈ H and y ∉ H or
y ∈ H and x ∉ H

(2) A T1-space if for any x≠y ∈ X, there exist two open
sets G and H in X such that either x ∈ G − H and
y ∈ H − G or y ∈ G − H and x ∈ H − G

Theorem  4. PFI(Z) is a T0-space for all Z ∈ Pos0.

Proof. Let θ, μ be any two distinct points in PFI(Z).
Ten, either θ⊈ μ or ⊈ θ. Assume without loss of generality
θ⊈ μ. Tis implies that μ ∈ Σ(θ) and θ ∉ Σ(θ). Tus, we get
an open set Σ(θ) containing μ but not θ. Terefore,
PFI(Z) is a T0-space. □

Lemma  5. Let μ and σ be any two points in PFI(Z).
Ten, σ ∈ μ􏼈 􏼉 if and only if μ⊆ σ.

Proof. Let μ, σ ∈ PFI(Z) and σ ∈ μ􏼈 􏼉. Ten, μ ∈ Σ(θ) for
each neighborhood Σ(θ) of σ. Tus, θ ⊈ μ for all θ⊈ σ.

Suppose that μ⊈ σ. Ten, μ⊈ μ, which is a contradiction.
Terefore, μ⊆ σ.

Conversely, suppose that μ⊆ σ and Σ(θ) be any neigh-
borhood of σ. Ten, θ ⊈ σ. Since μ⊆ σ, we get θ⊈ μ, which
gives that μ ∈ Σ(θ); that is, μ􏼈 􏼉∩Σ(θ)≠∅. Tus σ ∈ μ􏼈 􏼉.

In the following lemma, we obtain a set of equivalent
conditions for which PFI(Z) becomes a T1-space. Recall
that a topological space X is said to be a T1-space if x{ } is
a closed set for any x ∈ X. □

Lemma  6. For any Z ∈ Pl
MFP, the following conditions are

equivalent:

(1) PFI(Z) is a T1-space
(2) μ􏼈 􏼉 � Υ(μ) for all μ ∈ PFI(Z)

(3) (PFI(Z), ⊆ ) is antichain

Proof
(1)⇒ (2): Let μ ∈ PFI(Z). Ten, sincePFI(Z) is
T1, we have μ􏼈 􏼉 � μ􏼈 􏼉 � Υ(μ), by Lemma 12.
(2)⇒ (3): Suppose that μ, σ ∈ PFI(Z) such that
μ⊆ σ. Ten, σ ∈ μ􏼈 􏼉 � Υ(μ) � μ􏼈 􏼉, and hence, μ � σ.
Terefore, (PFI(Z), ⊆ ) is antichain.
(3)⇒ (1): Let σ ∈ μ􏼈 􏼉 then by Lemma 15 μ⊆ σ. Since
(PFI(Z), ⊆ ) is an antichain, we have σ � μ.
therefore Υ(μ) � μ􏼈 􏼉 � μ􏼈 􏼉 for each μ ∈ PFI(Z).
Tus, PFI(Z) is a T1-space. □

Corollary  7. For a pseudocomplemented meet-semilattice
Z, the following conditions are equivalent:

(1) PFI(Z) is a T1-space
(2) μ􏼈 􏼉 � Υ(μ) for all μ ∈ PFI(Z)

(3) (PFI(Z), ⊆ ) is antichain

Defnition 18. We say a topological space X reducible if
there are two closed sets U and W such that X � U∪W and
U≠X≠W. X is irreducible if it is not reducible. In par-
ticular, a closed subset V of X is irreducible if for any closed
sets U and W in X:

V � U∪W⇒ [ eitherV � U orV � W]. (20)
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In the following lemma, we describe what irreducible
sets look like in PFI(Z).

Lemma  9. Let Z ∈ Pl
MFP and∅≠V be closed inPFI(Z).

Ten, ∩ μ∈Vμ being a prime fuzzy ideal is a necessary and
sufcient condition for V to be irreducible.

Proof. Suppose that V is irreducible. Put σ � ∩ μ∈Vμ. Since
V≠∅, it is clear that σ is proper. Let pα and qβ be fuzzy
points in Z such that (pα]∩ (qβ]⊆ σ. Ten, (pα]∩ (qβ]⊆ μ
for all μ ∈ V. Tus, for all μ ∈ V, either pα ⊆ μ or qβ ⊆ μ.
Hence, V � (V∩Υ(pα))∪ (V∩Υ(qβ)). Since V is irre-
ducible and (V∩Υ(pα)) and (V∩Υ(qβ)) are closed, we
have either V � (V∩Υ(pα)) or V � (V∩Υ(qβ)) and hence
V⊆Υ(pα) or V⊆Υ(qβ). Hence, pα ⊆ σ or qβ ⊆ σ. Terefore,
σ � ∩ μ∈Vμ is a prime fuzzy ideal of Z.

Conversely suppose that σ � ∩ μ∈Wμ is a prime fuzzy ideal
of Z. Let W � W1 ∪W2, where W1 and W2 are closed sets in
X. Put θ � ∩ μ∈W1

μ and η � ∩ μ∈W2
μ. Tus, σ ⊆ θ and σ ⊆ η.

Also, observe that θ∩ η � σ and since σ � ∩ μ∈Wμ is a prime
fuzzy ideal of Z, we have either θ⊆ σ or η⊆ σ.Terefore, σ � θ
and σ � η. Ten, by Lemma 12, we clearly have W � W �

Υ(∩ μ∈Wμ) � Υ(σ) � Υ(∩ μ∈W1
μ) � W1 � W1 or W � W �

Υ(∩ μ∈Wμ) � Υ(η) � Υ(∩ μ∈W2
μ) � W2 � W2. □

Lemma 20. Let Z be a complemented poset. For α ∈ L − 1{ },
if we defne Xα � μ ∈ PFI(Z): Im(μ) � 1, α{ }􏼈 􏼉, then Xα
is an antichain.

Proof. Let μ, σ ∈ Xα such that μ⊆ σ. Suppose that μ≠ σ.

Ten, there exists p ∈ Z such that μ(p)≠ 1 and σ(p) � 1.

Tis implies that p ∉ μ∗ and p ∈ σ∗. By complementedness of
Z, there exists p′ such that (p, p′)ul � Z. Since μ∗ is a prime
ideal, (p, p′)l � 0{ }⊆ μ∗, we have p′ ∈ μ∗⊊σ∗. Tus, we have
Z � (p, p′)ul ⊆ σ∗ and hence σ � 1, which is a contradiction.
Terefore, μ � σ, and hence, Xα is antichain. □

Recall that Xα can be made a subspace of X by the
relativized topology Cα where

Cα � Σ(θ)∩Xα: θ ∈ PFI(Z)􏼈 􏼉. (21)

If we put S � β ∈ L: β≰ α􏼈 􏼉, then ∅≠ S⊆ L. It is evident
that the family

Bα � Σ pβ􏼐 􏼑∩Xα: p ∈ Z and β ∈ S􏽮 􏽯, (22)

constitutes a base for Cα.

Corollary 2 . Let Z be a complemented poset. If p(L) is an
antichain, then PFI(L) is antichain.

Defnition 22. A topological space X is Hausdorf (or
T2-space) if any two distinct points can be separated by
means of disjoint open sets. Tat is, for any x≠y ∈ X, there
are two disjoint open sets G and H in X such that x ∈ G and
y ∈ H.

Theorem 23. Let Z ∈ Pl
MFP. If Z is complemented, then

(1) Σ(pβ)∩Xα is both open and closed, for all β ∈ L such
that β≰ α

(2) Xα is a Hausdorf space

Proof

(i) We now claim that Σ(pβ)∩Xα � Υ(pβ′)∩Xα, where
p′ is the complement of p in Z. Let μ ∈ Σ(pβ)∩Xα.

Ten, β≰ μ(p) and Im(μ) � 1, α{ } so that μ(p) � α.
Hence, β≰ α and p ∉ μ∗. Since μ∗ is a prime ideal,
(p, p′)l � 0{ }⊆ μ∗, we have p′ ∈ μ∗. Consequently,
μ(p′) � 1 and pβ′ ⊆ μ, and thus, μ ∈ Υ(pβ′)∩Xα. On
the other hand, let μ ∈ Υ(pβ′)∩Xα. Ten, β≤ μ(p′)

and Im(μ) � 1, α{ }. As α≰ β, we have μ(p′) � 1. It
follows that p′ ∈ μ∗, and hence, p ∉ μ∗. Otherwise, if
p′ ∈ μ∗, we have Z � (p, p′)ul ⊆ μ∗, which is a con-
tradiction.Terefore,pβ ⊈ μ, and thus, μ ∈ Σ(pβ)∩Xα.

Hence, this is the claim.
(ii) Let μ≠ σ ∈ Xα. Without loss of generality, we can

assume that μ⊈ σ. Since Im(μ) � Im(σ) � 1, α{ },
there exists p ∈ Z such that μ(p)≠ 1 and σ(p) � 1.

Tus, p ∉ μ∗ and p ∈ σ∗, and hence, p′ ∈ μ∗ and
p′ ∉ σ∗. Otherwise, if p′ ∉ μ∗ and p′ ∈ σ∗, we have
0{ } � (p, p′)l ⊈ μ∗ and Z � (p, p′)ul ⊆ σ∗, which is
a contradiction. Whence μ(p) � σ(p′) � α and
μ(p′) � σ(p) � 1. Let β ∈ L such that β≰ α. Ten,
pβ ⊈ μ and pβ′ ⊈ σ. Hence, μ ∈ Σ(pβ) and σ ∈ Σ(pβ′)
and Σ(pβ)∩Σ(pβ′) � Σ(zβ), for some z ∈ (p, p′)l.
Since (p, p′)l � 0{ }, we have Σ(pβ)∩Σ(pβ′) �

Σ(0β) � ∅. So, Xα is Hausdorf.

In a topological space X, by a clopen set, we mean a set
which is closed and open. We say that X is totally dis-
connected if any two distinct points in X can be separated by
means of a clopen set, Tat is, for any u≠ v ∈ X, we can fnd
a clopen set O such that u ∈ O and v ∉ O. □

Corollary 24. Let Z ∈ Pl
MFP. If Z is complemented, then Xα

is totally disconnected.

4. Space of Maximal Fuzzy Ideals

Tis section is devoted to the study of the space ofmaximal fuzzy
ideals of a poset Z as a subspace of the fuzzy prime spectrum
PFI(Z) under the assumption that everymaximal fuzzy ideal
is prime. Moreover, we derive equivalent conditions for the
space of maximal fuzzy ideals of a poset to be a normal space.

Remark 25. Note that ifZ ∈ Pos1 and L has dual atoms, then
by applying Zorn’s Lemma, we can fnd a maximal fuzzy
ideal in Z. Terefore, MFI(Z)≠∅ and so to study
MFI(Z) as a subspace ofPFI(Z), frst we have to make
sure that the inclusion MFI(Z)⊆PFI(Z) holds. Note
that if Z ∈ Pu

MIP, then MFI(Z)⊆PFI(Z). Tus, it
follows from the assumption Z ∈ Pu

MIP that MFI(Z)

forms a subspace of PFI(Z). Any open set of MFI(Z)

is of the form Σ(θ)∩MFI(Z). For every fuzzy ideal θ of Z

if we consider
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ΥM(θ) � MFI(Z)∩Υ(θ) and

ΣM(θ) � MFI(Z)∩Σ(θ),
(23)

then we have the following:

ΥM(θ) � MFI(Z) − ΣM(θ)

� MFI(Z) − Σ(θ) and

ΣM(θ) � MFI(Z) − ΥM(θ)

� MFI(Z) − Υ(θ).

(24)

Lemma 26. Let Z ∈ Pu
MIP. Ten, the family

B � ΣM((pα]): p ∈ Z, α ∈ L􏼈 􏼉 forms a basis for MFI(Z)

as a subspace of PFI(Z).

Lemma 27. Let Z ∈ Pos1, p ∈ Z and α ∈ L. Ten, (pα] (the
fuzzy ideal of Z generated by the fuzzy point pα) is a u-fuzzy
ideal of Z.

Lemma 28. Let Z ∈ Pos1, α in L − 1{ } and μ ∈ FIu(Z)

such that Im(μ) � 1, α{ }. If every maximal element in
FIu(Z) is maximal in FI(Z), then for every μ, μ is
maximal in FIu(Z) if and only if for any p ∈ Z such that
μ(p)≠ 1, there exists q ∈ Z such that μ(q) � 1 and
(p, q)u � 1{ }.

Proof. Let μ be a maximal u-fuzzy ideal of Z and μ(p)≠ 1.
Consider the fuzzy subset σ defned by, for any q ∈ Z,

σ(q) � sup 􏽞

n

i�1
μ ai( 􏼁: a1, a2 · · · an ∈ Z, q ∈ a1, a2 · · · an, p( 􏼁

ul⎧⎨

⎩

⎫⎬

⎭.

(25)

We show that σ is a fuzzy ideal. Since 0 ∈ (0, p)ul, it is
clear that σ(0) � 1 and let r, s ∈ Z and q ∈ (r, s)ul. Now,

σ(r)∧ σ(s) � sup 􏽞

n

i�1
μ ai( 􏼁: a1, a2 · · · , an ∈ Z, r ∈ a1, a2 · · · , an, p( 􏼁

ul⎧⎨

⎩

⎫⎬

⎭

∧ sup 􏽞

m

j�1
μ bj􏼐 􏼑: b1, b2 · · · , bm ∈ Z, s ∈ b1, b2 · · · , bm, p( 􏼁

ul
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

� sup 􏽞

n

i�1
μ ai( 􏼁∧ 􏽞

m

j�1
μ bj􏼐 􏼑: a1, a2, . . . , an, b1, b2 · · · , bm ∈ Z, r ∈ a1, a2 · · · , an, p( 􏼁

ul
, s ∈ b1, b2 · · · , bm, p( 􏼁

ul
⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

≤ sup 􏽞

n

i�1
μ ai( 􏼁

⎧⎨

⎩ ∧ 􏽞

m

j�1
μ bj􏼐 􏼑: a1, a2, · · · an, b1, b2 · · · , bm ∈ Z,

q ∈ (r, s)
ul ⊆ a1, a2 · · · an, b1, b2 · · · , bm, p( 􏼁

ul

� σ(q).

(26)

Tus, σ ∈ FI(Z). Since for any q ∈ Z, q ∈ (q, p)ul, we
clearly have σ(q)≥ μ(q), and hence, μ⊆ σ. Again since
p ∈ (0, p)ul, we clearly have σ(p)≥ μ(0) � 1, and hence,
σ(p) � 1. Tis shows that μ ⊂≠ σ. It follows that μ(p)< σ(p)

for some p ∈ L; that is, μ(p)≠ 1. Again, by the hypothesis
“every maximal element of FIu(Z) is maximal in
FI(Z),” μ would be maximal, and hence, σ � 1. Since
1 ∈ Z, we have (1) � 1, and hence, there exist
a1, a2 · · · , an ∈ Z such that 1 ∈ (a1, a2 · · · , an, p)ul and
∧ n

i�1μ(ai) � 1. Ten, (a1, a2 · · · , an, p)u � 1{ }. But, as
μ ∈ FIu(Z), there should be some q ∈ (a1, a2 · · · , an)u such
that μ(q) � ∧ n

i�1μ(ai), and hence, μ(q) � 1. Terefore,
(p, q)u � (a1, a2 · · · , an, p)u � 1{ }.

Conversely, assume the condition to be true and let
θ ∈FIu such that μ⊂≠ θ⊆ 1. Ten, there exists p ∈ Z such
that μ(p)≠ 1 and θ(p) � 1 Ten, by hypothesis, there exits
q ∈ Z such that μ(q) � 1 and (p, q)u � 1{ }. Tis implies that
(p, q)ul � Z and since p, q ∈ θ∗ � z ∈ Z: θ(z) � 1{ }, we have
Z � (p, q)ul ⊆ θ∗, and hence, θ � 1. Hence, μ is a maximal
u-fuzzy ideal.

Let us recall a dually dense element in a poset. Let
Z ∈ Pos1 and p ∈ Z. We say that p is dually dense whenever
p⊺ � 1{ }, where p⊺ � q ∈ Z: (q, p)u

􏼈 􏼉 � 1{ }. We denote by
D1, the set of all dually dense elements in Z. □

Lemma 29. Let Z ∈ PosB. Assume that every maximal el-
ement of FIu(Z) is maximal in the class FI(Z). Ten,

∩ μ: μ ismaximal inFI
u
(Z)􏼈 􏼉 � χD1

. (27)

Proof. LetMFu(Z) be the collection of all maximal u-fuzzy
ideals of Z. Suppose χD1

(p) � 1. Ten, p ∈ D1, that is
p⊺ � 1{ }. Suppose on the contrary that (∩ η∈MFu(Z)η)(p)≠ 1.
Ten, there exists a maximal u-fuzzy ideal μ such that
μ(p)≠ 1. By Lemma 28, there exists q ∈ Z such that μ(q) � 1
and (p, q)u � 1{ }. Tis gives q ∈ p⊺ � 1{ }, and hence, μ(q) �

μ(1)≠ 1 which is a contradiction to the fact that μ(q) � 1. On
the other hand, let (∩ η∈MFu(Z)η)(p) � 1. Ten, η(p) � 1 for
all maximal u-fuzzy ideals. Suppose χD1

(p)≠ 1. Ten, ∉D1,
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and hence, there exists q ∈ p⊺ such that q≠ 1. By Zorn’s
lemma, there is a maximal u-fuzzy ideal μ with χ(q] ⊆ μ. As
μ(p) � 1 and μ(q) � 1, we have , q ∈ μ∗, and this implies that
Z � (p, q)ul ⊆ μ∗ is a contradiction to the maximality of
μ∗. □

Corollary 30. Let Z ∈ PosB and assume that that every
maximal element of FIu(Z) is maximal in the class
FI(Z). Ten, χD1

is a fuzzy ideal of Z.

Lemma 3 . Let Z ∈ Pu
MIP. Ten, the closure of the set

MFu(Z) in PFI(Z) is Υ(χD1
).

Proof. It follows from Lemma 12 that

MF
u
(Z) � Υ ∩

μ∈MFu(Z)
μ􏼠 􏼡

� Υ χD1
􏼐 􏼑.

(28)

Hence, this is proved. □

Defnition 32 (see [24]). By π0-space, we mean a topological
space for which each of its nonempty open set contains
a nonempty closed set.

One can easily verify that every T1-space can be viewed
as a π0-space. One of our frst aims here is to provide an
example of a poset for which its fuzzy prime spectrum
PFI(Z) is not a π0-space. For, consider the poset Z6
whose Hasse diagram is depicted in Figure 1 and L � 0, α, 1{ }

where 1> α> 0. Here, PFI(Z6) � α(a], α(b], α(c], α(d]􏽮 􏽯.
Te collection of open sets is

∅,Σ α(a]􏼐 􏼑,Σ α(b]􏼐 􏼑,Σ α(c]􏼐 􏼑,Σ α(d]􏼐 􏼑,Σ α 0,a,b{ }􏼐 􏼑,PFI Z6( 􏼁􏽮 􏽯.

(29)

Now, Σ(α(a]) � PFI(Z) − Υ(α(a]) � α(b]􏽮 􏽯 and so
that α(b]􏽮 􏽯 is a nonempty open set which does not contain
a nonempty closed set. Tus, PFI(Z6) is not π0, and
hence, it is not a T1-space, as every T1-space is a π0-space.

Lemma 33. Let Z ∈ Pu
MIP with the least element 0. If

∩ η: η ∈MF
u
(Z)􏼈 􏼉 � χ 0{ }, (30)

then PFI(Z) is a π0-space.

Proof. Suppose that ∩ η∈MFu(Z)η � χ 0{ }. By Lemma 29, χD1
�

χ 0{ }. Let Σ(μ) be any nonempty proper open set in
PFI(Z). Clearly, χD1

� χ 0{ } ⊊ μ. Ten, there exists a non-
zero p ∈ Z such that μ(p)> 0. Let say β � μ(p). Since p is
nonzero, we have χD1

(p) � 0. By Lemma 29,
(∩ η∈MFu(Z)η)(p) � 0. If η(p)≥ β for all η ∈MFu(Z), then
(∩ η∈MFu(Z)η)(p)≥ β> 0 which is a contradiction. Tus,
there is a maximal u-fuzzy ideal θ such that θ(p)≱β, and
thus, μ⊈ θ. Since Z ∈ Pu

MIP, it follows that θ is a prime fuzzy
ideal. Further, Υ(θ) � θ{ } yields, and hence, θ{ } is a closed
set. Terefore, θ{ } is the desired nonempty closed set such
that θ{ }⊆Σ(μ), and consequently, PFI(Z) is a π0
space. □

Remark 34. But, the converse of Lemma 33 need not
necessarily be true in general. Consider the poset Z8
whose Hasse diagram is given in Figure 2 and let
L � 0, α, 1{ }, where 1> α> 0. Here, PFI(Z8) � α(e], α(f].
By Lemma 16,PFI(Z8) is a T1-space, and hence, it is π0,
but the intersection of all maximal fuzzy ideals of Z8 is
nonzero.

Defnition 35. Given two subsets G and H of a topological
space X, we say that G is weakly separable from H if
G∩H � ∅.

Theorem 36. Let Z ∈ Pu
MIP. Let us put

S � Y: Y is a subspace of PFI (Z) such thatY is not weakly separable with η􏼈 􏼉 for all η ∈ PFI(Z) − Y􏼈 􏼉. (31)

Ten, MFI(Z) is the least member of S.

Proof. We frst show that MFI(Z) ∈ S. For, let
σ ∈ PFI(Z) be any element outside ofMFI(Z); that is,
σ ∉MFI(Z). By Lemma 12, σ{ } � Υ(σ). As
σ ∉MFI(Z), there exists a maximal ideal θ⊇ σ. By the
hypothesis, θ is a prime fuzzy ideal. Tus, θ ∈ Υ(σ), and
hence, M ∈ σ{ }. Tis implies MFI(Z)∩ σ{ }≠∅, and

therefore, MFI(Z) is not weakly separable from any el-
ement outside it. Next, we show that MFI(Z)⊆Y for all
Y ∈ S. Let Y ∈ S and η be a prime fuzzy ideal of Z such that
η ∉ Y. Ten, Y∩ η􏼈 􏼉≠∅. So, by Lemma 12 there exists σ ∈ Y

such that η⊆ σ. As η ∉ Y, it should be the case that η⊊σ
which implies that η is not maximal; i.e., η ∉MFI(Z)

leads to a conclusion MFI(Z)⊆Y. Terefore, MFI(Z)

is the least member in S. □

1

0

d

b

c

a

Figure 1: Hasse diagram for the poset Z6.
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Lemma 37. Let Z be ideal distributive and L ∈ Br be such
that for any α ∈ L − 1{ }, there exists β ∈ p(L) such that
α≤ β< 1. For S⊆ L − 1{ } and pi􏼈 􏼉i∈∆⊆Z, if PFI(Z) �

∪ Σ((pi)α): i ∈∆, α ∈S􏼈 􏼉 for some index set ∆, then
sup t: t ∈ S{ } � 1.

Proof. Put sup t: t ∈ S{ } � α. Assume on contrary that α≠ 1.
Ten, by our assumption, there exists a prime element β ∈ L

such that α≤ β< 1. As Z is ideal distributive, Z need to
necessarily have prime ideals and let P be a prime ideal in Z.
Defne μ: Z⟶ L as follows:

μ(p) �
1, if p ∈ P,

β, otherwise,
􏼨 (32)

for all p ∈ Z. Ten, it is clear that μ ∈PFI(Z), and hence,
μ ∈ Σ(pt) for some p ∈ pi􏼈 􏼉i∈∆ and t ∈ S. Tis implies that
pt ⊈ μ. However, μ(p)> β≥ α≥ t � pt(p). Tus, pt ⊆ μ is
a contradiction. Terefore, α � 1. □

Corollary 38. Let L ∈ Br be such that for any α − 1{ }, there
exists a dual atom β ∈ L such that α≤ β< 1. Ten, for any
S⊆L − 1{ } and pi􏼈 􏼉i∆⊆Z and any subspace Y of PFI(Z)

containing MFI(Z); if Y⊆ ∪ Σ((pi)α): i ∈ ∆, α ∈ S􏼈 􏼉 for
some index set Δ, then sup t: t ∈ S{ } � 1.

Lemma 39. Let Z be a poset, pi􏼈 􏼉i∈∆⊆Z, S⊆L − 0{ } and β �

sup t: t ∈ S{ }. Ten,

⋃ Σ pi( 􏼁t( 􏼁 : i ∈ Δ, t ∈ S􏼈 􏼉 � ∪ Σ pi( 􏼁β􏼐 􏼑 : i ∈ Δ􏽮 􏽯. (33)

Proof. Te proof is similar to that of Proposition 16 in [25].
We now turn our attention and go to study some

compactness properties of the space of prime (respectively,
maximal) fuzzy ideals in a poset. □

Lemma 40. Let L ∈ Br be such that for any α ∈ L − 1{ }, there
exists β ∈ p(L) such that α≤ β< 1. LetZ ∈ Pu

MIP andY be any
subspace of PFI(Z) containing MFI(Z). Ten, Y is
compact.

Proof. Let Y be any subspace of PFI(Z) containing
MFI(Z) and let Σ((pi)t): i ∈ Δ, t ∈ S⊆L − 1{ }􏼈 􏼉 be a basic

open cover forY and let β � sup t: t ∈ S{ }. Ten, by Corollary
38 and Lemma 39, we clearly have

Y⊆ ∪ Σ pi( 􏼁t( 􏼁: i ∈ ∆, t ∈ S⊆L − 1{ }􏼈 􏼉 � ∪ Σ pi( 􏼁1( 􏼁: i ∈∆􏼈 􏼉.

(34)

Ten, we have Y⊆Σ((⋃i∈∆(pi)1]) � PFI(Z) −

Υ((⋃i∈∆(pi)1]). Tis implies that Y∩Υ((⋃i∈∆(pi)1]) � ∅.

We claim that ((⋃i∈∆(pi)1] � 1.) Suppose that
((⋃i∈∆(pi)1]≠ 1.) Ten, by Zorn’s lemma, there exists
a maximal fuzzy ideal μ in MFI(Z) such that
((⋃i∈∆(pi)1]⊆ μ.) Tus, μ ∈ Υ((⋃i∈∆(pi)1]), a contradiction
to the fact that MFI(Z)⊆Y⊆Σ((⋃i∈∆(pi)1]) �

PFI(Z) − Υ((⋃i∈∆(pi)1]). Hence, the claim holds true.
Tis implies that the set ( pi: i ∈∆􏼈 􏼉] � Z � (1]. It was
proved in [1] that the class Id(Z) of all ideals of Z forms an
algebraic lattice with respect to the inclusion order and every
principal ideal is a compact element in Id(Z). Ten, it
follows from this fact that there exist i1, i2, . . . , in ∈∆ such
that (pi1

]∨ . . .∨(pin
] � (1] � Z. Now, we show that

Y∩Υ((⋃n
i�1(pi)1]) � ∅. Let μ ∈ Y∩Υ((⋃n

i�1(pi)1]).
Ten, ⋃n

i�1(pi)1⊆ μ. So, for each � 1, 2, . . . , n, (pi)1⊆ μ, and
hence, μ(pi) � 1, i.e., pi ∈ μ∗ for all i � 1, 2, . . . , n. Tis
implies that

1] � p1( 􏼃∨ . . .∨ pn( 􏼃⊆ μ∗,( (35)

which is a contradiction. Tus, Y∩Υ((⋃n
i�1(xi)1]) � ∅.

So,

Y⊆PFI(Z) − Υ ⋃
n

i�1
pi( 􏼁1􏼠 􏼣􏼠 􏼡 � Σ ⋃

n

i�1
pi( 􏼁1􏼠 􏼣􏼠 􏼡

� Σ ⋃
n

i�1
pi( 􏼁1􏼠 􏼡.

(36)

□

Corollary 4 . For any Z ∈ Pu
MIP, both MFI(Z) and

PFI(Z) are compact.

Corollary 42. If Z is a bounded pseudocomplemented
semilattice, then PFI(Z) is compact. In particular,
MFI(Z) is compact.

Theorem 43. Let Z ∈ Pu
MIP. Ten,MFI(Z) is Hausdorf if

and only if for any distinct elements μ′, μ″ ∈MFI(Z), we
can fnd a, b ∈ Z and α, β ∈ L such that α≰ μ′(a), β≰ μ″(b)

and (aα]∩ (bβ]⊆ ∩ μ∈MFI(Z)μ

Proof. Suppose that MFI(Z) is Hausdorf. Let μ′, μ″ be
any two distinct elements of MFI(Z). As MFI(Z) is
Hausdorf, we get two fuzzy ideals θ and η of Z such that
MFI(Z) − Υ(θ) and MFI(Z) − Υ(η) are disjoint open
neighborhoods of μ′ and μ″, respectively. Tis gives that
θ⊈ μ′ and η⊈ μ″ so that there are two points a, b ∈ Z with
θ(a) ≰ μ′(a) and η(b)≰ μ″(b). Put α � θ(a) and β � η(b).
Also, from

[MFI(Z) − Υ(θ)]∩ [MFI(Z) − Υ(η)] � ∅, (37)

1

fe

d

b

0

a c

Figure 2: Hasse diagram for the poset Z8.
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we get MFI(Z) − Υ(θ ∩ η) � ∅. Terefore,
Υ(θ∩ η) � MFI(Z). Tis gives θ∩ η⊆ μ, for all μ ∈
MFI(Z), and hence, θ∩ η⊆ ∩ μ∈MFI(Z)μ. Now, let p ∈ Z,

if ∉(a, b)l, then it holds that

aα􏼃∩ bβ􏼐 􏽩􏼐􏼐 􏼑(p) � 0≤ ∩
μ∈MFI(Z)

μ􏼠 􏼡(p), (38)

If p ∈ (a, b)l, and p≠ 0, then

aα􏼃∩ bβ􏼐 􏽩􏼐􏼐 􏼑(p) � α∧ β

� θ(a) ∧ η(b)

≤ θ(p)∧ η(p)

� (θ∩ η)(p)

≤ ∩
μ∈MFI(Z)

μ􏼠 􏼡(p).

(39)

On the other hand, if we are assuming that p � 0, then it
is clear that ((aα]∩ (bβ])(p) � 1 � (∩ μ∈MFI(Z)μ)(p).

Conversely, let μ′ and μ″ be any two distinct maximal
fuzzy ideals in Z. By our assumption, there exist a, b ∈ Z

and α, β ∈ L such that α≰ μ′(a), β≰ μ″(b) and
(aα]∩ (bβ]⊆ ∩ μ∈MFI(Z)μ. Clearly, MFI(Z) − U((aα])

and MFI(Z) − U((bβ]) are the neighborhoods of μ′ and
μ″, respectively, in MFI(Z). As
(aα]∩ (bβ]⊆ ∩ μ∈MFI(Z)μ, we have

MFI(Z) − U aα( 􏼃( 􏼁∩MFI(Z) − U bβ􏼐 􏽩􏼐 􏼑

� MFI(Z) − U aα􏼃∩ bβ􏼐 􏽩􏼐􏼐 􏼑

� ∅.

(40)

Tis shows that MFI(Z) is Hausdorf. □ □

Defnition 44. A bounded poset Z is said to have the
Fpm-property if for any μ′ ≠ μ″ ∈MFI(Z), there are
a, b ∈ Z and α, β ∈ L such that α≰ μ′(a), β≰ μ″(b) and
(aα]∩ (bβ] � χ 0{ }.

Lemma 45. Let Z ∈ Pu
MIP. If Z has the Fpm-property, then

for each θ ∈PFI(Z), there is a unique η ∈MFI(Z) such
that θ⊆ η.

Proof. Let θ ∈ PFI(Z). Since Z is given to be bounded
and hence with top element 1, we can fnd η ∈MFI(Z)

containing θ. To prove the uniqueness part, we use con-
tradiction. Suppose on the contrary that θ is contained in
two distinct maximal fuzzy ideals μ′ and μ″. Since Z has the
Fpm-property, there exist a, b ∈ Z and α, β ∈ L such that
α≰ μ′(a), β≰ μ″(b) and (aα]∩ (bβ] � χ 0{ }. As (aα]∩ (bβ] �

χ 0{ } ⊆ θ, we have (aα]⊆ θ or (bβ]⊆ θ. In either case, we get
a contradiction. Terefore, every prime fuzzy ideal is con-
tained in a unique maximal fuzzy ideal.

We say that topological space X is normal provided that
any two disjoint closed sets in X can be separated by means
of disjoint open sets. Tat is, for any disjoint closed sets E

and F in X, there exist two disjoint open sets G and H in X

such that E⊆G and F⊆H. Observe that if X is compact and
Hausdorf, then it is normal. □

Lemma 46. Let Z ∈ Zu
MIP. If Z has the Fpm-property, then

MFI(Z) is Hausdorf. Moreover, it is normal.

Proof. Let μ′ and μ″ be two distinct distinct elements of
MFI(Z). Since Z is a Fpm-poset, there exist a, b ∈ Z and
α, β ∈ L such that α≰ μ′(a), β≰ μ″(b) and (aα]∩ (bβ] �

χ 0{ } ⊆ ∩ μ∈MFI(Z)μ. By Teorem 43, MFI(Z) is Haus-
dorf. By Corollary 41, MFI(Z) is a compact space. Tus,
MFI(Z) is a normal space.

Te converse of the above lemma is true if the in-
tersection of all maximal fuzzy ideals of Z is χ 0{ }. □

Theorem 47. Let Z ∈ Pu
MIP with the bottom element 0.

Assume that χ 0{ } � ∩ η: η ∈MFI(Z)􏼈 􏼉. Ten, MFI(Z)

is Hausdorf if and only if Z has the Fpm-property.

Proof. It follows from Teorem 43. If MFI(Z) is Haus-
dorf, there exist a, b ∈ Z and α, β ∈ L such that
α≰ μ′(a), β≰ μ″(b) and (aα]∩ (bβ]⊆ ∩ μ∈MFI(Z)μ � χ 0{ },
for any distinct maximal ideals μ′ and μ″. Tus, Z is a Fpm-
poset. Te converse follows from Lemma 46.

We conclude this paper by the following theorem: □

Corollary 48. Let Z ∈ Pu
MIP with the least element 0 and

assume that ∩ θ: θ ∈MFI(Z){ } � χ 0{ }. Ten, the following
conditions are equivalent:

(1) Z has the Fpm-property
(2) For any μ′ ≠ μ″ ∈MFI(Z), we can fnd two open

neighborhoods U and V of μ′ and μ″ in PFI(Z)

such that U∩V � ∅
(3) MFI(Z) is normal

In addition, if Z is given to be complemented and
p(L) is antichain, then the following statement is
equivalent with any one (and hence all) of the above
three statements

(4) PFI(Z) is a normal space

It is observed that if Z is a bounded distributive lattice,
then the intersection of all prime fuzzy ideals of Z becomes
χ 0{ }. Tus, we can deduce the following corollary from the
proof of Corollary 48.

Corollary 49. Te following conditions are equivalent for
any bounded distributive lattice Z:

(1) Z has the Fpm-property

10 International Journal of Mathematics and Mathematical Sciences



(2) For any μ′ ≠ μ″ ∈MFI(Z), we can fnd two open
neighborhoods U and V of μ′ and μ″ in PFI(Z)

such that U∩V � ∅
(3) MFI(Z) is normal

In addition, if Z is a Boolean algebra, then the fol-
lowing statement is equivalent with any one (and
hence all) of the above three statements

(4) PFI(Z) is a normal space

5. Conclusions

Tis manuscript presents results on fuzzy prime ideals of
partially ordered sets, focusing on the study of their topo-
logical properties within the context of the hull-kernel to-
pology. Our investigation has centered around the space of
prime fuzzy ideals, along with the space of maximal fuzzy
ideals as a subspace. We explored the conditions for which
the space of fuzzy prime ideals in partially ordered sets is
compact, Hausdorf, and normal through which it deepened
our understanding of the interplay between order relations
and fuzzy ideals. We believe that these fndings not only
contribute to the feld of fuzzy set theory but also provide
valuable insights into the broader study of partially ordered
sets and their associated structures.
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