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In this paper, we establish some inequalities involving the modulus of the derivative of rational functions with prescribed poles
and restricted zeros. Te obtained results generalize some known inequalities for rational functions. Moreover, our results also
contain certain known polynomial inequalities.

1. Introduction

Te modulus of complex polynomials on a circle and the
locations of zeros of these polynomials have been studied for
several years. We start with a result due to Bernstein [1]. Let
Pn be the class of polynomials of degree at most n. If p(z) is
a polynomial of degree n, then the famous result, known as
Bernstein

p′(z)


 ≤ nmax
|z|�1

|p(z)|. (1)

Equality holds in (1) if and only if p(z) has all zeros at the
origin.

Erd€os conjectured in 1944 which Lax [2] proved by
improving (1) that for polynomials p(z) of degree n and
having no zeros in |z|< 1, we have

max
|z|�1

p′(z)


 ≤
n

2
max
|z|�1

|p(z)|. (2)

Equality in (2) holds for p(z) � λzn + μ, |λ| � |μ|.

On the other hand, if p(z) is a polynomial of degree n

having all zeros in |z| ≤ 1, then

max
|z|�1

p′(z)


≥
n

2
max
|z|�1

|p(z)|. (3)

Inequality (3) was demonstrated by Tura
�
n [3] and

equality in (3) holds for polynomials which have all its zeros
on |z| � 1. In the literature [4–7], there are many im-
provements of inequalities (2) and (3). For the class of ra-
tional functions, we write

w(z) ≔ z − a1(  z − a2(  · · · z − an( ,

B(z) �
1 − a1z

z − a1
 

1 − a2z

z − a2
  · · ·

1 − anz

z − an

 

�
w
∗
(z)

w(z)
,

(4)

where w∗(z) � znw(1/z) and a1, a2, . . . , an are complex
numbers. Te product B(z) is known as Blaschke product
and |B(z)| � 1, when |z| � 1.

Let Pm be the class of all polynomials of degree at
most m. Now we defne Rm,n by

Rm,n � Rm,n a1, a2, . . . , an(  ≔
p(z)

w(z)
: p ∈ Pm andm≤ n .

(5)

Tus, Rm,n is the set of all rational functions with poles
a1, a2, . . . , an at most and with fnite limit at ∞.
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From now on, we denote Tk � z: |z| � k{ }, D−
k is the set

of all points inside Tk, and D+
k is the set of all points

outside Tk.
In 1995, Li et al. [8] extended Bernstein-type inequalities

to a rational function by replacing zn by Blaschke product
B(z). Tey obtained the following results.

Theorem 1. If r(z) ∈ Rn,n, then

r
′
(z)



 ≤ B
′
(z)

����r(z)


, (6)

for z ∈ T1. Te inequality is sharp and equality holds for
r(z) � αB(z) with |α| � 1.

Li et al. [8] also proved the following results.

Theorem 2. If r(z) ∈ Rn,n and all the zeros of r(z) lie in
T1 ∪D+

1 , then

r
′
(z)



 ≤
B
′
(z)





2
max
z∈T1

|r(z)|, (7)

for z ∈ T1.

Theorem 3. If r(z) ∈ Rn,n and all the zeros of r(z) lie in
T1 ∪D−

1 , then

r
′
(z)



≥
B
′
(z)





2
max
z∈T1

|r(z)|, (8)

for z ∈ T1.

Theorem 4. Suppose r(z) ∈ Rm,n where r(z) has exactly n

poles a1, a2, . . . , an and all the zeros of r(z) lie in T1 ∪D−
1 .

Ten, for z ∈ T1,

r
′
(z)



≥
1
2

B
′
(z)



 − (n − m) |r(z)|, (9)

where m is the number of zeros of r(z).

An extension of Teorem 4 was shown by Wali and
Shah [9].

Theorem 5. Suppose r(z) ∈ Rm,n where r(z) has exactly n

poles a1, a2, . . . , an and all the zeros of r(z) lie in T1 ∪D−
1 .

Ten, for z ∈ T1,

r
′
(z)



≥
1
2

B
′
(z)



 − (n − m) +
cm


 − c0




cm


 + c0




 |r(z)|, (10)

where m is the number of zeros of r(z).

2. Main Results

We use the following lemmas for proving our main results.
Te frst lemma was shown by Dubinin [10] (see also [11]).

Lemma 6. For polynomial p(z) � cnzn + · · · + c0 at each
point z of the circle |z| � 1 at which p(z)≠ 0, the inequalities
are valid:

Re
zp′(z)

p(z)
 ≥

n − 1
2

+
cn




cn


 + c0



. (11)

Lemma 7. If z ∈ T1, then

Re
zw
′
(z)

w(z)
⎛⎝ ⎞⎠ �

n − B
′
(z)





2
. (12)

Lemma 7 was proved by Aziz and Zargar [12]. Te next
lemma is due to Chan and Malik [13] and Li et al. [8].

Lemma 8. If p(z) � c0 + 
m
v�μcvzv, 1≤ μ≤m, is a poly-

nomial of degree m having all the zeros in Tk ∪D+
k , k≥ 1, then

p′(z)


 ≤
m

1 + k
μ |p(z)|, (13)

for z ∈ T1.

Lemma 9. If r(z) ∈ Rn,n and r∗(z) � B(z)r(1/z), then

r
∗
(z)( 
′

 + r
′
(z)



 ≤ B
′
(z)



 |r(z)|, (14)

for z ∈ T1.

In this paper, frstly, we obtain an inequality for the
modulus of the derivative of rational functions with pre-
scribed poles and restricted zeros.

Theorem 10. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where
r(z) has exactly n poles a1, a2, . . . , an and all the zeros of r(z)

lie in Tk ∪D+
k , k≥ 1 except the zeros of order s lying in the

origin. Ten, for z ∈ T1,

r
′
(z)



 ≤
1
2

B
′
(z)



 + 2s − n +
2(m − s)

1 + k
μ |r(z)|, (15)

where p(z) � zs( 
m− s
v�μ cvzv, 1≤ μ≤m − s.

Proof. Let r(z) � (p(z)/w(z)) where p(z) � zsh(z) and
h(z) � c0 + 

m− s
v�μ cvzv, 1≤ μ≤m − s has all its zeros in

Tk ∪D+
k .

It is easy to see that

r
′
(z)

r(z)
�

w(z)p′(z) − p(z)w
′
(z)

(w(z))
2 ·

w(z)

p(z)

�
h
′
(z)

h(z)
+

s

z
−

w
′
(z)

w(z)
.

(16)

Tis implies that

zr
′
(z)

r(z)
�

zh
′
(z)

h(z)
−

zw
′
(z)

w(z)
+ s. (17)

Hence,

Re
zr
′
(z)

r(z)
⎛⎝ ⎞⎠ � Re

zh
′
(z)

h(z)
⎛⎝ ⎞⎠ − Re

zw
′
(z)

w(z)
⎛⎝ ⎞⎠ + s. (18)
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Since h(z) has all its zeros in Tk ∪D+
k , k≥ 1, Lemma 8

implies that

Re
zh
′
(z)

h(z)
⎛⎝ ⎞⎠ ≤

zh
′
(z)

h(z)




≤

m − s

1 + k
μ. (19)

Also, Lemma 7 yields

Re
zw
′
(z)

w(z)
⎛⎝ ⎞⎠ �

n − B
′
(z)





2
. (20)

From (18), we get

Re
zr
′
(z)

r(z)
⎛⎝ ⎞⎠ ≤

m − s

1 + k
μ  −

n − B
′
(z)





2
⎛⎝ ⎞⎠ + s, (21)

for z ∈ T1. Hence, for |z| � 1 and using (18), we have

z r∗(z)( )
′

r(z)





2

� B
′
(z)



 −
zr′(z)

r(z)





2

� B
′
(z)




2

+
zr′(z)

r(z)





2

− 2 B
′
(z)



Re
zr
′
(z)

r(z)
⎛⎝ ⎞⎠

≥ B
′
(z)




2

+
zr′(z)

r(z)





2

− 2 B
′
(z)




m − s

1 + k
μ −

n − B
′
(z)





2
⎛⎝ ⎞⎠ + s⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(22)

for z ∈ T1. Tat is,

r
′
(z)




2

+ n −
2(m − s)

1 + kμ − 2s  B
′
(z)



|r(z)|
2

 

(1/2)

≤ r
∗
(z)( 
′

, (23)

for z ∈ T1. Combining this with Lemma 9, we get

r
′
(z)




2

+ n −
2(m − s)

1 + k
μ − 2s  B

′
(z)



|r(z)|
2 ≤ B

′
(z)‖r(z)



 − r
′
(z)



 
2
, (24)

for z ∈ T1. Terefore,

r
′
(z)



 ≤
1
2

B
′
(z)



 + 2s − n +
2(m − s)

1 + k
μ |r(z)|, (25)

for z ∈ T1. Tis completes the proof. □
By taking s � 0 in Teorem 10, we get the next result.

Corollary 11. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where
r(z) has exactly n poles a1, a2, . . . , an and all the zeros of r(z)

lie in Tk ∪D+
k , k≥ 1. Ten, we have for z ∈ T1,

r
′
(z)



 ≤
1
2

B
′
(z)



 − n +
2m

1 + k
μ |r(z)|, (26)

where p(z) � 
m
v�μcvzv, 1≤ μ≤m.

By taking k � 1 in Corollary 11, we get the following
result.

Corollary 12. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where
r(z) has exactly n poles a1, a2, . . . , an and all the zeros of r(z)

lie in T1 ∪D+
1 . Ten, we have for z ∈ T1,

r
′
(z)



 ≤
1
2

B
′
(z)



 − (n − m) |r(z)|, (27)

where m is the number of zeros of r(z).

If r(z) ∈ Rm,m in Corollary 12, it follows that Corollary
12 reduces to Teorem 2.

Remark 13. If p ∈ Pn, let us defne aj � α, |α|≥ 1, for
j � 1, 2, 3, . . . , n.
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Ten, w(z) � (z − α)n and r(z) � (p(z)/(z − α)n). We
get

r
′
(z) �

(z − α)
n
p′(z) − n(z − α)

n− 1
p(z)

(z − α)
2n

� −
np(z) +(α − z)p′(z)

(z − α)
n+1 

�
− Dαp(z)

(z − α)
n+1,

(28)

where Dαp(z) � np(z) + (α − z)p′(z) is the polar de-
rivative of polynomial p(z) with respect to the point α. It
generalizes the ordinary derivative in the sense that

lim
α⟶∞

Dαp(z)

α
� p′(z). (29)

For B(z) � (w∗(z)/w(z)), we have B′(z) �

(n(|α|2 − 1)/(z − α)2)((1 − α z)/(z − α))n− 1.
Hence, |B′(z)| � (n(|α|2 − 1)/|z − α|2) for |z| � 1.
Now, the next result is obtained for the polar derivative.

Corollary 14. Suppose p(z) � zsh(z) where h(z)

� c0 + 
m− s
v�μ cvzv, 1≤ μ≤m − s and p(z) has all its zeros in

Tk ∪D+
k , k≥ 1, except the zeros of order s lying in the origin.

Ten,

Dαp(z)


 ≤
|α| + 1

2
2s +

2(m − s)

1 + k
μ |p(z)|, (30)

for z ∈ T1.

Dividing both sides of the inequality (30) by |α| and
letting |α|⟶∞, we get the following result of Kumar and
Lal [14].

Corollary 15. Suppose p(z) � zsh(z) has all the zeros lying
in Tk ∪D+

k , k≥ 1 except the zeros of order s lying in the origin.
Ten, for z ∈ T1,

p′(z)


 ≤
m + sk

μ

1 + k
μ |p(z)|, (31)

where h(z) � c0 + 
m− s
v�μ cvzv, 1≤ μ≤m − s.

Theorem 16. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where
p(z) � (z − z0)

sh(z) has the zeros z0 of order s with |z0|> 1
and h(z) � 

m− s
j�0 cj+sz

j has all its zeros lying inT1 ∪D−
1 . Ten,

r
′
(z)



≥
1
2

B
′
(z)



 − (n − m + s) +
cm


 − cs




cm


 + cs



+

2s

1 + z0



 |r(z)|,

(32)

for z ∈ T1.

Proof. Let r(z) � (p(z)/w(z)) where p(z) � (z − z0)
sh(z)

and h(z) � 
m− s
j�0 cj+sz

j is a polynomial of degree m − s

having all its zeros in T1 ∪D−
1 .

By diferentiating with respect to z, we get

p′(z) � z − z0( 
s
h
′
(z) + h(z)s z − z0( 

s− 1
. (33)

It is easy to see that

r
′
(z)

r(z)
�

w(z)p′(z) − p(z)w
′
(z)

(w(z))
2 ·

w(z)

p(z)

�
h
′
(z)

h(z)
+

s

z − z0
−

w
′
(z)

w(z)
.

(34)

Tis implies that

zr
′
(z)

r(z)
�

zh
′
(z)

h(z)
−

zw
′
(z)

w(z)
+

sz

z − z0
. (35)

Hence,

Re
zr
′
(z)

r(z)
⎛⎝ ⎞⎠ � Re

zh
′
(z)

h(z)
⎛⎝ ⎞⎠ − Re

zw
′
(z)

w(z)
⎛⎝ ⎞⎠ + Re

sz

z − z0
 .

(36)

Lemma 6 and Lemma 7 yield

Re
zr
′
(z)

r(z)
⎛⎝ ⎞⎠≥

m − s − 1
2

+
cm




cm


 + cs




  −
n − B

′
(z)





2
⎛⎝ ⎞⎠ + Re

sz

z − z0
 

�
m − s − 1 − n

2
+

cm




cm


 + cs



+

B
′
(z)





2
+

s

1 + z0




�
1
2

B
′
(z)



 − (n − m + s) +
cm


 − cs




cm


 + cs



+

2s

1 + z0



 ,

(37)

for z ∈ T1. Terefore,

4 International Journal of Mathematics and Mathematical Sciences



zr
′
(z)

r(z)




≥
1
2

B
′
(z)



 − (n − m + s) +
cm


 − cs




cm


 + cs



+

2s

1 + z0



 ,

(38)

for z ∈ T1. Tat is,

r
′
(z)



≥
1
2

B
′
(z)



 − (n − m + s) +
cm


 − cs




cm


 + cs



+

2s

1 + z0



 |r(z)|,

(39)

for z ∈ T1. Tis completes the proof. □
By taking s � 0 in Teorem 16, we obtain that Teorem

16 reduces to Teorem 5.
By taking s � 0 and n � m in Teorem 16, we obtain

that Teorem 16 reduced to Corollary 2 of Wali and
Shah [9].

Remark 17. From the conditions of Teorem 16, we have
|z0|> 1.

Tus, (1 − |z0|/1 + |z0|)
s < 1 for s> 0. Tat is, our lower

bound in Teorem 16 is better than the lower bound in
Teorem 3 of Mir et al. [15].

From Teorem 16, we obtain the following results in
term of polar derivative.

Corollary 18. Suppose p(z) � (z − z0)
sh(z) has the zeros z0

of order s with |z0|> 1 and h(z) � 
m− s
j�0 cj+sz

j has all its zeros
lying inT1 ∪D−

1 .Ten, for any complex number α with |α|≥ 1,

Dαp(z)


≥
(|α| − 1)

2
(m − s) +

cm


 − cs




cm


 + cs



+

2s

1 + z0



 |p(z)|,

(40)

for z ∈ T1.
If s � 0 in Corollary 18, we get the result below.

Corollary 19. Suppose p(z) ∈ Pm has all its zeros lying in
T1 ∪D−

1 . Ten, for any complex number α with |α|≥ 1,

Dαp(z)


≥
|α| − 1

2
m +

cm


 − c0




cm


 + c0




 |p(z)|, (41)

for z ∈ T1.

Dividing both sides of the inequality (40) by |α| and
letting |α|⟶∞, we get the following result.

Corollary 20. Suppose p(z) � (z − z0)
sh(z) has the zeros z0

of order s with |z0|> 1 and h(z) � 
m− s
j�0 cj+sz

j has all its zeros
lying in T1 ∪D−

1 . Ten,

p′(z)


≥
1
2

(m − s) +
cm


 − cs




cm


 + cs



+

2s

1 + z0



 |p(z)|, (42)

for z ∈ T1.

Corollary 21. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where
p(z) � (z − z1)

s1(z − z0)
s0h(z) has the zeros z0 of order s0

and the zeros z1 of order s1 with |z0|, |z1|> 1 and h(z) �


m− (s1+s0)
j�0 cj+s0+s1

zj has all its zeros lying in T1 ∪D−
1 . Ten,

r
′
(z)



≥
1
2

z1


 − 1
z1


 + 1

 

s1

B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0



⎛⎝ ⎞⎠ −

s1

1 + z1




⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦|r(z)|, (43)

for z ∈ T1.

Proof. Let r(z) � (p(z)/w(z)) where p(z) � (z − z1)
s1 (z−

z0)
s0h(z) and h(z) � 

m− (s0+s1)
j�0 cj+s0+s1

zj is a polynomial of
degree m − (s0 + s1) having all its zeros in T1 ∪D−

1 .
Let r(z) � (z− z1)

s1r0(z) where r0(z) � ((z − z0)
s0

h(z))/(w(z)).
By diferentiating with respect to z, we obtain

r
′
(z) � z − z1( 

s1r0′(z) + s1r0(z) z − z1( 
s1− 1

. (44)

Te reverse triangle inequality implies that

r
′
(z)



≥ z − z1( 
s1


 r0′(z)


 − s1 r0(z) z − z1( 
s1− 1



. (45)

Applying Teorem 16 to r0(z), we have

r
′
(z)



≥ z − z1



s1 1

2
B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0



⎛⎝ ⎞⎠ r0(z)


⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

− s1 r0(z) z − z1( 
s1− 1
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≥
z1


 − 1 

s1

2
B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0




⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ r0(z)




− s1 z − z1( 



s1− 1

r0(z)




≥
z1


 − 1 

s1

2
B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0



⎛⎝ ⎞⎠ − s1 z1


 + 1 

s1− 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ r0(z)


,

(46)

for z ∈ T1.
Since r(z) � (z − z1)

s1r0(z), we get

r0(z)


≥
|r(z)|

1 + z1


 
s1

. (47)

Terefore,

r
′
(z)



≥
z1


 − 1 

s1

2
B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0



⎛⎝ ⎞⎠ − s1 z1


 + 1 

s1− 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
|r(z)|

1 + z1


 
s1

≥
1
2

z1


 − 1
z1


 + 1

 

s1

B
′
(z)



 − n − m + s0 + s1(  +
cm


 − cs0+s1





cm


 + cs0+s1




+
2 s0 + s1( 

1 + z0



⎛⎝ ⎞⎠ −

s1

1 + z1




⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦|r(z)|,

(48)

for z ∈ T1. Tus, the proof is complete. □

Corollary 22. Suppose r(z) � (p(z)/w(z)) ∈ Rm,n where

p(z) � z − zv( 
sv z − zv− 1( 

sv− 1 · · · z − z0( 
s0h(z). (49)

has the zeros z0, z1, . . . , zv with |zi|> 1 for 0≤ i≤ v and
h(z) � 

m− (s0+s1+···+si)
j�0 cs0+s1+···+si

zj has all its zeros lying in
T1 ∪D−

1 . Ten,

r
′
(z)



≥
1
2

z1


 − 1
z1


 + 1

 

s1 z2


 − 1
z2


 + 1

 

s2

· · ·
zi


 − 1

zi


 + 1

 

si



· B
′
(z)



 − n − m + s0 + s1 + · · · + si(  +
cm


 − cs0+s1+···+si





cm


 + cs0+s1+···+si




+
2 s0 + s1 + · · · + si( 

1 + z0



⎛⎝ ⎞⎠

−
s1

1 + z1



− · · · −

si

1 + zi



|r(z)|,

(50)

for 0≤ i≤ v and z ∈ T1.

Proof. Let

r(z) �
z − zv( 

sv z − zv− 1( 
sv− 1 · · · z − z0( 

s0h(z)

w(z)
, (51)

where r(z) has the zeros z0, z1, . . . , zv with |zi|> 1 for 0≤ i ≤ v

and the remaining n − (s0 + s1 + · · · + sv) zeros lie in T1 ∪D−
1 .

Let r0(z) � (z − z0)
s0(h(z)/w(z)) and r(z) � (z − zi)

si

ri− 1 for 1≤ i≤ v.
A lower bound of |r0′(z)| is obtained by Teorem 16.

Using the fact that

r0(z)


≥
|r(z)|

1 + z1


 
s1

. (52)

We get a lower bound of |r(z)| as in Corollary 21.
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Next, we can fnd a lower bound of |ri
′(z)| for 1≤ i≤ v

by a similar process by using a lower bound of |ri− 1′(z)| from
the previous process and the fact

ri− 1(z)


≥
|r(z)|

1 + zi


 

si
, (53)

for 1≤ i≤ v. Finally, we get

r
′
(z)



≥
1
2

z1


 − 1
z1


 + 1

 

s1 z2


 − 1
z2


 + 1

 

s2

· · ·
zi


 − 1

zi


 + 1

 

si



· B
′
(z)



 − n − m + s0 + s1 + · · · + si(  +
cm


 − cs0+s1+···+si





cm


 + cs0+s1+···+si




+
2 s0 + s1 + · · · + si( 

1 + z0



⎛⎝ ⎞⎠

−
s1

1 + z1



− · · · −

si

1 + zi



|r(z)|,

(54)

for 1≤ i≤ v. □

3. Conclusions

Tis paper gives an upper bound of a modulus of derivative
of rational functions.

r(z) �
z

s
h(z)

w(z)
∈ Rm,n, (55)

where r(z) has exactly n poles a1, a2, . . . , an and all the zeros
of r(z) lie in Tk ∪D+

k , k≥ 1 except the zeros of order s lying
in the origin. Moreover, we give a lower bound of a modulus
of derivative of rational functions.

r(z) �
z − zv( 

sv z − zv− 1( 
sv− 1 · · · z − z0( 

s0h(z)

w(z)
, (56)

where r(z) has the zeros z0, z1, . . . , zv with |zi|> 1 for
0≤ i≤ v and the remaining n − (s0 + s1 + · · · + sv) zeros lie in
T1 ∪D−

1 .
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