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Tis research aims to determine whether the proposed time series model is stable or not. To achieve this, Ozaki’s approximation
method was utilized, where the nonlinear part is a function that approaches zero, similar to Ozaki’s imposed function. Te study
produced examples of both stable and unstable models, and it was discovered that the stability and instability of the model are
afected by the enforced optional constants.Te researchers used the approximation method to obtain an asymptotic linear model
that satisfed the singular point of the proposed model. Te study frst identifed the singular points of the suggested model and
then focused on determining the stability conditions, which was themain objective of the study. Last, the stability conditions of the
limit cycle were established.

1. Introduction

It is of much importance to view the studies that have been
done on Ozaki’s method of approximation within the last
few years. Te method itself has been used diferently by
diferent scholars as it will be mentioned later. As for Ozaki
himself, ‘“he used the local linearization method on the
nonlinear exponential autoregressive model” [1]. Both
“Mohammad and Salim used the same method on the lo-
gistic autoregressive model” [2]. Within the same, later
“Salem and Ahmad used it on a nonlinear exponential
autoregressive model” [3]. Sometimes later, “Mohammad
and Mudhir used the same method but on the exponential
(GARCH) models” [4]. After that “Khalaf and Mohammad
used it on the Burr X autoregressive model” [5]. “Youns and
Salim used this method on the nonlinear model with hy-
perbolic secant function” [6]. “Youns used this method on
the nonlinear time series models with fractional functions”
[7]. Also, it has been seen that “Noori and Mohammad used
the same method on GJR-GARCH (Q, P) Mode l” [8] and
“Hamdi et al. used it too but on stability conditions of Pareto
autoregressive model ” [9]. “Salim et al.” applied it in [10].

“Chen et al. studied the stability, estimation, and applica-
tions for the generalized exponential autoregressive models
of nonlinear time series” [11]. “Gan et al. studied the local
linear RBF dependent AR model of nonlinear model” [12].
Linear model is stable if the roots of the deference equation
are in the unit circle [13].

In essence, the Ozaki method relies on transforming the
proposed nonlinear model into a linear autoregressive
model that depends on the singular point which satisfes the
nonlinear model. Consequently, the stability of the non-
linear model in the study is heavily infuenced by the stability
of the singular point.

Tis study addressed three examples that showcased the
method of local linearization and illustrated the stability or
instability of the singular point of a proposed nonlinear
model of order one through graphing the model’s orbits.
Example 1 demonstrated the stable singular point, Example
2 demonstrated the unstable singular point, and Example 3
showcased both the unstable singular point and the unstable
limit cycle of an order one model. Orbits were graphed for
models with various initial values.
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2. Ozaki Method

“Te nonzero singular point and the limit cycle terms” are
defned in references [2, 3].

2.1. Defnition. “Te exponential nonlinear autoregressive
equation is defned as follows:

yt � 􏽘

p

i�1
ui + vie

− y2
t− 1􏼒 􏼓yt− i + εt

� u1 + v1e
− y2

t− 1􏼒 􏼓yt− 1 + · · · + up + vpe
− y2

t− 1􏼒 􏼓yt− p + εt.

(1)

εt is a white noise, u1, · · · , up; v1, · · · , vp be the parameters
(constants) for this model; then, it is said that the model is an
autoregressive exponential model of the p order that
symbolized with the symbol EXP AR (p)” [1, 13].

Theorem 1 (see [13]). “Suppose that p � 1 at the above
variation equation. So, we have yt � (u1 + v1e

− y2
t− 1)yt− 1 + εt.

Let q is a positive integer, the limit period of the period q.
Ten, yt, · · · , yt+q of an equation yt � (u1 + v1e

− y2
t− 1)yt− 1 + εt

is orbitally stable, if it satisfes |Zt+q/Zt|< 1” [13].

Theorem 2 (see [13]). “Assumed that

yt � 􏽘

p

i�1
ui + vie

− y2
t− 1􏼒 􏼓yt− i + εt

� u1 + v1e
− y2

t− 1􏼒 􏼓yt− 1 + · · · + up + vpe
− y2

t− 1􏼒 􏼓yt− p + εt.

(2)

Terefore, yt, · · · , yt+q is a limit period of the period q.
Wherever q is a positive integer, the previous equation is
orbital stable, if the eigenvalues |λi| for a matrix A, where
� Aq.Aq− 1 · · · A2.A1 , have the utter values smaller than
one, |λi|< 1, so that

Ai �

u1 + v1 − 2􏽐
p
j�1(vjyt+i− j)yt+i− 1􏽮 􏽯e− y2

t+i− 1 u2 + v2e
− y2

t+i− 1 · · · ∙ up + vpe− y2
t+i− 1

1 0 · · · 0 0
0 1 · · · 0 0
∙ ∙ · · · ∙ ∙
∙ ∙ · · · ∙ ∙
∙ ∙ · · · ∙ ∙
∙ ∙ · · · ∙ ∙
0 0 · · · 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

″

[13].

2.2. StudyModel. Te suggested research model is defned in
the p order such that

yt � 􏽘

p

i�1
wi + vi

1
e

yt− 1 + 1
􏼒 􏼓􏼔 􏼕yt− i + εt, (3)

where w1, · · · , wp; v1, · · · , vp indicate the parameters for the
proposed research model and εt􏼈 􏼉 is the white noise.

2.2.1. Nonlinear Research Model Observations. Regarding
the research model, the following is noted clearly:

(1) When yt− 1 approaches to positive infnity, the
equation (3) model is transformed into a linear re-
gression model:

yt � 􏽘

p

i�1
wi􏼂 􏼃yt− i + εt. (4)

(2) When yt− 1 approaches to minus infnity, the equa-
tion (3) model is transformed into a linear regression
model:

yt � 􏽘

p

i�1
wi + vi􏼂 􏼃yt− i + εt. (5)

(3) When yt− 1 equal to zero, the equation (3) model is
transformed into a linear regression model:

yt � 􏽘

p

i�1
wi +

vi

2
􏼔 􏼕yt− i + εt. (6)

3. Stability Conditions of the Proposed
Study Model

Te approximation technique was used to identify the
stability for research model study when the order i� 1, 2, . . .,
p in that portion of a publication.

Te study model is

yt � 􏽘

p

i�1
wi + vi

1
e

yt− 1 + 1
􏼒 􏼓􏼔 􏼕yt− i + εt. (7)

3.1. Finding the Singular Point Z. Assume you have a model
of order one:

yt � wi + vi

1
e

yt− 1 + 1
􏼒 􏼓􏼔 􏼕yt− i + εt. (8)

Let εt � 0, Z � f(Z) in (8).
Ten, the unique point Z can be located:

Z � w1 + v1
1

e
Z

+ 1
􏼠 􏼡􏼢 􏼣Z, (9)

where (Z≠ 0), (v1 ≠ 0), and (w1 ≠ 1).
Terefore,

Z � log
v1

1 − w1
− 1􏼠 􏼡. (10)

Te condition for the existence of a single point Z in
equation (8) model is

v1

1 − w1
− 1􏼠 􏼡> 0;  1 − w1 ≠ 0;   v1 ≠ 0;  w1 ≠ 1. (11)

If the model’s order is two,

yt � w1 + v1
1

e
yt− 1 + 1

􏼒 􏼓􏼔 􏼕yt− 1 + w2 + v2
1

e
yt− 1 + 1

􏼒 􏼓􏼔 􏼕yt− 2 + εt.

(12)

Consider the following: εt � 0, Z � f(Z).
Ten,
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Z � w1 + v1
1

e
Z

+ 1
􏼠 􏼡􏼢 􏼣Z + w2 + v2

1
e

Z
+ 1

􏼠 􏼡􏼢 􏼣Z. (13)

Te singular point Z for (12) is

Z � log
􏽐

2
j�1vj

1 − 􏽐
2
i�1wi

− 1⎛⎝ ⎞⎠. (14)

Te singular point of a non-linear model of an equation
(12) exists when

􏽐
2
j�1vj

1 − 􏽐
2
i�1wi

− 1⎛⎝ ⎞⎠> 0; 1 − 􏽘
2

i�1
wi

⎛⎝ ⎞⎠≠ 0; 􏽘
2

j�1
vj

⎛⎝ ⎞⎠≠ 0.

(15)

Te singular point of equation (3) was found by using
similar method to (10), such as

Z � log
􏽐

p

i�1 vi􏼐 􏼑

1 − 􏽐
p

i�1 wi􏼐 􏼑
− 1⎛⎝ ⎞⎠. (16)

3.2. Stability Singular Point. Let εt � 0, and ys � Z + Zs,
∀s � t; t − 1, in (6), Zs;∀s � t, t − 1 is very small.

Terefore, Zn
s⟶ 0;∀n≥ 2,∀s � t; t − 1; Zt.Zt− 1 � 0.

Te Taylor expansion series is then used.

Z + Zt � w1 + v1
1

e
Z+Zt− 1( ) + 1

􏼠 􏼡􏼢 􏼣 Z + Zt− 1( 􏼁. (17)

To obtain

Zt �
w1 e

Z
+ 1􏼐 􏼑 + w1Ze

Z
+ v1 − Ze

Z

e
Z

+ 1􏼐 􏼑
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦Zt− 1. (18)

Terefore,

Zt � a1Zt− 1; a1 �
w1 e

Z
+ 1􏼐 􏼑 + w1Ze

Z
+ v1 − Ze

Z

e
Z

+ 1􏼐 􏼑
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(19)

As a result, when the root of (16) is inside the unit circle,
(9) is a stable model of order one.

r1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � a1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌< 1. (20)

Te following represents the stationary conditions of
singular point of (10):

Let εt � 0, ∀s � t, t − 1, t − 2; ys � Z + Zs; Zs;∀s � t, t −

1, t − 2 is quite tiny, therefore Zn
s⟶ 0; ∀n≥ 2∀s � t,

t − 1, t − 2, Zt− s.Zt− s � 0,∀s � 0, 1, 2, we have that via
making use of the Taylor expansion series.

Z + Zt � w1 + v1
1

e
Z+Zt− 1( ) + 1

􏼠 􏼡􏼢 􏼣 Z + Zt− 1( 􏼁 + w2 + v2
1

e
Z+Zt− 1( ) + 1

􏼠 􏼡􏼢 􏼣 Z + Zt− 2( 􏼁. (21)

Ten,

Zt �
w1 e

Z
+ 1􏼐 􏼑 + w1Ze

Z
+ v1 − e

Z
Z + w2Ze

Z

e
Z

+ 1􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦Zt− 1 +
w2 e

Z
+ 1􏼐 􏼑 + v2

e
Z

+ 1􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦Zt− 2. (22)

Terefore,

Zt � a1Zt− 1 + a2Zt− 2,

a1 �
w1 e

Z
+ 1􏼐 􏼑 + w1Ze

Z
+ v1 − e

Z
Z + w2Ze

Z

e
Z

+ 1􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦,

a2 �
w2 e

Z
+ 1􏼐 􏼑 + v2

e
Z

+ 1􏼐 􏼑

⎡⎢⎢⎣ ⎤⎥⎥⎦.

(23)

Te distinguishing equation (v − r1).(v − r2) � v2

− a1(v) − a2 � 0.
Tus, a1 � (r1 + r2), a2 � − r1r2.
Ten, the roots of v2 − a1v − a2 � 0 are r1, r2.
Hence, the stationary condition is |ri|< 1; ∀i � 1, 2.
Te singular point in a nonlinear model of an equation

(3) has the following condition:

􏽐
p
i�1 vi

1 − 􏽐
p
i�1 wi􏼐 􏼑

− 1⎛⎝ ⎞⎠> 0; 1 − 􏽘

p

i�1
wi

⎛⎝ ⎞⎠≠ 0; 􏽘

p

i�1
vi

⎛⎝ ⎞⎠≠ 0.

(24)

Te stability of the singular point is defned as follows:

Zt � 􏽘

p

i�1
aiZt− i,

a1 �
w1 e

Z
+ 1􏼐 􏼑 + w1Ze

Z
+ v1 − Ze

Z
+ 􏽐

p
i�2 wiZe

Z

e
Z

+ 1􏼐 􏼑
,

ai �
wi e

Z
+ 1􏼐 􏼑 + vi

e
Z

+ 1􏼐 􏼑
, for all  i � 2, · · · , p.

(25)
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Ten, when the roots’ absolute values |ri| for
vp − a1v

p− 1 − a2v
p− 2 − a3v

p− 3 − · · · − ap � 0 , must become
situated within a unitary circle, a conditional of stability
singular point to the suggested model is obtained.

3.3.TeLimitCycle. Te limit cycle of the period q of (6) has
the following form: yt, yt+1, · · · , yt+q � yt; then, all ys

replaced by ys � ys + Zs and then substitute yt by yt + Zt,
and yt− 1 by yt− 1 + Zt− 1, εt � 0.

yt + Zt � w1 + v1
1

e
yt− 1+Zt− 1( ) + 1

􏼠 􏼡􏼢 􏼣 yt− 1 + Zt− 1( 􏼁. (26)

To reach at

Zt �
w1 e

yt− 1 + 1( 􏼁 + w1yt− 1e
yt− 1 + v1 − e

yt− 1yt

e
yt− 1 + 1( 􏼁

􏼠 􏼡􏼢 􏼣Zt− 1.

(27)

Analogous way to Teorem 1 for determining
|Zt+q/Zt|< 1 [9].

When t� t+ q in Zt � [(w1(eyt− 1 + 1) + w1yt− 1
eyt− 1 + v1 − eyt− 1yt/(eyt− 1 + 1))]Zt− 1,

Zt+q �
w1 e

yt+q− 1 + 1( 􏼁 + w1yt+q− 1e
yt+q− 1 + v1 − e

yt+q− 1yt+q

e
yt+q− 1 + 1( 􏼁

􏼠 􏼡􏼢 􏼣Zt+q− 1. (28)

Ten,

Zt+q � 􏽙

q

i�1

w1 e
yt+q− i + 1( 􏼁 + w1yt+q− ie

yt+q− i + v1 − e
yt+q− i yt+q− (i− 1)

e
yt+q− i + 1( 􏼁

􏼠 􏼡􏼣Zt􏼢 . (29)

As a result, apply Teorem 1 to (29). Terefore,

Zt+q

Zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽙

q

i�1

w1 e
yt+q− i + 1( 􏼁 + w1yt+q− ie

yt+q− i + v1 − e
yt+q− i yt+q− (i− 1)

e
yt+q− i + 1( 􏼁

􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(30)

Hence, (30) is

Zt+q

Zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽙

q

i�1

w1 e
yt+i− 1 + 1( 􏼁 + w1yt+i− 1e

yt+i− 1 + v1 − e
yt+i− 1yt+i

e
yt+i− 1 + 1( 􏼁

􏼠 􏼡􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(31)

Te formula for the research model (12) is
yt, · · · , yt+q � yt.

Ten, the points ys approaching the limit cycle are
ys � ys + Zs;∀s,

yt + Zt � w1 + v1
1

e
yt− 1+Zt− 1 + 1

􏼠 􏼡􏼢 􏼣. yt− 1 + Zt− 1( 􏼁 + w2 + v2
1

e
yt− 1+Zt− 1 + 1

􏼠 􏼡􏼢 􏼣 yt− 2 + Zt− 2( 􏼁 + εt. (32)

Ten,

Zt �
w1 e

yt− 1 + 1( 􏼁 + w1yt− 1e
yt− 1 + v1 − e

yt− 1yt + w2e
yt− 1yt− 2

e
yt− 1 + 1( 􏼁

􏼢 􏼣Zt− 1 +
w2 e

yt− 1 + 1( 􏼁 + v2
e

yt− 1 + 1( 􏼁
􏼢 􏼣Zt− 2. (33)
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As a result, similar to Teorem 1, calculate a value
|Zt+q/Zt|< 1 [13].

When, t� t+ q in (33) to obtain

Zt+q �
w1 e

yt+q− 1 + 1( 􏼁 + w1yt+q− 1e
yt+q− 1 + v1 − e

yt+q− 1 .yt+q + w2e
y+qt− 1yt+q− 2

e
yt+q− 1 + 1( 􏼁

􏼢 􏼣Zt+q− 1 +
w2 1 + e

yt+q− 1( 􏼁 + v2

e
yt+q− 1 + 1( 􏼁

􏼢 􏼣Zt+q− 2, (34)

Zt+q � 􏽙

q

i�1

w1 e
yt+i− 1 + 1( 􏼁 + w1yt+i− 1e

yt+i− 1 + v1 − e
yt+i− 1yt+i + w2e

yt+i− 1yt+i− 2

e
yt+i− 1 + 1( 􏼁

􏼢 􏼣 + 􏽙

q− 1

i�1

w2 e
yt+i + 1( 􏼁 + v2

e
yt+i + 1( 􏼁

􏼢 􏼣
⎫⎬

⎭Zt.
⎧⎨

⎩ (35)

When the stability condition is met, then (35) is orbitally
stable.

Zt+q

Zt

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� 􏽙

q

i�1

w1 e
yt+i− 1 + 1( 􏼁 + w1yt+i− 1e

yt+i− 1 + v1 − e
yt+i− 1yt+i + w2e

yt+i− 1yt+i− 2

e
yt+i− 1 + 1( 􏼁

􏼢 􏼣 + 􏽙

q

i�2

w2 e
yt+i− 1 + 1( 􏼁 + v2

e
yt+i− 1 + 1( 􏼁

􏼢 􏼣
⎧⎨

⎩

⎫⎬

⎭

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< 1. (36)

Theorem 3. When the suggested model of (3) has a limit cycle
of period q yt, · · · , yt+q � yt, then it is orbitally stable if every
eigenvalues of the matrix A, A � Aq.Aq− 1 · · · A1 with an
absolute value is smaller than 1, |ri|< 1, i � 1, 2, · · · , p and

Ai �

w1m1 + w1m2yt+i− 1 + v1 − m2yt+i + w2m2yt+i− 2 + 􏽐
p
j�3wjm2yt+i− j

m1

w2m1 + v2

m1
. · · · · · ·

wpm1 + vp

m1

1 0 · · · 0

0 1 · · · 0

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

· · · · · · ·

0 0 · · · 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (37)
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where m1 � eyt+i− 1 + 1; m2 � eyt+i− 1 .

4. Examples

Regarding the examples presented in this study, Examples 1
and 2 demonstrate the method of identifying and locating
the true singular point of the model under study, as well as
satisfying the stability condition for the singular point and
graphing the model’s orbits. Meanwhile, Example 3 clarifes
the concept of an unstable limit cycle.

Example 1. Where w1 � 1.06, v1 � − 0.18 in (6) to reach
yt � [1.06 + (− 0.18)(1/1 + eyt− 1)]yt− 1 + εt.

Ten, the model meets the condition (((v1)/(1 − w1)) −

1) � (− 0.18/1 − 1.06 − 1) � ((− 0.18/− 0.06) − 1) � (3 − 1)

� 2> 0.
As a result of using equation (10), we get

Z � log
v1

1 − w1
− 1􏼠 􏼡

� log(2)

� 0.69.

(38)

While � 0.69 and applied (19) to get Zt � 0.86Zt− 1.
Since the root of the preceding equation is in the unit

circle, a singular (solitary) point for this case is found stable.
Te following shape Figure 1 illustrate the model’s stability
with varying beginning values.

Example 2. Let w1 � 1.09, v1 � − 0.31 in (6) to reach yt �

[1.09 + (− 0.31)(1/1 + eyt− 1)]yt− 1 + εt that satisfes the fol-
lowing condition:

v1

1 − w1
− 1􏼠 􏼡 �

− 0.31
1 − 1.09

− 1􏼒 􏼓

�
− 0.31
− 0.09

− 1􏼒 􏼓

�
0.31
0.09

− 1􏼒 􏼓

� (3.4444 − 1)

� 2.4444> 0.

(39)

Consequently, Z can be determined, such that by uti-
lizing equation (10).

Z � log
v1

1 − w1
− 1􏼠 􏼡

� log(2.4444)

� 0.8938.

(40)

Since Z � 0.8938 and applied (19) to reach
Zt � 1.0571Zt− 1.Ten, Z � 0.8938 of Example 2 is not stable
because the root r � 1.0571 is located outside the unit circle.

Since Z � 0.8938 and Zt � 1.0571Zt− 1 is deduced, the
model of Example 2 is unstable since the root is outside the
unity circle.

Te fgures show the model orbits which are not stable
for the diferent starting values. Figure 2 displays the tra-
jectory of the model with an initial value y(0)� 1. Figure 3
displays the trajectory of the model with an initial value
y(0)� 0.001, and Figure 4 displays the trajectory of the model
with an initial value y(0)� − 1.

1.5

1

0.5

0

-0.5

-1

-1.5

y 
(t)

0 5 10 15 20 25 30
t

singular point Z=0.69

Orbits of y (i)= (((1.06)+((-0.18)*((1)/ (1)+(exp (y (i-1)))))*(y (i-1))));

y (1)=-1.001
y (1)=0.1
y (1)=1

Figure 1: Stable singular point Z� 0.69 with diferent initial values.
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The path of the model approach to the singular point when y (0)=1;
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-1.5

-1

-0.5

0

0.5

1

1.5

2

y 
(t)

1083 4 5 6 7 91 20
t

Figure 2: Unstable singular point Z� 0.8938 when y(0)� 1.

The path of the model approach to the singular point when y (0)=0.001;
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-0.5
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1

1.5

2

y 
(t)

1093 4 5 6 7 810 2
t

Figure 3: Unstable singular point Z� 0.8938 when y(0)� 0.001.

The path of the model approach to the singular point when y (0)=-1;
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106 74 52 910 3 8
t

Figure 4: Unstable singular point Z� 0.8938 when y(0)� − 1.
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(t)
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the path of the model does not approach to the singular point when y0=0.1

Figure 5: Unstable singular point Z� 1.2 when y(0)� 0.1.
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the path of the model does not approach to the singular point when y0=-0.1

Figure 6: Unstable singular point Z� 1.2 when y(0)� − 0.1.
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Figure 7: Unstable singular point Z� 1.2 when y(0)� 0.001.
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Example 3. Since w1 � 1.06, v1 � − 0.28 in (6), then
yt � [1.06 + (− 0.28)(1/1 + eyt− 1)]yt− 1 + εt; it fulflls the re-
quirement such that

v1( 􏼁

1 − w1( 􏼁
− 1􏼠 􏼡 �

− 0.28
1 − 1.06

− 1􏼒 􏼓

�
− 0.28
− 0.06

− 1􏼒 􏼓

� (4.6 − 1)

� 3.6> 0.

(41)

In order to obtain the nonzero real singular points such
that equation (10), Z � log((v1/1 − w1) − 1) � log(3.6)

� 1.2.

Since Z � 1.2 and by applying (19), then Zt � 1.1(Zt− 1)

was obtained. As a result, Example 3 is an unstable model
simply because the root r � 1.1 lies outside the unity circle.
Te limit cycle is unstable in the period q� 2, which include
1.5; − 1.5; 1.5{ }, where equation (31) was employed.

􏽙

q�2

i�1

1.06 e
yt+i− 1 + 1( 􏼁 + 1.06yt+i− 1e

yt+i− 1 +(− 0.28) − e
yt+i− 1􏼁yt+i

e
yt+i− 1 + 1( 􏼁

􏼢 􏼣

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�� |(3.5)(− 0.78)| � 2.74> 1.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
(42)

Te following fgures show the paths inception from
various starting values:

Figure 5 displays the trajectory of the model with an
initial value y(0)� 0.1, Figure 6 displays the trajectory of the
model with an initial value y(0)� − 0.1, and Figure 7 displays
the trajectory of the model with an initial value y(0)� 0.001.

5. Conclusions

Te stability criteria for the suggested nonlinear time series
model were established, along with the limit cycle stabili-
zation condition for the model, and numerical examples that
met these conditions were identifed. It was found that the
stability factors of the model depended on the values of its
arbitrary constants and the selected nonlinear function.

Furthermore, if the singular point is stable, then the
proposed research model is also stable, and the opposite is
also true. Te proposed model is a unique case among all
other general cases as its nonlinear component represents
a decreasing function.

As the decreasing nonlinear function proposed by the
study model such that (1/eyt− 1 + 1)

It is a special case of all cases e− yt− 1 , e− y2
t− 1 , (1/y2

t− 1 − 1),
sec h(yt− 1), . . ..

It is also possible to use other methods in the future to
analyze and fnd stability conditions for diferent nonlinear
models.
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