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In analytic geometry, Bézout’s theorem stated the number of intersection points of two algebraic curves and Fulton introduced the
intersection multiplicity of two curves at some point in local case. It is meaningful to give the exact expression of the intersection
multiplicity of two curves at some point. In this paper, we mainly express the intersection multiplicity of two curves at some point
in R2 and A2

K under fold point, where char(K) � 0. First, we give a sufcient and necessary condition for the coincidence of the
intersection multiplicity of two curves at some point and the smallest degree of the terms of these two curves inR2. Furthermore,
we show that two diferent defnitions of intersection multiplicity of two curves at a point in A2

K are equivalent and then give the
exact expression of the intersection multiplicity of two curves at some point in A2

K under fold point.

1. Introduction

Analytic geometry or Cartesian geometry is an important
branch of algebra, a great invention of Fermat and Descartes,
which deals with the modelling of some geometrical objects,
such as points, lines, and curves. It is a mathematical subject
that uses algebraic symbolism and methods to solve some
geometric problems. It establishes the correspondence be-
tween the algebraic equations and the geometric curves. In
analytic geometry, one of the most important fundamental
problems is to fnd the number of intersection points of two
algebraic curves. Bézout’s theorem stated that two algebraic
curves of degrees m and n intersect in mn points counting
multiplicities and cannot meet in more than mn points
unless they have a component in common ([1]). In a local
case, Fulton ([2], Section 3.3) introduced the intersection
multiplicity of two afne algebraic curves at some point.
Consequently, many mathematicians focussed on the geo-
metric modelling with curves (cf. [3–12]). In this paper, we
consider the intersection multiplicities of two curves at some
point in R2,P2

R and A2
K with char(K) � 0, respectively, and

we mainly give the exact expression of the intersection
multiplicities of two curves at some point in R2 and A2

K.

Let f(x, y) � 0 and g(x, y) � 0 be two algebraic curves
in R2 (resp.,P2

R), and the intersection multiplicity IP(f, g)

of f and g at a point P is the number of times that the curves
f(x, y) � 0 and g(x, y) � 0 intersect at the point P ([4],
Chapter 1). Also, there are some other defnitions of the
intersection multiplicity of algebraic curves at a point (cf.
[2, 7, 11, 13–15]). According to the defnitions of P2

R and
projective transformation, we can transfer some difcult
cases to some easy cases by projective transformation when
we consider the intersection multiplicity in P2

R; thus, we can
connect the intersection multiplicity in R2 with the in-
tersection multiplicity in P2

R by homogenizing polynomials
(([4], Teorem 3.7), ([16], Lemma 2.5)). Following the
factorization theorem of polynomials, we note that the in-
tersection multiplicity of two curves at a point has a close
relation with the fold point, so it is important to give the
relation between IP(f, g) and the fold point. However, for
the case of the afne space A2

K, where K is an algebraically
closed feld with char(K) � 0, we have two diferent def-
nitions of intersection multiplicity of two curves at a point:
one is given by using independent polynomials (([4], Def-
inition 13.2)), and the other is given by means of the di-
mension of a local ring (([13], Defnition 2.3), ([2], Section
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3.3)). So it is meaningful to show that the two diferent
defnitions are equivalent. Furthermore, similar as the
projective transformation, we use afne transformation to
extend the intersection multiplicity of curves at some point
from R2 to A2

K.
Tis paper is organized as follows: In Section 2 we frst

introduce some properties of the intersection multiplicity of
algebraic curves at some point in R2 and P2

R, respectively,
and then give a sufcient and necessary condition for the
coincidence of the intersection multiplicities of two curves
under fold point and the smallest degree of the terms of these
two curves in R2. In generalization, we consider the in-
tersection multiplicity of afne algebraic curves at some
point inA2

K in Section 3 and we show an equivalence for two
diferent defnitions of intersection multiplicity of algebraic
curves in A2

K. Furthermore, we give some properties for the
intersection multiplicity between curves and lines in A2

K by
using localization and then give some related results about
the intersection multiplicity of curves in terms of fold point
by using the afne transformation.

2. Intersection Multiplicity of Algebraic
Curves in R2 and P2

R

In this section, we introduce some properties of the in-
tersection multiplicity of algebraic curves at some point in
R2 and the real projective plane P2

R, respectively, where P
2
R

is (R3 − (0, 0, 0){ })/ ∼ and ∼ is the equivalence relation
defned by (x, y, z) ∼ (x′, y′, z′) if there exists a nonzero
λ ∈ R, such that (x, y, z) � (λx′, λy′, λz′). Consequently,
according to the properties of the intersection multiplicities
of curves under fold point in P2

R, we give a sufcient and
necessary condition for the coincidence of the intersection
multiplicities of two curves under fold point and the smallest
degree of the terms of these two curves in R2.

2.1. Properties of Intersection Multiplicity of Curves inR2 and
P2
R. An algebraic curve inR2 is the graph of a polynomial in

x, y over R. Let f(x, y) � 0 and g(x, y) � 0 be algebraic
curves (abbreviate to curves) which intersect at a point p in
R2. Te intersection multiplicity of f and g at p is the
number of times that the curves f � 0 and g � 0 intersect at
the point p, denoted by Ip(f, g).

Property 1 ((see [4], Section 1)). Let f(x, y) � 0,
g(x, y) � 0, and h(x, y) � 0 be curves and p a point in R2.
Ten

(1) Ip(f, g) is a nonnegative integer or ∞, and
Ip(f, g) � Ip(g, f).

(2) Ip(f, g)≥ 1 if and only if f(p) � 0 and g(p) � 0.
(3) Ip(f, g) � Ip(f, g + fh).
(4) Ip(f, gh) � Ip(f, g) + Ip(f, h), and

Ip(f, gh) � Ip(f, g) if h(p)≠ 0.

An algebraic curve (simply curve) in P2
R is a homoge-

neous polynomial in x, y, z. We can extend algebraic curves
fromR2 to P2

R by homogenizing polynomials. Note that, for

any homogeneous polynomial F(x, y, z), we set
f(x, y) � F(x, y, 1); then, any point (x, y) ∈ R2 lies on the
curve f(x, y) � 0 if and only if the point (x, y, 1) ∈ P2

R lies
on the curve F(x, y, z) � 0. Let F(x, y, z) � 0, G(x, y, z) � 0
be curves in P2

R. Similar as the the defnition of Ip(f, g), we
denote IP(F, G) the intersection multiplicity of F andG at the
point P ∈ P2

R. It is clear that IP(F, G) have the similar
properties as in Property 1.

Lemma 1 ((see [4], Teorem 3.7)). Let F(x, y, z) � 0 and
G(x, y, z) � 0 be curves in P2

R, and we set
f(x, y) � F(x, y, 1), g(x, y) � G(x, y, 1). Ten, for any
point (a, b, 1) ∈ P2

R, we have

I(a,b,1)(F(x, y, z), G(x, y, z)) � I(a,b)(f(x, y), g(x, y)).

(1)

A projective transformation is a linear map
T: P2

R⟶ P2
R defned by

(x, y, z)
T↦A(x, y, z)

T
, (2)

where A ∈ GL(3,R) is an invertible 3 × 3 matrix. It follows
from ([4], Teorem 3.4) that a projective transformation can
transform any four points, no three of which are collinear,
into any other four such points. Furthermore, projective
transformations preserve intersection multiplicities (Lemma
2), and it follows that we can fnd the intersection multi-
plicity IP(F, G) for any point P ∈ P2

R by transforming P to
the origin O � (0, 0, 1).

Lemma 2 ((see [4], Property 3.5)). Let F(x, y, z) � 0 and
G(x, y, z) � 0 be curves and P a point in P2

R, and T is
a projective transformation that maps P(x, y, z) (resp.,F �

0, G � 0) to P′(x′, y′, z′) (resp.,F′ � 0, G′ � 0). Ten,

IP(F(x, y, z), G(x, y, z)) � IP′ F′ x′, y′, z′( , G′ x′, y′, z′( ( .

(3)

2.2. IntersectionMultiplicity of Curves under Fold Point inR2

andP2
R. Let f(x, y) be a nonzero polynomial and fd(x, y)

be the sum of the terms of degree d in f. Ten, we can write

fd(x, y) � a1x + b1y( 
s1 a2x + b2y( 

s2 · · · ajx + bjy 
sj

r(x, y)

(4)

for distinct lines aix + biy � 0 uniquely, where si is a non-
negative integer and r(x, y) is a polynomial that has no line
factors. According to the factorization of fd, to study the
intersection multiplicity of curves in R2, it is important and
convenient to study the intersection multiplicity between
curves and lines frst.

Lemma 3 ((see [16], Corollary 2.3)). Let f(x, y) � 0 be
a curve that contains the origin o � (0, 0) ∈ R2, and d is the
smallest degree of the terms in f. We assume that l � 0 is
a line through the origin o. Ten, Io(l, f)>d if l is a factor of
fd, and Io(l, f) � d if l is not a factor of fd.
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Defnition 1 ((see [4], §4)). Let f(x, y) � 0 be a curve and p

a point in R2. We say that the point p is a d-fold point of
f � 0 if there is a nonnegative integer d, such that there are
at most d distinct lines that intersect f at p more than d

times and that all other lines intersect f at p exactly d times.

It follows from Lemma 3 and Defnition that the origin o

is a d-fold point off � 0 if and only if d is the smallest degree
of the terms in f. Similarly, we can defne the fold point of
a curve F � 0 in P2

R and have the following Lemma.

Lemma 4 ((see [16], Teorem 3.4)). Let F(x, y, z) � 0 and
G(x, y, z) � 0 be curves and P a point inP2

R. Assume thatP is
a d-fold point of F � 0 and an e-fold point of G � 0, then

IP(F, G)≥ de. (5)

By Lemma 1 and the defnition of the projective plane
P2
R, we can consider the intersection multiplicity of curves

under fold point in R2 by setting z � 1.

Corollary 1 ((see [16], Corollary 3.5)). Let f(x, y) � 0 and
g(x, y) � 0 be curves and p a point in R2. We assume that p

is a d-fold point of f � 0 and an e-fold point of g � 0. Ten,

Ip(f, g)≥ de. (6)

Theorem 1. Let f(x, y) � 0 and g(x, y) � 0 be curves that
both contain the origin o inR2. We assume that the origin o is
a 1-fold point of both f � 0 and g � 0. Let f1 (resp.,g1) be the
sum of the terms of degree 1 in f (resp.,g). Ten, Io(f, g)> 1
if and only if f1 and g1 have a common factor. Equivalently,
Io(f, g) � 1 if and only if f1 and g1 have no common factors.

Proof. Since the origin o is a 1-fold point of f � 0, by
Lemma 3, we can write

f(x, y) � xp(x, y) + yq(y), (7)

for some polynomials p(x, y) and q(y) inR[x, y]. Note that
p(0, 0) and q(0) are not all zeros, and we may assume that
p(0, 0)≠ 0. Similarly, we can write

g(x, y) � xu(x, y) + yv(y), (8)

for some polynomials u(x, y) and v(y) in R[x, y] with
(u(0, 0), v(0))≠ (0, 0). By Property 1, we have
Io(f, g) � Io(xp + yq, xu + yv) � 1 + Io(xp + yq, pv − qu).

(9)

It follows that Io(f, g)> 1 if and only if pv − qu contains
the origin o, i.e., the determinant of the matrix

p(0, 0) q(0)

u(0, 0) v(0)
  is zero. Tis is equivalent to the condition

that f1 and g1 have a common factor. Hence, we obtain the
assertion. □

Theorem 2. Letf(x, y) � 0 and g(x, y) � 0 be curves inR2.
We assume that the origin o is a d-fold point of f � 0 and an
e-fold point of g � 0. Let fd (resp., ge) be the sum of the terms

of degree d (resp., e) in f (resp., g). Ten, Io(f, g)> de if and
only if fd and ge have a common factor of positive degrees.
Equivalently, Io(f, g) � de if and only if fd and ge have no
common factors of positive degrees.

Proof. Let P(d, e) denote the assertion that Io(f, g)> de if
the origin o is a d-fold point of f � 0 and an e-fold point of
g � 0 and that fd and ge have a common factor of positive
degrees. When d � 1 and e � 1, it is obvious that P(1, 1)

holds following Teorem 1.
First, assume that P(1, e) holds for 1≤ e≤ l. We prove

that P(1, l + 1) also holds. We assume that the origin o is
a (l + 1)-fold point of g � 0 and that f1 and gl+1 have
a common factor of positive degrees. By Lemma 3, we can
write

f(x, y) � xα(x) + yβ(x, y), (10)

for some polynomials α(x) and β(x, y). Note that α(0) and
β(0, 0) are not all zeros. Also, we can write

g(x, y) � x
l+1

c(x) + yδ(x, y), (11)

for some polynomials c(x) and δ(x, y), and every term of
δ(x, y) has degree at least l. By linear transformation, we
may assume that α(0) � 1 and c(0) � 1. From Property 1,
we have

Io(f, g) � 1 + Io f, δα − βx
l
c . (12)

We set w � δα − βxlc. Ten the origin o is an r-fold
point ofw � 0 for r≥ l following Lemma 3. Letwr be the sum
of the terms of degree r in w. If r � l, then

ywr � gl+1 − f1x
l
, (13)

which implies that f1 and wl have a common factor of
positive degree, and by assumption, P(1, l + 1) holds. If r> l,
then Io(f, w)≥ r> l from Corollary 1, and we have that
P(1, l + 1) holds clearly. By induction, we obtain that P(1, e)

holds for any e.
Second, we assume that P(m, n) holds for some positive

integers m and n satisfying 1≤m< d and 1≤ n≤ e. We prove
that P(m + 1, n) also holds. We assume that the origin o is
a (m + 1)-fold point of f � 0 and that fm+1 and gn have
a common factor of positive degree. Ten, we can write

f(x, y) � x
m+1α′(x) + yβ′(x, y), g(x, y) � x

n
c′(x) + yδ′(x, y),

(14)
for some polynomials α′(x), β′(x, y) and c′(x), δ′(x, y),
and every term of β′(x, y) (resp., δ′(x, y)) has degree at least
m (resp., n − 1). Note that α′(0) and β′(0, 0) (resp., c′(0)

and δ′(0, 0)) are not all zeros. By linear transformation, we
may assume that α′(0) � 1 and c′(0) � 1.

We assume that m + 1≥ n (similarly for the case
m + 1< n), and following Property 1, we have

Io(f, g) � n + Io β′c′ − δ′α′xm+1− n
, g . (15)

We set w′ � β′c′ − δ′α′xm+1− n. Ten, the origin o is an
r′-fold point of w′ � 0 for r′ ≥m. Let wr′′ be the sum of the
terms of degree r′ in w′. If r′ � m, then
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ywm
′ � fm+1 − gnx

m+1− n
, (16)

which implies that wm
′ and gn have a common factor of

positive degrees, and by assumption, we obtain that
P(m + 1, n) holds. If r′ >m, then

Io w′, g( ≥ r′n>mn, (17)

following Corollary 1, and clearly we have that P(m + 1, n)

holds. Tus, we obtain that P(m + 1, n) holds. Terefore, by
induction, we proved that the sufcient condition holds.

Conversely, following Corollary 1, it is sufce to show
that if fd and ge have no common factors of positive degree,
then Io(f, g) � de.

Let P′(d, e) denote the assertion that Io(f, g) � de if the
origin o is a d-fold point off � 0 and an e-fold point of g � 0
and that fd and ge have no common factors of positive
degrees. When d � 1 and e � 1, it is clear that P′(1, 1) holds
following Teorem 1.

First, we assume that P′(1, e) holds for 1≤ e≤ l′. We
prove that P′(1, l′ + 1) also holds. We suppose that the
origin o is a (l′ + 1)-fold point of g � 0 and that f1 and gl′+1
have no common factors of positive degree. By Lemma 3, we
can write

f(x, y) � xp(x) + ys(x, y), (18)

for some polynomials p(x) and s(x, y). Note that p(0) and
s(0, 0) are not all zeros. Also, we can write

g(x, y) � x
l′+1

q(x) + yt(x, y), (19)

for some polynomials q(x) and t(x, y), and every term of t

has a degree at least l′. By linear transformation, we may
assume that p(0) � 1 and q(0) � 1. Following Property 1, we
have

Io(f, g) � 1 + Io f, tp − sx
l′
q . (20)

We set h � tp − sxl′q. Tenthe origin o is a k-fold point
of h � 0 for k≥ l′ from Lemma 3. Let hk be the sum of the
terms of degree k in h. If k � l′, then

yhl′ � gl′+1 − f1x
l′
, (21)

which implies that f1 and hl′ have no common factors of
positive degree, and by the assumption, we know that
P′(1, l′ + 1) holds. If k> l′, then

hl′ � 0, (22)

which implies that f1 and gl′+1 have a common factor of
positive degree. Tis is a contradiction. Terefore, by in-
duction, we prove that P′(1, e) holds for any e.

Second, we assume that P′(m′, n′) holds for some
positive integers m′, n′ satisfying 1≤m′ <d and 1≤ n′ ≤ e.
We prove that P′(m′ + 1, n′) also holds.We suppose that the
origin o is a (m′ + 1)-fold point of f � 0 and that fm′+1 and

gn′ have no common factors of positive degrees. Following
Lemma 3, we can write

f(x, y) � x
m′+1

p′(x) + ys′(x, y), g(x, y) � x
n′

q′(x) + yt′(x, y),

(23)

for some polynomials p′(x), s′(x, y), q′(x), and t′(x, y),
and every term of s′ (resp., t′) has a degree at least m′ (resp.,
n′ − 1). Note that p′(0) and s′(0, 0) (resp., q′(0) and
t′(0, 0)) are not all zeros. By linear transformation, we may
assume that p′(0) � 1 and q′(0) � 1.

If m′ + 1≥ n′ (similarly for the case m′ + 1< n′), fol-
lowing Property 1, we have

Io(f, g) � n′ + Io s′q′ − t′p′xm′+1− n′
, g . (24)

We set h′ � s′q′ − t′p′xm′+1− n′ . Ten, the origin o is a k′-
fold point of h′ � 0 for k′ ≥m′ by Lemma 3. Let hk′′ be the
sum of the terms of degree k′ in h′. If k′ � m′, then

yhm′′ � fm′+1 − gn′x
m′+1− n′

, (25)

which implies that hm′′ and gn′ have no common factor of
positive degree, and P′(m′ + 1, n′) holds by the assumption.
If k′ >m′, then

hm′′ � 0, (26)

which implies that fm′+1 and gn′ have a common factor of
positive degree. Tis is a contradiction.

Terefore, by induction, we proved that the necessary
condition holds. □

Example 1. We compute the intersection multiplicity
Io(f, g) of two algebraic curves f � x + y and g � x2y3 +

y3 + x2 − y2 in R2, where f1 and g2 have a common factor
x + y. Note that the origin o is a 1-fold point of f � 0 and
a 2-fold point of g � 0. According to Teorem 2, we have
that Io(f, g)> 2. In fact, by Property 1, we have

Io x + y, x
2
y
3

+ y
3

+ x
2

− y
2

  � Io x + y, x
2
y
3

+ y
3

 

� Io x + y, y
3

 

+ Io x + y, 1 + x
2

 

� Io x + y, y
3

 

� 3.

(27)

Example 2. We evaluate the intersection multiplicity
Io(f, g) of two algebraic curves f � x2 + y2 and g � x5 +

x3y + x2 − y2 in R2, where f2 and g2 have no common
factors. Note that the origin o is a 2-fold point of f � 0 and
a 2-fold point of g � 0. According to Teorem 2, we have
that Io(f, g) � 4. In fact, following Property 1, we also have
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Io x
2

+ y
2
, x

5
+ x

3
y + x

2
− y

2
  � Io x

2
+ y

2
, x

5
+ x

3
y + x

2
− y

2
+ x

2
+ y

2
  

� Io x
2

+ y
2
, x

2
x
3

+ xy + 2  

� Io x
2

+ y
2
, x

2
  + Io x

2
+ y

2
, x

3
+ xy + 2 

� Io x
2

+ y
2
, x

2
 

� 4.

(28)

3. Intersection Multiplicity of Affine
Curves in A2

K

Following the structure of the afne plane A2
K with

char(K) � 0, it is important to consider the intersection
multiplicity of afne curves (abbreviate to curves) at some
point in A2

K. Since there are two diferent defnitions of
intersection multiplicity of curves at some point in A2

K, in
this section, we frst prove that the two diferent defnitions
of intersection multiplicity are equivalent. Also, in general, it
is not easy to give the intersection multiplicity of curves in
A2

K, and we use the afne transformation to transfer the
difcult case to easy case when we consider the intersection
multiplicity of curves under fold point inA2

K. In this section,
we mainly extend the intersection multiplicity of curves at
some point from R2 to A2

K. For the case char(K) � p with
the prime number p, the intersection multiplicity of curves
at some point in A2

K is still an open question.

3.1. Equivalent Defnitions of Intersection Multiplicity of
Curves in A2

K. Let K be an algebraically closed feld with
char(K) � 0, and An

K is the afne n-space over K. In A2
K, we

have two diferent defnitions (([13], Defnition 2.3), ([4],
Defnition 13.2), ([2], Section 3.3)) of intersection multi-
plicity IP(f, g) of curves f � 0, g � 0 at a point P; however,
the intersection multiplicities of curves have the same
properties (see ([4], Section 13), ([2], Section 3.3)), so it is
important to show that the two diferent defnitions of in-
tersection multiplicity are equivalent.

Defnition 2 ((see [4], Defnition 13.1)). Let n be a positive
integer, and let f(x, y), g(x, y), and q1(x, y), . . ., qn(x, y)

be polynomials in K[x, y] and P ∈ A2
K. We call that q1, . . .,

qn are dependent with respect to f and g at the point P if
there are polynomials u(x, y), s(x, y), t(x, y) ∈ K[x, y],
and b1, . . ., bn ∈ K such that

u b1q1 + · · · + bnqn(  � sf + tg, (29)

where u(P)≠ 0 and b1, . . ., bn are not all zeros. In other
words, q1, . . . , qn are independent with respect to f and g at
the point P if they do not satisfy any equation of the form
(29), where u(P)≠ 0 and b1, . . ., bn are not all zeros.

Using independent polynomials, we can determine the
intersection multiplicities of afne algebraic curves in A2

K at
any point P.

Defnition 3 ((see [4], Defnition 13.2)). Let f(x, y), g(x, y)

be polynomials in K[x, y] and P ∈ A2
K. Te intersection

multiplicity of f and g at P, denoted by IP(f, g), is defned
as follows: IP(f, g) � e if e is the largest integer such that
there are e polynomials which are independent with respect
to f and g at P; IP(f, g) �∞ if for every positive integer n,
there are at least n polynomials which are independent with
respect to f and g at P.

Let OA2
K,P be the local ring of A2

K at a point P which is
defned as

OA2
K,P ≔

s

u
: s, u ∈ K[x, y]with u(P)≠ 0 . (30)

Note that OA2
K,P/〈f, g〉 is a vector space under K for

some polynomials f, g ∈ K[x, y] and that 〈f, g〉OA2
K,P is an

ideal of OA2
K,P.

Defnition 4 ((see [13], Defnition 2.3), ([2], Teorem 3)).
Let f(x, y), g(x, y) ∈ K[x, y], and P ∈ A2

K. Te intersection
multiplicity of f and g at P is the dimension of the vector
space OA2

K,P/〈f, g〉, denoted by

IP(f, g) ≔ dimK

OA2
K,P

〈f, g〉
 . (31)

FromDefnitions 3 and 4, we have the following theorem
which shows that the two diferent defnitions of intersection
multiplicity are equivalent.

Theorem 3. Let f(x, y), g(x, y) ∈ K[x, y], and P ∈ A2
K,

and then, IP(f, g) � IP(f, g).

Proof. We assume that IP(f, g) � n, and following Def-
nition 3, we know that n is the largest number of polynomials
which are independent with respect to f and g at P. We
suppose that q1(x, y), . . ., qn(x, y) ∈ K[x, y] are poly-
nomials which are independent with respect to f and g at P.
Tenfor any other polynomial e(x, y) ∈ K[x, y],

q1(x, y), . . . , qn(x, y), e(x, y), (32)

are dependent with respect to f and g at P.
Let φ: K[x, y]⟶ OA2

K,P/〈f, g〉 be a map defned by

p(x, y)↦
p(x, y)

1
+〈f, g〉OA2

K,P ≔ �
p(x, y)

1
 . (33)

For any p(x, y), q(x, y) ∈ K[x, y], if p(x, y) � q(x, y),
then
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(p(x, y) − q(x, y))

1
+〈f, g〉OA2

K,P � 0 +〈f, g〉OA2
K,P,

(34)
which follows that

p(x, y)

1
+〈f, g〉OA2

K,P �
q(x, y)

1
+〈f, g〉OA2

K,P. (35)

Tis means that
p(x, y)

1
  �

q(x, y)

1
 . (36)

Terefore, φ is well defned. Tus, by Defnition 4, it is
sufce to prove that [q1/1], . . . , [qn/1]  is a basis of the
vector space OA2

K,P/〈f, g〉 over K.

(1) First, we prove that [q1/1], . . . , [qn/1]  are linearly
independent over K.
We suppose that there exist b1, . . . , bn ∈ K such that

b1
q1
1

  + · · · + bn

qn

1
  � 0, (37)

that is,

b1q1 + · · · + bnqn( 

1
+ 〈f, g〉OA2

K,P � 〈f, g〉OA2
K,P.

(38)

It follows that

b1q1 + · · · + bnqn( 

1
∈ 〈f, g〉OA2

K,P. (39)

Tus, there exist s(x, y), t(x, y), r(x, y) ∈ K[x, y]

with r(P)≠ 0 such that

b1q1 + · · · + bnqn( 

1
�

(sf + tg)

r
, (40)

that is,

r b1q1 + · · · + bnqn(  � sf + tg. (41)

Since q1, . . . , qn are independent with respect to f

and g at P and r(P)≠ 0, we have b1 � · · · � bn � 0 by
Defnition 2, which tells that [q1/1], . . . , [qn/1]  are
linearly independent over K.

(2) Second, we prove that [q1/1], . . . , [qn/1]  are the
generators of the vector space OA2

K,P/〈f, g〉; that is,
any [e/r] ∈ OA2 ,P/〈f, g〉 is a linear combination of
[q1/1], . . . , [qn/1]  for any

e(x, y), r(x, y) ∈ K[x, y] with r(P)≠ 0.

Since for any polynomial e(x, y), r(x, y) ∈ K[x, y] with
r(P)≠ 0,

r(x, y)q1(x, y), . . . , r(x, y)qn(x, y), e(x, y), (42)

are dependent with respect to f and g at P, so there are
polynomials

u(x, y), v(x, y), w(x, y) ∈ K[x, y], (43)

and b0′, . . ., bn
′ ∈ K such that

u b0′e + b1′rq1 + · · · + bn
′rqn(  � vf + wg, (44)

where u(P)≠ 0 and (b0′, . . . , bn
′)≠ (0, . . . , 0) by Defnition 2.

Tus, we have

b0′
e

r
  + b1′

q1

1
  + · · · + bn

′ qn

1
  � 0. (45)

Since b0′ ≠ 0, we have

e

r
  � −

b1′

b0′
q1

1
  − · · · −

bn
′

b0′
qn

1
 . (46)

In fact, if b0′ � 0, then b1′ � · · · � bn
′ � 0 following the fact

that q1(x, y), . . . , qn(x, y) are dependent with respect to f

and g at P. Tis is a contradiction.
Terefore, we obtain that [q1/1], . . . , [qn/1]  is a basis of

the vector space OA2
K,P/〈f, g〉 over K, that is,

IP(f, g) � dimK

OA2
K,P

〈f, g〉
  � n � IP(f, g). (47)

In general, it is difcult to give the intersection multi-
plicity IP(f, g) of two curves f � 0, g � 0 at some point P in
A2

K. Since the intersection multiplicity is a geometry
problem, according to the fact that the properties of fgures
of geometry are invariant under afne transformations
which preserve the intersection multiplicity, we should try to
transfer the intersection multiplicity to another easy case by
using an afne transformation.

An afne transformation of A2
K is a map φ: A2

K⟶ A2
K

defned by
x

y
 ↦A

x

y
  +

e

k
 , (48)

where A �
a11 a12
a21 a22

  is a 2 × 2 invertible matrix, i.e.,

a11a22 − a12a21 ≠ 0, and e, k ∈ K. Note that an afne trans-
formation preserves collinearity, i.e., all points lying on
a line initially still lie on a line after the afne transformation,
and the images φ(f) � 0,φ(g) � 0 of two curves f � 0, g �

0 intersecting at a point p intersect at the point φ(p) under
an afne transformation φ. In fact, every afne trans-
formation can be represented as the composition of a linear
transformation and a translation.

Following ([2], Section 3.3), we have the properties of the
intersection multiplicity IP(f, g) of curves f, g at the point
P ∈ A2

K, which are same as the properties of the intersection
multiplicity IP(f, g). □

Property 2. Let f � 0, g � 0 and h � 0 be curves in A2
K and

P ∈ A2
K. Ten, we have the following:

(1) IP(f, g) is a nonnegative integer or ∞.
(2) IP(f, g)≥ 1 if and only if f and g both contain the

point P.
(3) Let ϕ be an afne transformation that maps

P(x, y) ∈ A2
K (resp., f � 0, g � 0) to P′(x′, y′)

(resp., f′ � 0, g′ � 0). Ten,
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IP(f(x, y), g(x, y)) � IP′ f′ x′, y′( , g′ x′, y′( ( .

(49)

(4) IP(f, g) � IP(g, f).
(5) IP(f, gh) � IP(f, g) + IP(f, h).
(6) IP(f, g) � IP(f, g + fh).

3.2. IntersectionMultiplicity between Curves and Lines inA2
K.

To consider the intersection multiplicities IP(f, g) of curves
in A2

K with char(K) � 0, it is important to consider some
properties of intersection multiplicity between curves and
lines in A2

K. Let f(x, y) be an afne algebraic curve in A2
K,

and we can write that

f(x, y) � fd + fd+1 + · · · , (50)

wherefk(x, y) is the sum of the terms of degree k inf(x, y).
Let ord(f) be the smallest degree of the terms of f with
respect to the origin (0,0), and if ord(f) � d, then fd(x, y)

can be written as

fd(x, y) � a1x + b1y( 
s1 a2x + b2y( 

s2 · · · akx + bky( 
sk ,

(51)

for distinct lines aix + biy � 0, where si is a positive integer.
According to Defnition 4, in order to complete the proof

of Lemma 5, we should introduce the localization which is
a very powerful technique in commutative algebra, and
localization always allows us to reduce questions on rings
and modules to a union of smaller local problems.

Defnition 5 ((see [17], Lecture 9)). Let A be an integral
domain, and p is a prime ideal in A. Te localization of A at
p, denoted by Ap, is defned as

Ap ≔
a

b
: a ∈ A, b ∈ A − p , (52)

where a/b is the equivalent class under the equivalence
relation ∼ which is defned by a/b ∼ c/d if there exists
t ∈ A − p such that t(ad − bc) � 0.

Note that the equivalence relation ∼ owned the addition
operation:

a

b
+

c

d
�

(ad + bc)

bd
, (53)

and the multiplication operation is
a

b
·

c

d
�

ac

bd
, (54)

and the localization Ap is a local ring with a maximal ideal
pAp. For the integral domain K[x, y], we have the locali-
zation K[x, y]〈x,y〉 of K[x, y] at the maximal ideal
〈x, y〉 ⊂ K[x, y]; i.e., K[x, y]〈x,y〉 � f/g: f, g ∈ K

[x, y] andg(0, 0)≠ 0}, and K[x, y]〈x,y〉 is a local ring with
the unique maximal ideal m〈x,y〉 ≔ f/g ∈

K[x, y]〈x,y〉: f(0, 0) � 0}.

Lemma  . Let f(x, y) � 0 be a curve, and O � (0, 0) is the
origin in A2

K. We assume that ord(f) � d and that l(x, y) �

0 is a line through the origin O. Ten, IO(f,l)>d if l is
a factor of fd; otherwise, IO(f,l) � d.

Proof. From Defnition 4, we have

IO(f,l) � dimK

OA2
K,O

〈f,l〉
 . (55)

□

Case 1. We suppose that l is not a factor of fd. Since
〈x, y〉K[x, y] is a prime ideal in K[x, y], from Defnitions 4
and 5, we have

dimK

OA2
K,O

〈f,l〉
  � dimK

K[x, y]〈x,y〉

〈f, l〉
 , (56)

where

K[x, y]〈x,y〉

〈f, l〉
�

u1

u2
+〈f,l〉K[x, y]〈x,y〉: u1, u2 ∈ K[x, y], u2(0, 0)≠ 0 , (57)

which have addition operation

u1

u2
+〈f,l〉K[x, y]〈x,y〉  +

v1

v2
+〈f,l〉K[x, y]〈x,y〉 

�
u1v2 + v1u2( 

u2v2
+〈f,l〉K[x, y]〈x,y〉,

(58)

and multiplication operation is

u1

u2
+〈f,l〉K[x, y]〈x,y〉  +

v1

v2
+〈f,l〉K[x, y]〈x,y〉 

�
u1v1( 

u2v2
+〈f,l〉K[x, y]〈x,y〉.

(59)
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Similarly, we have

K[x]〈x〉 �
w1

w2
: w1, w2 ∈ K[x], w2(0)≠ 0 ,

K[x]〈x〉

〈w(x)〉
�

w1

w2
+〈w(x)〉K[x]〈x〉: w1, w2 ∈ K[x], w2(0)≠ 0 .

(60)

Note that K[x]⫋K[x]〈x〉 and 〈w(x)〉K[x]〈x〉is an ideal
of K[x]〈x〉. If w(0) � 0, we can write that

w(x) � x
ord(w)

· q(x), q(0)≠ 0. (61)

Tus, we have 1/q(x) ∈ K[x]〈x〉 and
xord(w) � w(x)/q(x). It tells that

〈w(x)〉K[x]〈x〉 �〈xord(w)〉K[x]〈x〉,

dimK

K[x]〈x〉

〈w(x)〉
  � dimK

K[x]〈x〉

〈xord(w)〉
 .

(62)

Since l � 0 is a line through the origin O in A2
K, we can

write l � 0 as

ax + by � 0, (63)

where a and b are not all zeros. We may assume that b is
nonzero, then the line l � 0 is y � dx, d � − a/b. Tus, we
have

K[x, y]〈x,y〉

〈f, l〉
�

K[x]〈x〉

〈f(x, dx)〉
. (64)

In fact, let

T:
K[x, y]〈x,y〉

〈f,l〉
⟶

K[x]〈x〉

〈f(x, dx)〉
, (65)

be the map defned by

u1

u2
+〈f,l〉K[x, y]〈x,y〉↦

u1(x, dx)

u2(x, dx)
+〈f(x, dx)〉K[x]〈x〉.

(66)

Let [u1/u2] ≔ u1/u2 + 〈f,l〉K[x, y]〈x,y〉. For any

u1

u2
 ,

v1

v2
  ∈

K[x, y]〈x,y〉

〈f,l〉
, (67)

if [u1/u2] � [v1/v2], that is,
u1

u2
−

v1

v2
∈ 〈f, l〉K[x, y]〈x,y〉, (68)

which implies that there are s1/s2, t1/t2 ∈ K[x, y]〈x,y〉 such
that

u1

u2
−

v1

v2
�

s1

s2
 f +

t1

t2
 l, (69)

and then, under the map T, we have

u1(x, dx)

u2(x, dx)
−

v1(x, dx)

v2(x, dx)
�

s1(x, dx)

s2(x, dx)
 f(x, dx), (70)

which follows that

u1(x, dx)

u2(x, dx)
−

v1(x, dx)

v2(x, dx)
∈ 〈f(x, dx)〉K[x]〈x〉. (71)

Hence, we have

T
u1

u2
   �

u1(x, dx)

u2(x, dx)
+〈f(x, dx)〉K[x]〈x〉

�
v1(x, dx)

v2(x, dx)
+〈f(x, dx)〉K[x]〈x〉

� T
v1
v2

  ,

(72)

which means that the map T is well defned.
Furthermore, for any

[u1/u2], [v1/v2] ∈ K[x, y]〈x,y〉/〈f,l〉, it is clear that

T
u1

u2
  +

v1
v2

   � T
u1

u2
   + T

v1
v2

  ,

T
u1

u2
  ·

v1
v2

   � T
u1

u2
   · T

v1
v2

  ,

(73)

which tells that the map T is a ring homomorphism.
On the other hand, if [u1/u2]≠ [v1/v2], that is,
u1

u2
+〈f,l〉K[x, y]〈x,y〉 ≠

v1

v2
+〈f,l〉K[x, y]〈x,y〉, (74)

which implies that
u1

u2
−

v1

v2
∉ 〈f,l〉K[x, y]〈x,y〉, (75)

and thus, for any s1/s2, t1/t2 ∈ K[x, y]〈x,y〉, we have

u1

u2
−

v1

v2
≠

s1

s2
 f +

t1

t2
 l. (76)

Consequently, under the map T, we have

u1(x, dx)

u2(x, dx)
−

v1(x, dx)

v2(x, dx)
≠

s1(x, dx)

s2(x, dx)
 f(x, dx), (77)

which means that T([u1/u2])≠T([v1/v2]). Tis tells that the
map T is injective. It is obvious that the map T is surjective.
Terefore, we have

K[x, y]〈x,y〉

〈f,l〉
�

K[x]〈x〉

〈f(x, dx)〉
. (78)

Following (62), we have

K[x, y]〈x,y〉

〈f, l〉
�

K[x]〈x〉

〈xord(f)〉
�

K[x]〈x〉

〈xd〉
. (79)

8 International Journal of Mathematics and Mathematical Sciences



Next, we prove that dimK(K[x]〈x〉/〈xd〉) � d. Since
K[x]⫋K[x]〈x〉 and K[x]〈x〉/〈xd〉 are the quotient ring of
K[x]〈x〉, we know that the following diagram is
commutative.

Naturally, we can let

ϕ: K[x]⟶
K[x]〈x〉

〈xd〉
, (80)

be the map defned by

q(x)↦
q(x)

1
+〈xd〉K[x]〈x〉 ≔

q(x)

1
 . (81)

It is clear that ϕ is well defned. To prove
dimK(K[x]〈x〉/〈xd〉) � d, it is sufce to show that
[1/1], [x/1], . . . , [xd− 1/1]  is a basis of K[x]〈x〉/〈xd〉 over

K.

(i) First, [1/1], [x/1], . . . , [xd− 1/1]  are linearly in-
dependent over K. In fact, we assume that there exist
b1, . . . , bd ∈ K such that

b1
1
1

  + b2
x

1
  + · · · + bd

x
d− 1

1
  � 0, (82)

that is,

b1 + b2x + · · · + bdx
d− 1

 

1
+ 〈xd〉K[x]〈x〉 � 〈xd〉K[x]〈x〉.

(83)

It follows that

b1 + b2x + · · · + bdx
d− 1

 

1
∈ 〈xd〉K[x]〈x〉. (84)

Tis means that there exists s(x)/r(x) ∈ K[x]〈x〉

such that

b1 + b2x + · · · + bdx
d− 1

 

1
�

s(x)

r(x)
  · x

d
, (85)

which tells that

r(x) b1 + b2x + · · · + bdx
d− 1

  � s(x)x
d
. (86)

Since 1, x, . . . , xd− 1 are linearly independent over K,
following Defnition 2 we have that
[1/1], [x/1], . . . , [xd− 1/1]  are independent with
respect to xd at 0 over K.

(ii) Second, we have that [1/1], [x/1], . . . , [xd− 1/1] 

generate the vector space K[x]〈x〉/〈xd〉. In other

words, any [e/r] ∈ K[x]〈x〉/〈xd〉 is a linear combi-
nation of [1/1], [x/1], . . . , [xd− 1/1] , where
e(x), r(x) ∈ K[x], r(0)≠ 0.

By Defnition 2, we know that for any polynomial
e(x) ∈ K[x],

r(x), r(x)x, . . . , r(x)x
d− 1

, e(x), (87)

are dependent with respect to xd at 0, so there are poly-
nomials u(x), v(x) ∈ K[x], and b0′, . . . , bd

′ ∈ K such that

u b0′e + b1′r + b2′rx + · · · + bd
′rx

d− 1
  � vx

d
, (88)

where u(0)≠ 0 and (b0′, . . . , bd
′)≠ (0, . . . , 0). Tus, we have

b0′
e

r
  + b1′

1
1

  + b2′
x

1
  + · · · + bd

′ x
d− 1

1
  � 0. (89)

Since b0′ ≠ 0, we have

e

r
  � −

b1′

b0′
1
1

  −
b2′

b0′
x

1
  − . . . −

bd
′

b0′
x

d− 1

1
 . (90)

In fact, if b0′ � 0, according to the fact that
[1/1], [x/1], . . . , [xd− 1/1]  are independent with respect to

xd at 0 over K, we have b1′ � · · · � bd
′ � 0, which is

a contradiction.
Terefore, [1/1], [x/1], . . . , [xd− 1/1]  is a basis of the

vector space K[x]〈x〉/〈xd〉 over K. Hence, we have

dimK

K[x]〈x〉

〈xd〉
  � d. (91)

Following (56) and (79), we have

IO(f,l) � dimK

K[x, y]〈x,y〉

〈f, l〉
  � d. (92)

Case 2. If l is a factor of fd, by Property 2, we have
IO(f,l) � IO f − fd,l( . (93)

Since ord(f − fd)>d, according to the above proof, we
have IO(f, l)> d easily. Terefore, we obtain the assertion.

3.3. IntersectionMultiplicity ofCurves under FoldPoint inA2
K.

Similar as in Section 2.2, we still have some similar results
about the intersection multiplicities of curves under fold
point in A2

K. For the fold point, Hirschfeld et al. (([18],
Defnition 1.8)) also give the defnition of the m0-fold point
of an afne curve. In this paper, we still use the similar
defnition of fold point as in Defnition 1.

Defnition 6. Let f(x, y) � 0 be a curve and P a point inA2
K.

We say that the point P is a d-fold point of f � 0 if there is
a nonnegative integer d, such that there are at most d distinct
lines that intersect f at P more than d times and that all
other lines intersect f at P exactly dtimes.
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By Property2 we know that the afne transformations
preserve the intersection multiplicity of curves in A2

K.
Following Defnition 6, we note that the defnition of the fold
point depends on lines, so it is a natural question to ask
whether the intersection multiplicity IP(f,l) between
curves and lines inA2

K can be transformed into a simple case.
We give the following lemma which is helpful in completing
the proof of Teorem 4.

Lemma 6. Let f(x, y) � 0 be a curve and P a point inA2
K. If

P is a d-fold point of f(x, y) � 0, then there exist a line l � 0
through the point P and an afne transformation T, such that

IP(f, l) � IO f′, y(  � d, (94)

where T(f) � f′,T(l) � y, and T(P) � O � (0, 0).

Proof. Since P is a d-fold point of f � 0 and d is fnite, by
Lemma 5, we know that there exist infnite lines
li � 0, i � 1, 2, . . .  through the point P such that

IP(f,li) � d. It is obvious that there exist an afne trans-
formation T: A2

K⟶ A2
K and some lj with IP(f, lj) � d,

j ∈ 1, 2, . . .{ } such that T(P) � O � (0, 0) and T(lj) � y.
According to Property 2, it states that the afne trans-
formation preserves the intersection multiplicity of curves in
A2

K. Tus, we obtain the assertion. □

Example 3. Letf(x, y) � x2 + y2 − x3 be an algebraic curve,
and we take P � (1, 0). Tus, we have f(P) � 0, and we can
write

f(x, y) � x
2

+ y
2

− x
3

� − (x − 1)
3

+ y
2

− 2(x − 1)
2

− (x − 1).

(95)

Since − (x − 1) � − x + 1 � 0 is the only line such that
IP(f, − x + 1) � 2> 1, any other line l′ � 0 which is diferent
from the line − x + 1 � 0 satisfes IP(f, l′) � 1. Tus, by
Defnition 6, we know that P is a 1-fold point of f � 0.

Taking l � x + 2y − 1, we have IP(f,l) � 1 from
Lemma 5. Since afne transformations preserve intersection
multiplicity of curves, our aim is to fnd an afne trans-
formation T such that

IP(f, l) � IO f′, y(  � 1. (96)

By the proof of Lemma 6, we can easy give the afne
transformation T1: A

2
K⟶ A2

K defned by

x

y
 ↦

− 1 0

0 1
 

x

y
  +

1

0
 , (97)

such that T1(P) � O and

T1(l) � (1 − x) + 2y − 1 � 2y − x. (98)

Also, we have the afne transformation T2 defned by

x

y
 ↦

2 1

1 1
 

x

y
 , (99)

such that T2(O) � O and

T2(2y − x) � 2(x + y) − (2x + y) � y. (100)

Hence, setting T � T2
°T1, we have T(P) � O and

T(f) � 8x
3

+ y
3

+ 12x
2
y + 6xy

2
− 7x

2
− y

2
− 6xy + 2x + y.

(101)

Following Property 2, we have

IP(f,l) � IO 8x
3

+ y
3

+ 12x
2
y + 6xy

2


− 7x
2

− y
2

− 6xy + 2x + y, y

� IO 8x
3

− 7x
2

+ 2x, y 

� 1.

(102)

Theorem 4. Let f(x, y) � 0 and g(x, y) � 0 be curves and P

a point in A2
K. We suppose that P is a d-fold point of

f(x, y) � 0 and an e-fold point of g(x, y) � 0, respectively. If
1≤d≤ e, then there is a curve h(x, y) � 0 such that

IP(f, g) � d + IP(f, h), (103)

where P is an m-fold point of h(x, y) � 0 and m≥ e − 1.

Proof. When d � e � 1, that is, P is, respectively, a 1-fold
point of f(x, y) � 0 and a 1-fold point of g(x, y) � 0. By
Defnition 6, we know that there exists a line l′ � 0 such that

IP f,l′(  � 1 � IP g,l′( . (104)

Following Lemma 6, there exists an afne transformation
T1: A

2
K⟶ A2

K defned by

x

y
 ↦

b11 b12

b21 b22
 

x

y
  +

m

n
 , b11b22 − b12b21 ≠ 0,

(105)

such that

IP f,l′(  � IO f′, y(  � 1, IP g,l′(  � IO g′, y(  � 1,

(106)

where T1(f) � f′, T1(g) � g′, T1(l′) � y, and
T1(P) � O � (0, 0). Hence, we can write

f′(x, y) � xα(x) + yδ(x, y), (107)

for some polynomials α(x) and δ(x, y) in K[x, y] with
α(0)≠ 0 and ord(δ)≥ 0. Also, we can write

g′(x, y) � xα′(x) + yδ′(x, y), (108)

for some polynomials α′(x) and δ′(x, y) in K[x, y] with
α′(0)≠ 0 and ord(δ′)≥ 0. From Property 2, we have

IO f′, g′(  � 1 + IO f′, h′( , (109)

where h′ � δ′α − δα′ with ord(h′)≥ 0 and O is an s-fold
point of h′ with s≥ 0.
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By (48) and the defnition of T1, we know that there
exists an afne transformation T1: A

2
K⟶ A2

K defned by

x

y
 ↦

b11 b12

b21 b22
 

− 1
x

y
  −

b11 b12

b21 b22
 

− 1
m

n
 ,

(110)

such that T1(f′) � f, T1(g′) � g, and T1(h′) � h. Tere-
fore, according to the fact that IO(f′, g′) � 1 + IO(f′, h′),
we have

IP(f, g) � 1 + IP(f, h), (111)

where P is an s-fold point of h � 0 with s≥ 0.Tus, we obtain
the assertion when d � e � 1.

When e≥ 2, that is, P is, respectively, a d-fold point of
f(x, y) � 0 and an e-fold point of g(x, y) � 0. Following
Defnition 6, we know that there exists a line l � 0 such that

IP(f,l) � d, IP(g,l) � e. (112)

By Lemma 6 there exists an afne transformation
T: A2

K⟶ A2
K defned by

x

y
 ↦

a11 a12

a21 a22
 

x

y
  +

e

k
 , a11a22 − a12a21 ≠ 0,

(113)

such that

IP(f, l) � IO f′, y(  � d, IP(g,l) � IO g′, y(  � e,

(114)

where T(f) � f′, T(g) � g′, T(l) � y, and T(P) � O.
From Lemma 5, we have that O is a d-fold point of f′ � 0 if
and only if ord(f′) � d, which means that y is not a factor of
fd
′. Tis tells that the coefcient of the term xd in fd

′ is
nonzero, and thenwe can write

f′(x, y) � x
d
q(x) + yβ(x, y), (115)

where q(x) and β(x, y) are polynomials in K[x, y] with
q(0)≠ 0 and ord(β)≥ d − 1. Similarly, we can write

g′(x, y) � x
e
q′(x) + yβ′(x, y), (116)

where q′(x) and β′(x, y) are polynomials in in K[x, y] with
q′(0)≠ 0 and ord(β′)≥ e − 1. Tus, according to (115) and
(116), we have

x
e− d

· q′f′ − qg′ � yh′, (117)

where h′(x, y) � xe− d · βq′ − qβ′ with h′(0, 0) � 0 and
ord(h′) � s≥ e − 1. On the other hand, following (117), we
also have that

g′ � x
e− d

·
q′
q

 f′ −
1
q

 yh′, (118)

where xe− d · q′/q, 1/q ∈ OA2
K,O. Terefore, we have

〈f′, g′〉OA2
K,O � 〈f′, yh′〉OA2

K,O. (119)

It follows that

IO f′, g′(  � dimK

OA2
K,O

〈f′, g′〉
 

� dimK

OA2
K,O

〈f′, yh′〉
  � IO f′, yh′( .

(120)

Hence, by Property 2, we have that

IO f′, g′(  � IO f′, y(  + IO f′, h′( 

� IO x
d
q(x), y  + IO f′, h′( 

� d + IO f′, h′( .

(121)

Since ord(h′) � s≥ e − 1, following Lemma 5, we have thatO

is an s-fold point of h′ � 0. By (48) and the defnition of T,
we know that there exists an afne transformation
T: A2

K⟶ A2
K defned by

x

y
 ↦

a11 a12

a21 a22
 

− 1
x

y
  −

a11 a12

a21 a22
 

− 1
e

k
 ,

(122)

such that T(f′) � f, T(g′) � g, and T(h′) � h. Terefore,
according to the fact that IO(f′, g′) � d + IO(f′, h′), we
have

IP(f, g) � d + IP(f, h), (123)

where P is an s-fold point of h � 0 and s≥ e − 1. Tus, we
obtain the assertion.

Hartshorne (([7], Chapter 1)) proved that the in-
tersection multiplicity IP(f, g) of distinct curves f � 0, g �

0 at a point P in A2
K is not less than ordP(f) · ordP(g).

Similar as the proof ofTeorem 2, we also have the following
corollaries by using the fold point. □

Corollary 2. Let f(x, y) � 0 and g(x, y) � 0 be curves and
P a point in A2

K. Suppose that P is a d-fold point of f(x, y) �

0 and an e-fold point of g(x, y) � 0, respectively, then
IP(f, g)≥ de. (124)

Corollary 3. Let f(x, y) � 0 and g(x, y) � 0 be curves in
A2

K. We assume that the origin O is a d-fold point of f � 0
and an e-fold point of g � 0, respectively. Let fd (resp.,ge) be
the sum of the terms of the degree d (resp.,e) in f (resp.,g).
Ten, IO(f, g)> de if and only if fd and ge have a common
factor of positive degrees. Equivalently, IO(f, g) � de if and
only if fd and ge have no common factors of positive degrees.

Example 4. We calculate the intersection multiplicity
IO(f, g) at the origin O of two algebraic curves f � x3y3 +

2x3y − 2x2 and g � x5 + 3x2y2 − x2 − 3y2 in A2
K.
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It is obvious that ord(f) � 2 and ord(g) � 2. From
Defnition 6, we know that the origin O is a 2-fold point of
both f and g. By Corollary 2, we know that IO(f, g)≥ 4.
Since f2 � − 2x2 and g2 � − x2 − 3y2 have no common
factors, we have IO(f, g) � 4 following Corollary 3.

In fact, we have

f · x
3

− 1  + 2g � yh,

g �
1
2

yh −
x
3

− 1
2

f,

(125)

where h(x, y) � (x3 − 1)(x3y2 + 2x3) + 6x2y − 6y and
ord(h) � 1, h(0, 0) � 0, which implies that

〈f, yh〉OA2
K,O � 〈f, g〉OA2

K,O. (126)

Ten,

IO〈f, g〉 � dimK

OA2
K,O

(f, g)
  � dimK

OA2
K,O

(f, yh)
  � IO〈f, yh〉.

(127)

Tus, following Property 2 we have
IO(f, g) � IO(f, y) + IO(f, h)

� IO − 2x
2
, y  + IO(f, h)

� 2 + IO(f, h).

(128)

Note that the origin O is a 1-fold point of h. Tus, from
Teorem 4, we can also obtain that IO(f, g) � 2 + IO(f, h).
Similarly, we have

x x
3

− 1 f + h � yh′,

h � yh′ − x x
3

− 1 f,
(129)

where h′(x, y) � x(x3 − 1)(x3y2 + 2x3) + x6y − x3y +

6x2 − 6 and ord(h′) � 0, h′(0, 0)≠ 0, which implies that

〈f, yh′〉OA2
K,O � 〈f, h〉OA2

K,O. (130)

Tis means that

IO(f, h) � dimK

OA2
K,O

(f, h)
 

� dimK

OA2
K,O

f, yh′( 
  � IO f, yh′( .

(131)

Following Proposition 3.5, since h(0, 0)≠ 0, we have
IO(f, h′) � 0 and

IO(f, h) � IO(f, y) + IO f, h′( 

� IO − 2x
2
, y  + IO f, h′( 

� 2 + IO f, h′(  � 2.

(132)

Terefore, we have IO(f, g) � 4.
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