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A numerical scheme is developed to solve a large time delay two-parameter singularly perturbed one-dimensional parabolic
problem in a rectangular domain. Two small parameters multiply the convective and diffusive terms, which determine the width of
the left and right lateral surface boundary layers. Uniform mesh and piece-wise uniform Shishkin mesh discretization are applied
in time and spatial dimensions, respectively. The numerical scheme is formulated by using the Crank-Nicolson method on two
consecutive time steps and the average central finite difference approximates in spatial derivatives. It is proved that the method is
uniformly convergent, independent of the perturbation parameters, where the convection term is dominated by the diffusion
term. The resulting scheme is almost second-order convergent in the spatial direction and second-order convergent in the
temporal direction. Numerical experiments illustrate theoretical findings, and the method provides more accurate numerical

solutions than prior literature.

1. Introduction

Most mathematical models of real-life phenomena in
physics, chemistry, biology, astronomy, and other fields of
applied science involve the dependent variable and its de-
rivatives as arguments in the equation. In many cases, the
higher-order terms are multiplied by “small” interrelated
multiparameters, which are referred to as singularly per-
turbed differential equations. If we consider two perturba-
tion parameters, one (say ) can be assumed to be a function
of the other (say ¢). The earliest and popular paper [1] in-
troduces these problems as two-parameter singularly per-
turbed differential equations defined as

L9+ uLr9+ L9 =0, (1)

where ¢ and y are “small” positive interrelated parameters
simultaneously approaching zero and &,, &,, and &, are
linear differential operators whose orders are I, >1, >,
respectively, for a sufficiently smooth function ¢. These

kinds of equations arise in the fields of fluid dynamics,
quantum mechanics, chemical flow reactor theory, and DC
motor analysis [2, 3].

The two-parameter singularly perturbed parabolic dif-
ferential equation is the focus of some recent studies [4-11].
Some others considered this problem with nonsmooth data,
which implies boundary and interior layers in their solution
[12-16]. However, they did not consider the delay condition.
In other models of physical problems like heat and mass
transfer, control theory, and chemical processes, the system
may depend on the present and past history of the state
which yields a delay term in the differential equation. Such
singularly perturbed time delay parabolic problems with
uniperturbation parameter are addressed by some literature
[17-23]. Besides solving singularly perturbed differential
equations, obtaining higher-order and robust numerical
solutions is the main devotion of researchers [24-30].

The concern of our problem is a two-parameter singularly
perturbed time delay one-dimensional parabolic differential
equation for the given initial and two boundary conditions.
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Different numerical methods of this type of problems are
studied by some authors [31-34]. Govindarao and others in
[31] solved the problem by applying implicit Euler finite
difference approximation on uniform mesh in the direction of
time and upwind finite difference approximation on Shishkin
and Bakhvalov-Shishkin mesh in space direction. They proved
that their scheme is parameter-uniform with O (h + k) where h
and k are spatial and temporal mesh sizes. Kumar and Others
in [32] improved the spatial order of convergence to almost
second by implementing a hybrid monotone finite difference
scheme in the direction of space. Recently, two articles entitled
“An effective numerical approach for two-parameter time-
delayed singularly perturbed problems” and “Fitted cubic
spline scheme for two-parameter singularly perturbed time-
delay parabolic problems” also addressed this problem. The
first article applied the Crank-Nicolson scheme in temporal
direction and the B-spline collocation method for spatial [33]
and the second article applied a combination of the fitted
operator scheme of a cubic spline with 8—method on a uni-
form mesh grid [34].

The properties of the solution to these problems mainly
depend on the dominant of diffusive or convective pa-
rameter. The problem has a reaction-diffusion problem
property and is referred to as diffusion-dominant if the
convective parameter is significantly smaller than the dif-
fusive parameter. This paper proposes to develop a more
accurate and parameter-uniform numerical scheme to solve
a two-parameter singularly perturbed one-dimension delay
parabolic problem using the Crank-Nicolson finite differ-
ence approximation on a uniform mesh in the time direction
and the central finite difference method on Shishkin mesh in
the spatial direction when the diffusive parameter dominates
the convective parameter.

This article consists of the following structures: in Section
2, the governing problem will be stated and the appropriate
regularity of the analytical solution will be discussed. Section 3
discusses some prior bounds of the analytical solution and its
derivatives. The discretization of the domain and develop-
ment of the numerical scheme are presented in Section 4.
Section 5 contains the stability and convergence analysis of
the scheme. Section 6 strengthens theoretical results using
numerical solutions of counterexamples with tables and
graphs, and finally, a brief conclusion is given in Section 7.

In every part of this article, ||.|| denotes the supreme norm,

If (0l = sup(x)t)eﬁ_{lf(x, NI} if f(x,t) is a continuous
function defined on D, and ||fi)j|| = maxlsiSNlSjSM|f(xi, )]
if f;; is a discrete value on the tensor of the domain, where

N x M is the discrete parameter. C denotes the generic
positive constant independent of perturbation parameters
and mesh sizes. The Landau symbol O is used to indicate
order relations.

2. Statement of the Problem

We consider the two-parameter singularly perturbed large
time delay one-dimensional parabolic problem defined on
the rectangular domain

D =D, xD,,for D, =(0,1),

2, =(0,T], @)
given by
u, (x,1) — ey, (x,t) — pa (x, t)u, (x, 1) + b(x, t)u(x,t)
=c(x,ulxt-1)+ f(x1),
(3)
with initial and boundary conditions
u(x,t) =y,(x,t), (xt)el,=[0,1] x[-7,0],
u(x,t) =y, (1), (x,t) €I, ={(0,1): 0<t<T},
u(x,t) =y, (1), (x,t) e T, ={(1,¢): 0<t<T},
(4)

where & and u are perturbation parameters such that
0 <e < 1land0 <y « 1, the delay parameter 7 > ¢, 4, such that
the terminal time, T = k7 for some positive integer k. The
functions a(x,1),b(x,t),c(x,t), and f (x,t) are sufficiently
smooth and bounded that satisfy

a(x,t)2a>0,b(x,t)=$>0,

_ (5)
c(x,t)>29>00n 2 =[0,1] x[0,T7],

assuming that 1y, (x,1),y;(t), and yp,(t) are sufficiently
smooth and bounded on the boundary, I' =T, UT’; UT, and
compatible at the corner points.

For (x,t) € [0,1] x [0,7], the problem is treated as
a standard two-parameter singularly perturbed parabolic
problem since the value u(x,t — 7) is known. The compu-
tation extends for (x,t) € [0, 1] x [7, 21] after solving u (x;, t)
for [0, 1] x [0, 7]. Repeating this method of steps completes
the solution for the whole time domain component.

The problem is a kind of reaction-diffusion when y = 0
and convection-diffusion when g = 1, but our interest is in
the case 0 <y <« 1. The analysis was made concerning two
cases of O’Malley’s study in [1], when y? < Ce and y? > Ce. In
the first case, the problem resembles the properties of the
case when p =0, and hence, 0 (+/¢) layers appear in the
neighborhood of x = 0 and x = 1. For the second case, layer
widths O (e/u) and O (u) appear in the neighborhood of x =
0 and x = 1, respectively.

3. Bounds of Continuous Solution and
Its Derivatives

Let us define a differential operator £, , on the continuous
solution u (x,t) of problems (3) and (4) by

Zw (u(x, 1)) = u, (x,t) — euy, (x,t) — pa(x, thu, (x,t)
+b(x,u(x,t).
(6)

It is assumed that the data are compatible at its boundary
and then the following compatibility conditions should
satisfy at the corner points (0, 0), (1,0), (0,-7), and (1, -7).
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Y5 (0,0) = y,(0),

Yo (1’ 0) =Y (0)7
38,# (1(0,0)) = c(0,0)u(0,-7) + £(0,0),
Qw(u(l,o)) =c(1,0u(l,-7) + f(1,0),

(7)

which makes sense whenever y, € €' (T)), y, € €' (T,), and
Yy € &>! (T). The uniqueness and existence of u(x,t) €
©*! (D) are established depending on these conditions, and
itis also necessary to show the differential operator, and Z, ,

satisfies the maximum principle.
Lemma 1. Continuous maximum principle

Suppose ¥ (x,t) € &> (D)NE*° (D), such that ¥ (x,t)
>0,V (x,t) eI’ and 38,,,[‘1/(3@ 1)]>0,V(x,t) € D. Then,

¥ (x,1)>0,Y(x,t) € D.

Proof. Refer [34] O

L ls(x0)] =

0)

Ct+1), 0<t<T,
L. la(x0)] =

0, -7<t<0.

For sufficiently large C, we have

| Lo [s (1)) < £, [q (. 1)), (11)

Since &, , satisfies the maximum principle, it holds the
comparison relation s (x, )| < g (x,t). i.e, [u(x,t) —y, (x,0)|
<Ct.

Using the relation |u(x,t)| — |y, (x,0)| <|u(x,t) -,
(x,0)| < Ct, as T is the maximum of ¢, |u(x,t)| <Ct + |y,
(x,0)| < CT + |y, (x,0)], then |u(x,t)|<C.

Cs—(l/Z)i
ai+ju

— <
ox'ot’

Proof (see [6]).

For the purpose of error analysis, it is necessary to de-
compose the solution u(x,t) of problems (3) and (4) into
a regular component v (x, t), which characterizes the solution
behavior outside the boundary layers, and a singular component

c(x, )y, (x,t = 1) + f(x,1) +£dd—

Lemma 2. The solution of equations (3) and (4) satisfies the
following bounds:

|u (x, 1) =y (x, 0)| <Ct,

(8)
llu (x, ) < C,
for some constant C independent of ¢ and p.
Proof. Set two barrier functions defined as
u(x,t) -y, (x,0), 0<t<T,
s(x,t) =
u(x,t) -y, (x,t), -1<t<0, ©)
Ct, 0<t<T,
q(x,t) =
0, -7<t<0,
applying the differential operator
? d
2)’5 (.X', 0) +.Ua*)/b (X, 0) _b)/b (X, 0)) 0<tST,
X dx
-T<t<0, (10)

Taking the supreme of all (x,1) €D, we arrive |lu(x,t)]
<C. O

Lemma 3. For non-negative integers i and j, such that
0<i+2j<4, the derivatives of solution of problems (3) and
(4) satisfy the following bounds:

ocyz <gs,

i/ 2\
). e

,choosing ¢ = mi (12)

0 {b(x,t)}
ez (a(xt)]

w(x,t), which characterizes the solution behavior inside the
boundary layers. Further, we decompose the singular compo-
nent into the sum of left and right singular parts w(x,t) =
wy (x, 1) + wg (x,t) such that u(x,t) =v(x,t)+ wy(x,t) +
wp (x,t). The components individually satisfy
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Loy ) =c(x,)v(x,t = 1) + f (x,1),

v(x,t) =u(x,t),on I},

| vt =uxt,onT, )
v(0,t) = ¢, (1), (conveniently chosen),

 v(1,t) = ¢, (t), (conveniently chosen),

[ Loy (wp) = ¢ wy (x,t = 1),
] we (x,t) =0,0n T}, (1)
wy (L) =0

[ w, (0,) = u(0,£) - v(0,1),

gs,‘u (wR) = C(-x> t)wR (.X', t— T),
] wr (x,t) = 0,0n I, as)
wR (0, t) = 0

[ wr(1,1) =u(l,t) —v(L,¢).

Some prior bounds of the components of the continuous
solution and their derivatives are given in the following
lemmas, which are necessary for the later error estimate. [

Lemma 4. The bounds of the left and right singular com-
ponents have given by

Cexp(—\/ﬁ x), au” < ¢g,

|wp| < 1
Cexp(—%x>, au” =g,

£

) (16)
Cexp(—% (1- x)), au” <G,

W < 1
Cexp(—i(l—x)), ap” >ce

Proof (see [6]). O

Lemma 5. The derivatives of regular and singular compo-
nents of u(x,t) satisfy the following bounds:

(i) If ap* > ce, then

i+j 3-i s o\
Kiiad PYe 1+<€) (“) , for0<i+2j<4,
ox'ot’ U P

; i

awiL SC<E>, for 0<i<4,

ox £

AT PR

o’ '

aiw.R (y +u e ’), for 0<i<4,
ox'

duw,

=|<C forj=1,2.
ot’ g

(17)

(ii) If ap* < e, then
ai+jv

o <C, for0<i+2j<4. (18)
x Ot

The derivative bounds of w; and wy, satisfy the derivative
bounds of u (x, t) under Lemma 3.

Proof. Refer [32]. O

4. Formulation of Numerical Scheme

Applying the Crank-Nicolson approach upon uniform dis-
cretization for time and using midpoint central finite difference
approximation on Shishkin mesh type in spatial direction, the
derivation is explained in the following subsections.

4.1. Semidiscretization. The temporal discretization is per-
formed by uniform mesh extending up to the time-lag in-
terval as

2" ={t; = jat j=0,1,..., M},
(19)

@} ={t; = jAt, j=-1,-2,...,~(m+ 1)},
where M and m are the number of meshes in the intervals
[0, T] and [T, 0], respectively, assuming that M is a positive
multiple of m.

For problems (3) and (4) at (x, Fia(
of (x,t;) and (x,t},,), for all x € D,, is given by

1/2))> the mean point

ou t u b(x,t Ju t
‘5@‘““(’“ j+(1/z>)$+ (x’ j+<1/2>)” tor (x) j+(1/2))
= —c(x, tj+(1/2))”(x’ tj+(1/2)—m) + f(x, tj+(1/2))~
(20)

Applying Taylor’s series expansion of (x,t;) and (x,?},;)
about (x,t}, (1), we have

1 At 0
u(x,t+At)=u<x,t+fAt) ——u(x,t+ At)
2 2 ot

2
+—< )aaz (x,t+ At) ,

(21)
1 At 0 1
u(x,t) = u(x,t +7At> -— —u(x t+— At)
2 2 ot
A
—( 2) :2 (%43 At)
From these expansions, we can derive
15} u(x,t+At) —u(x,t) )
= ( t+2At) o +0((at)?).
(22)

At (p+1)" time step, we substitute (22) for time de-
rivative and average values between (x, tp) and (x,tp,,) for

spatial derivatives into (20) and we obtain
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[2J+ Atcf‘fi/lﬂ]u(x, tp+1) = g(X, tpﬂ), (23)

= —¢e(d?/
dx?) — ua(x, tor)(dldx) +b(x,t,,(1/2), and g(x,t,,;)
= [ZJ—At,?QfA]u(x,tp) —Atc(x,tp+(1/2))[u(x, )+u
(%, tp )] + 288 f (X, 1, (112)) that possess a truncation error

of O((At)®).

Equation (23) gives the semidiscrete boundary value
problem formulation of problems (3) and (4) for each time
step t,,,; with the boundary conditions as

M(O, tp+1) = )’l(tpﬂ)’
u(l’tpﬂ) = yr(tp+l)’ (24)

u(x, tp+1_m) = yb(x, tp+1_m),when p<m-—1.

where .7 is the identity differential operator, Sfﬁ

tp+1—m

Let 7/ (x) be the numerical solution of the semidiscrete
problem whose exact solution is u (x, t j) atafixedt =t i and

gﬁi (u(x,t j—l) — %/ (x)) is the truncation error caused by one
step of iteration which is called local truncation error. Hence,
the jth local absolute maximum error le;l = lu(x,t;) -
7/ (x)] <C(At)’. The global truncation error TE ; is the cu-

mulative truncation error up to j® iteration. Let E determine
E,, (the global error throughout the whole time interval).

Lemma 6. The global error estimate, E of the semidiscrete
problem (23) and (24), is given by

IEl <C(At)”. (25)

Proof. The j local maximum absolute error, e j» is bounded
by

0 (x,tp) =

We have

aggtat v max{ln(0.,.)|

|e~| <C(At),

E= Ze],then
j=1
M

(EDNUIE

j=1

[\/JE

M
Ylc@e’]
j=1

= C (At~

:1
= CM(At)’ = CT(At)*

Thus, |E| <C(At)’.

Considering the semidiscretization, at each time step p,
the differential operator [2.7 + Ath ] defined in 23 sat-
isfies the maximum principle. O

Lemma 7. Semidiscrete maximum principle

For a fixed time t = t,,,,, let the function ¥ (x,t,,,) € &*
(0,1), satisfies ¥ (0, tpﬂ) ¥ (1,t,,,)>0,and [2J+£Z’M](‘I’
(x, tp+1)) >0,Vx € (0,1). Then, lI/(x,tPH)ZO Vx € [0 1].

Proof. We apply a similar technique of contradiction as the
continuous maximum principle of Lemma 1.

Let (x,t,,) €D as ¥(x,t,,)= gep ¥ (x,
t p+1)}. Supposition of ¥ (x, tpe1) <0 implies a contradlctlon
of the given hypothesis and hence proved. O

min(

Lemma 8. Semidiscretization uniform stability
The solution u(x, tp+1) of equations (23) and (24) satisfies

Vr(l’tpﬂ)l}'

(27)

et )l = gt + {0t

Proof. Define barrier functions

y(Ltp)| | £ () (28)

Hi(o’tpﬂ) Atﬁ ||9|| +max{|)/1 0 tp+1)" Yr(l’tpﬂ)” Yi (0 tp+1) 0,

Ca (1 tp+1> 1[; Igll +I1'1§1X{|)/1(0,tp+1)‘ YV(l tp+1)|} Yr (1 tp+1) 0,

27 + MM ](6 (1)) = £ [27 + MM Jult,) + (2 + bAt)(AL gl -+ max i (0.,..)]

. y,(l,tp+1)|}> (29)

Vr(l’tp+1)'}>

= 2g(x.tp,)+ % gl + - Atﬁ gl + 2+ bAt)(max“yl (0.,)]

>0.
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Thus, applying Lemma 7 gives the required result.
The boundary layer properties are determined according
to the characteristic equation of (23), which is

—e(A(x))* - pad (x) +<b+Ait> -0, (30)
whose roots are
_ _ka ﬁ( i)
A(x) = e [1+ 1+y2a2 b+At ,
(31)
_ pal, L 4E 3)
A (x) = > [1 1+ #Zaz (b + ~
Let
A, = - max{A; (x)},
. (32)
A, = mxin{)t2 (x)}.
O

Lemma 9. The bound of the solution, u(x,t,,,) of the dis-
crete problem (23) and (24), is provided by

i

d
Eu(x, tpﬂ)

SC[I + AL exp (—pA,x) + A exp (—pA, (1 - x))],
(33)

up to a certain prescribed order q, for 0<i<qand 0<p<1.

- 4 )
Nal (l - 1))

Extending the semidiscretized equation (23) to full
discretization using central difference approximation for
a fixed time t =t ,, since the spatial discretization is non-
uniform mesh, we have the finite difference approximations,

U: .1 —U: : 1
i,j+1 i,j —s—(@zu
At 2

xMijjr1

1
=5 Ci,j+(1/2)(ui,j+1—m * ui,j—m) + fijwny

Proof. Refer [5, 35]. O

4.2. Full Discretization. Depending on the prior knowledge
of boundary layers” width and position, we apply piece-wise
uniform Shishkin mesh type for spatial discretization. Let
the transition points be ¢, and ¢,. Then, divide the spatial
domain component [0,1] into three subintervals [0, 0],
[0,,1—0,], and [1-0,,1]. According to Shishkin mesh
[36], each subinterval [0, 0,], [0;,1 — 0,] and [1 — 0, 1] will
be divided into a uniform mesh size of (N/4), (N/2) and
(N/4), respectively, where N is the number of meshes in
spatial direction assuming that it is a multiple of 4. The
transition points ¢, and ¢, are determined by

( 1 4+/¢
min{—,ilnN}, #2SE’
4 \[cx o
0'1 = <«
1 5 GE
min{—,—InNt, y=z—,
o
(34)
1 8+/¢ €
min{—,—\/_ N}, /JZSC—>
4 \[cx o
0, =13
18 €
min«[—,—‘ulnN]», yzzc—.
. 4 ¢ a
So, the spatial discretization, @ = {0 = x,x,, ..., Xy =
Opsev s Xy = 1= 0y, .o, Xy, = 1}, where
N
i=1,2,...,—+1,
4
N 3N
—+1...,—+1, (35)
4 4
3N
1= T'F 1, . ,N +1

(d*/dx*)u(x;t,) = Siui)P = 2/ + hiyy) (g — i/
hiy) = (Wi — uiy p/hy) (dldx)u(x;t,) = 5;”1‘,13 =
(411,p — Uiy p/h; + hy,y) for each mesh point (x;,t,). Note
that u;j = u(x,-,t]-). Then, the finite difference scheme of
equations (23) and (24) becomes

and

1 1
2
+ 6xui,j) - .“5 ai,j+(1/2)(8fcui,j+1 + 5(;”1',]') + 5 bi,j+(1/2)(”i,j+1 + “i,j)

(36)
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or equivalently, using the Crank-Nicolson finite difference
formula,

1

0
8ithi j) — S‘qul LH1/2) T M4 ji(172) ot juq 1) + bt jun) = Eci,j+(1/2)(ui,j+1—m + ”i,j—m) + fiju2) (37)

foralli=1,2,...,N+land j=1,2,...,.M + 1.

Defining a difference operator fZ?i’N =8 —ed—u
a1 1205 + b; i+ (112)> the corresponding difference equation
can be written as

1

M,N _
35,,4 ](”i,j+(l/2)) = Eci,j+(1/2)(ui,j+1—m + ”i,j—m) + fi,jw\{llz)’

(38)

which is

- At{ e[ 2 (ui+1,j+1 “ Ui Uijer T Ui )] ua Ui, jr1 ~ Ui jil b "
i,j+1 - - - i,j+(1/2) i,j+1/2) i, j+1
hi + hiy hi h; hi+ hiy

2 Uiy, — Wiy Uiy — Uiy Uisy,j — Uioy,j (39)
=2u. . — At{—¢ . AL : —ua. : — ) 4. Uu. :
Y { [h,- +hiy ( hin h; Hlijaar) hi + hiy A

+ Atci,j+(1/2)(ui,j+1—m + ”i,j—m) + 20t f; i)

Taking all terms with unknown nodal values to the left
and known values to the right, it has a recurrence form of

2eAt

2eAt Ha; 1At
+— gt + + Atb, . +2 |u,;;
< hi(h+hiy) Bt hyy ML i (B + i) (B + hyyy) A K

1

2e/At _ka;, 1)t u
h1+1 h + hz+1) hi + hi+1 Lyl

+

2eAt

(40)
2eAt

2eAt Ha; 12t
- Ui+
h; (h + h1+1 hi + hi+1 g hi+1 (

( 2eAt U4 ju1/2)At
+ +
1+1 (h + h1+1) hi + hi+1

For each time step (j+ 1), for alli=2,---, N, we drive
an (N —1)x (N - 1) tridiagonal system of equation,

(A;)”i71,1+1 + (A7 +2)u; g T (A:)”m,jﬂ =Gij+>  (41)
given all the discrete initial and boundary values
ujj = yb(xi,t]-), Vi,and j=-m,-m+1,---,0
=ty Vi (42)
UN+1,j = Yr(tj)’ Vjs

where

i+ hyyy) - b (h; + hyy,

) - Atbi,ﬁ(l/z) + Z)ui,j

) Uppyj + AL jy 1/2)( Ui jr1-m T “i,j—m) + 20t f j1p2)-

A = 2eAt N Ha; 12t
' hi(hi+hisy) bt by
A = 2elt _ Ha, 1At

' hi+1 (hi + hi+1) h + h1+1

2eAt 2eAt
A = AtY; . (1),
Y i (B + ) ’ h; (b + hyyy) ' PH12)
Gij+1 = (A)“11]+( —A7 +2)” +(A)1+1,j

+ Atci,j+(1/2)(ui,j+1—m + “i,j—m) + 20t f i)
(43)
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5. Convergence of Numerical Method

Lemma 10. If a square matrix A = [a; ;] is real, irreducible,
diagonally dominant with a; ; <0, and a;; >0 for all i and j,
then A~! >0, where 0 is a zero matrix.

Proof (see[37]).

This lemma can be a useful tool for establishing the
conditions under which the scheme’s coefficient matrix has
an inverse. Let us examine each hypothesis in turn.

(i) The coefficient matrix of the system (41) is real,

(ii) As A? = (2eAt/hy,, (b + hy,,)) + (2eAt/h; (h; +
hi1)) + Atb; ;12> 0, all diagonal entries are
positive,

(iii) Under the assumption of [laluh <2¢, for coarse
mesh size h, the lower and upper diagonal entries,
A; = —(2elt/h; (h; + hi,y)) + (pa; jy (12 At + hiyy)
<0 and A =-(2eAt/h;,, (h; + h;,,)) - (Mai,j+(1/2)
At /h; + h;,;) <0. Then, all off-diagonal entries of the
coefficient matrix are nonpositive,

(iv) |A7 | = (2eAt/h; (h; + hiy)) = (Ua; j, 1) AtTh; + hyyy)
and  [A]] = (2eAt/hy, (h; + hiy)) + (ua; j, 10)At
h; + hy,;), which implies |A?| > |A]| + |A]|. Since all

th

the rest entries in i row are zero, the matrix is

diagonally dominant

(v) The irreducibility of the matrix can be shown using
directed graph analysis. If the directed graph of
a matrix is strongly connected, then it is irreducible.
One can refer [37] for more about the directed graph.
For the positional i nonzero entry P;, inhibiting the
self-mapping of the diagonal entries, the directed
graph of the tridiagonal coefficient matrix resembles
Figure 1, which is strongly connected, and hence, the
coeflicient matrix is irreducible.

The descriptions i through v satisfy all the hypotheses of
Lemma 10, and then the coeflicient matrix is invertible, and

we guarantee to determine the numerical solution uniquely.
These properties are also verification of the matrix A being
an M-matrix, which is a monotone matrix. The mono-
tonicity of a matrix establishes the discrete maximum
principle. O

Lemma 11. Discrete maximum principle

Given a discrete function, ¢, ; with ¢, ;,py,,;20,Vj =
m+1,...m+M+1 and ¢;;>0,Vi=1,...,N+1 and
Vi=1...,m If ZXNN(¢;)20,Vi=2,...,N and Vj=
m+1,....m+M+1, then ¢;;>0,Vi=1,...,N+1 and
Vji=m,....m+M+1.

Remark 12. Itis also necessary to investigate the assumption
lalluh < 2¢ for the two major cases au? < e and au? > ¢e. In
both cases, h is greater than or equal to 1/N. This com-
parison with the assumption implies (1/N) < (2e/au) which

1S
2 2N
”—gi<—). (44)
e a\ ¢

Considering the first case, au? < ce, there exist N, such
that the assumption (44) holds for all N> N,. More gen-
erally, when (y?/e) — 0 as ¢ — 0, the system (41) con-
verges for all N> N, for some positive integer N,. But for
the other case oqu2 > ce, the assumption 34 holds for some
fortunate large N. That is, when (&/y?) — 0 as y — 0, the
system does not converge.

5.1. Error Bounds. Alike the continuous solution decom-
posed into regular and singular components in Section 3,
(u =v+wy +wyg), the numerical solution can be also
decomposed as U = V + W + Wy, with a similar property,
which is discretely defined as

1
(3$’N)(Vi,j+(1/2)) = Eci,j+(1/2)(Vi,j+1—m + Vi,j—m) + fi,j+(1/2)’ on NN,

Vi JH1/2) = Vijr(1/2)

(gi\i’N)(WL:i,ﬁ(l/z)) = 1Ci,j+(1/z)(WL:i,j+1-m + WL:i,j—m)’

2

WL:i,j+(1/2) = Wrs,jH1/2)>

1
(gi\ij)(WR:i,ﬁ(uz)) = Eci,j+(1/2)(WR:i,j+l—m + WR:i,j—m)’

WRijr1/2) = WRi j+(1/2)>

(45)
on TVM
on GVM
on TV, (40
on GVM
on TNVM w

>
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NYPANYTINYTAR
QU
FIGURE 1: The directed graph of the coefficient matrix.

then the error
U-u=(V=-v)+(W,-w)+(Wg - wp). (48)
The triangle inequality law gives its bound with
U =l WV = vl +[Wy —w ] +|We—wg].  (49)

As we discuss in Section 2, the numerical solution is
intended to compute in the time step of 7 one after the other.
So, the error analysis is performed in two intervals of time,
when O<j<m or te[0,7], and m+1<j<M+1 or
te[r,T].

Case I: When t € [0, 7]

The source function, (f(x,t)) in the right-hand side,
the retarded term as well, is a known function. For this

[gi\j;N] (V - 1]+ (1/2)

case, the analysis is computed as a nondelay differential
equation.

Lemma 13. The singular components of the discrete solution
satisfy

‘(WL)i,j+1/2’ <CN? i= % +1,...
(50)
'(WR)i,j+1/2' <CN?,

Proof. (see [32]).

The evaluation of the error estimate of each component
starts with the truncation error of the components sepa-
rately. The continuous regular component satisfies the
continuous problem (13), and the discrete regular compo-
nent satisfies the discrete problem (45). From differential
equation (6) and difference equation (38), we have

[gS#N]Vl]*(l/Z) [ Q,/IIJN]Vi,ﬁ(l/z)

= [3’ s,ﬂ]vi,ﬁ(l/Z) - [3 Z:’N]Vi»ﬁ(l/z) (51)

0 82 0 0
= [g - 5?]1’,‘,]4(1/2) - 8[@ - 8i]vi,j+(l/2) - P‘“[a_x - 5x] Vi,jH(112)-

Hence, the truncation bound of the regular component is

(v

Similarly, the singular components satisfy the continu-
ous problem (14) and (15) and discrete problem (46) and
(47). Then, we derive

z]+(1/2)>|| C(AlL +£(h +h1+1 ”Vxxxx” +‘“(h +h1+1) "Vxxx“) (52)

”gi\j;N(( L wL)z]+(1/2))H C(At +€(h +h1+1 “wLxxxxH"'.u(h +h1+1 ”wLxxx") (53)

and

||$ (WR wR)lﬁ-(l/Z))” C(At +£(h +hl+l ”waxxx” +/’l(h +h1+1) "waxx") (54)
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Lemma 14. The left layer component satisfies the following
error bound estimate:

||(W —w)”< C[M_2+N_2(lnN)2], ocyZSce,
t H= C[M72+N72(lnN)3], oc/,t22c£.

(55)

International Journal of Mathematics and Mathematical Sciences

Proof. In the left boundary layer region, [0,0,], h;<C.
VEN'InN, ifay? <ceand h; <C(e/u)N~'In N, if ap? > ce.
Applying the derivative bounds, equation (??) of Lemma 5,
the bound of equation (53) gives

’ C—Mf2 + e(\/ENfl lnN)z(sfz) +‘u(\/§N71 lnN)z(s)%/Z)], 04;42 <¢s,
[ Wi-w<q : :
C M2+8(£N1 lnN) (y4s4)+‘u<EN1 lnN) (y383):|, o’ > e,
L 4 4
(56)
[ [, -2 2 o 2
CIM “+N “(InN) <1+\/§>]’ au” <cg,
<1 -
C[M_2+N_2(lnN)2(yze_l)], o’ > ce.
C[M?+N?2(InN)?|, a’<ce,
Considering (u/+/e ) <C, when ay*<¢e and (u/e)<C ”WL—wL”S [ ’ (In.) ] = (58)
In N, when oc‘u2 > ¢e, we arrive C[Mﬁ2 + N2 (In N)3], au” >Ge.

C[M?+N?(InN)’], ap’<ce,

PMN (7 <
| wL)H<{c[M‘2+N’2(lnN)3], ap’ > Ge.
(57)

The stability of discrete scheme implies

|WL - wL| < |WL| +|wL| SC(N2 + exp(

W, —w| SC(N2 + exp(—% <zi/\£_i

Then, taking the supreme, it implies

[W, - w, | <cN2. (60)

Equations (58) and (60) give the result. O

Lemma 15. The right layer component satisfies the following
error bound estimate:

C[M’2 + N2 (lnN)z], ocyz <gs,

“(WR - wR)“ = {

C[M_2 +N(In N)Z], oc/,tz > Ge.
(61)

But out of the left boundary layer region, [o,,1 — 0,]U
[1 - 0,,1], the absolute error can be calculated using the
triangle inequality rule and the bounds of individual
components in Lemmas 4 and 13.

_% x>) SC(NZ + exp(—%(ﬁ)),

(59)

N +N74).

1nN))>gc(

Proof. In the right boundary layer region, [1 -o0,,1] , if
ap® <ge, then h;<+eN~'InN. Otherwise, h; < (1/u)N~!
InN. The derivative bounds of Lemma 3, singular com-
ponents bounds of Lemma 4, Lemma 13, and the bound of
equation (54) with a similar argument to that of Lemma 14
implies the result. O

Lemma 16. The regular component satisfies the following
error bound estimate:
C[M_2+N_2(lnN)2], cxyzgcs,
IV - )l < Lo (62)
C[M + N “(InN) ], au” >ge.
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Proof. In the left boundary layer region, [0, 0,], the uniform
mesh size, h;<C+eN 'InN if ay?<ce or h;<C(e/p)
N 'InN if au*>ce. Applying the derivative bounds of
Lemma 3, the bound of equation (60) becomes

' C[M‘2 +e(veN"InN) +u(VEN"In N)z], a’ < ce,
|z & == -

2 2
C[M‘2 + a(fN‘1 In N) (82 + ys) + y(fN‘1 In N) (£)], o’ > e,
{ H [

( C[M_2+82N_2(lnN)2+M£N_2(lnN)2], ocyzscs,
(63)
< <
C|:M2 + (e +eu) %Nfz (InN)* + ‘usiszz (lnN)z], 0(;42 > ge,
u I
( C[M_2 + N2 (lnN)z], 04142 <ge,
< <
{ C[Mf2 + N %(In N)z], ocyz >ce.
Considering the right boundary layer region, [1 — 05, 1],
the uniform mesh size, h;<C+eN"'InN if apy®<ce or
h; <CuN~'In N if au?® > ge. We write the bound of equation
(60) as
|5 v ) C[M™?+&N7(InN)* + ueN~* (In N)*, ay’ < ¢,
., (V-v)|<
* C[Mﬁ2 +(e+ ‘u)[,tszz (InN)* + ‘u3N72 (In N)Z], (xyz >ce,
(64)
C[M_2 + N2 (lnN)z], oc[,tz <ge,
<
C[M’2 +N*? (lnN)z], o’ > ce.
The outer boundary layer region, [o,,1 — 0,] the mesh
size, h; < C(2/N?), then
” N ” C[M72+8N72+‘1/LN72], ocyZSgs,
L (V=v)<
o C[M_2 +(e+WU’N+ s‘uN_Z], o’ > e,
(65)

C[M’2+N72], OC‘quCS,
<
- C[M_2+N_2], ocy22ce.
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Combining the three spatial interval cases and applying
the maximum principle, we arrive at the required result.

Case II: When t € (7,T)

International Journal of Mathematics and Mathematical Sciences

In this case, the approximated values are involved on
the right-hand side. Then, the error propagated in these
time intervals must be shown, not magnified. We
consider the left singular components as

"“?MN Wi =wg) = €gena( W jorm = (00 (% toiom)) + W) = (w0 (5 t]'—m)))” (66)
<[ 22N (W, — wy)| + Wy - wy.
— -2 2 -2
By Lemma 14, llu = Ul SC(N (InN)"+M ) (68)
< CIMZ+ NZ(nNY'), ap’<ce, (67) © Numerical Results and Discussion
S| C[MP N (InNY], a2 e

Similar arguments can be given for the right layer and
outer layer bounds, then Lemma 14 through 16 holds
for the whole domain [0, 1] x [0, T). We conclude by
the following theorem. O

Theorem 17. The fitted mesh scheme (38) is €, y— uniformly
convergent under the condition ay® < ce. The exact solution, u
of problem (3) and (4) and approximate solution, U of
problem (41) and (42), satisfies the following error estimate.

2

_88_1: (x,t) —pu(x+ 1)
X

ot

subjected to the initial and boundary conditions

u(x,t)=0, V(x,t)e (0,1)x(-1,0],
u(0,t) =0, Vte(0,2], (70)
u(l,t) =0, Vte(0,2].
o’u
—s—z(x,t)—‘u(1+x(1—x)+t)
X

=u(x,t-1)-x(1 —x)(et - 1),

subjected to the initial and boundary conditions

u(x,t) =0, V(x,t)e (0,1)x(-1,0],
u(0,t) =0, Vte(0,2], (72)
u(l,t) =0, Vte(0,2].

(x,t)+u(x,t)+a—— u(x,t

Two examples are adopted from [31] for the numerical
experiment. Numerical solutions, maximum error estimates,
convergence rates, and comparison with prior literature are
demonstrated for particular perturbation parameters and
mesh grids in graphs and tables.

Example 1

—1)-16x"(1-x)* (x1) € (0,1) x(0,2], (69)
Example 2
a— (x,t) + (1 + 5xt)u(x,t) +a_u
ot (71)

(x,t) € (0,1) x(0,2].

Graphs of numerical solutions applying the developed
scheme (41) and (42) for & u = {107 '%,107%°} are shown in
Figures 2 and 3.

The exact solutions of the considered examples are not
known. So, the point-wise error estimate and rate of con-
vergence of the proposed scheme are computed using the
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TaBLE 1: The error estimate (EQ’[;M) of Example 1, for e = 1072,

| N=16 32 64 128 256 512 1024

“ M =16 32 64 128 256 512 1024

10713 7.7415¢ — 04 1.9296¢ — 04 4.8221e-05 1.2062¢ - 05 3.0137¢ - 06 1.0266¢ — 06 1.1551e - 06
10-14 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2062¢ - 05 3.0137¢ - 06 1.0266¢ — 06 1.1551e - 06
1015 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2062¢ - 05 3.0135¢ - 06 7.5339¢ - 07 1.8835¢ - 07
1016 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2055¢ — 05 3.0135¢ - 06 7.5339¢ - 07 1.8835¢ - 07
10-% 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2055¢ — 05 3.0135¢ - 06 7.5339 — 07 1.8835¢ — 07

TaBLE 2: The error estimate (ES;M) of Example 1, for u = 102,

ol N=16 32 64 128 256 512 1024

M =16 32 64 128 256 512 1024
1013 7.7415¢ — 04 1.9296¢ — 04 4.8221e-05 1.2062¢ - 05 3.0137¢ - 06 1.0266¢ — 06 1.1551e - 06
10714 7.7415¢ — 04 1.9296¢ — 04 4.8221e-05 1.2062¢ — 05 3.0137¢ - 06 1.0266¢ — 06 1.1551e - 06
1015 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2062¢ - 05 3.0135¢ - 06 7.5339¢ - 07 1.8835¢ - 07
10716 7.7415¢ - 04 1.9296¢ — 04 4.8221e-05 1.2055¢ — 05 3.0135¢ - 06 7.5339¢ - 07 1.8835¢ - 07
10°% 7.7415¢ — 04 1.9296¢ — 04 4.8221e-05 1.2055¢ — 05 3.0135¢ - 06 7.5339¢ - 07 1.8835¢ — 07

TasLE 3: The maximum error estimate (EN*) and rate of convergence (RNM) of Example 1, for 1074 <¢,u <1071,

N =16 32 64 128 256 512 1024

M =16 32 64 128 256 512 1024
EN-M 7.7415e - 04 1.9296e - 04 4.8221e-05 1.2055e - 05 3.0135e- 06 7.5339¢ - 07 1.8835e—-07
RNM 2.0043 2.0011 2.0006 2.0001 2.0000 2.0000

Bold values emphasize that it concludes the rate of convergence for any small parameter.

TaBLE 4: The error estimate (EQ’[;M) of Example 2, for £ = 10~ 2.

! N =16 32 64 128 256 512 1024

“ M =16 32 64 128 256 512 1024

1071 1.7681e - 04 4.6676e - 05 1.2005e - 05 3.0402¢ - 06 7.6487e¢—-07 1.9194e - 07 4.7846e - 08
10~ 1.7681e - 04 4.6676e - 05 1.2005e - 05 3.0402¢ - 06 7.6487¢-07 1.9194e - 07 4.7846e - 08
1071 1.7681e — 04 4.6676e—05 1.2005e - 05 3.0402e - 06 7.6487e - 07 1.9194e - 07 4.7846e—-08
10716 7.7415e - 04 1.9296e - 04 4.8221e-05 1.2055e - 05 3.0135e-06 7.5339¢ - 07 1.8835e—-07
10740 1.7681e — 04 4.6676e - 05 1.2005e - 05 3.0402¢ - 06 7.6487e¢—-07 1.9194e - 07 4.7846e - 08

TasLe 5: The error estimate (EN;*) of Example 2, for u = 107

el N =16 32 64 128 256 512 1024
M =16 32 64 128 256 512 1024
1013 1.7711e — 04 4.6789¢ - 05 1.2204e - 05 3.2870¢ — 06 1.6105¢ — 06 1.6182¢ - 06 1.6210¢ — 06
1014 1.7711e - 04 4.6789¢ - 05 1.2204e - 05 3.2870e — 06 1.6105¢ — 06 1.6182¢ - 06 1.6210¢ — 06
10715 1.7691e — 04 4.6712¢-05 1.2068¢ — 05 3.0994¢ — 06 8.5175¢ — 07 5117307 2.0322¢ - 07
10716 1.7684¢ — 04 4.6687¢-05 1.2025¢ - 05 3.0559 — 06 7.8390¢ — 07 2.2347¢-07 5.8863¢ — 08
1040 1.7681e — 04 4.6676¢ - 05 1.2005¢ — 05 3.0402¢ — 06 7.6487¢ — 07 1.9194¢ — 07 4.783¢-08
double mesh principle. For each perturbation parameter ¢ N.M _ 7
prnep ) b NP E, = _ max |Ui,j - U2i—1,2j—1|’ (73)
and y, we set numerical solutions U, ; on a grid mesh M x N 1<i<N1<j<M

and U;; on a doubled grid mesh 2M x 2N. The error es-
timate of the numerical solution on the discrete parameters

N and M, ENM is RN =log,(Ex,™) - log,(EZ™™). (74)

and the corresponding rate of convergence, Rﬁ;N is given as
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TaBLE 6: The maximum error estimate (EN*) and rate of convergence (RNM) of Example 2, for 104 <¢,u <1071,

N =16 32 64 128 256 512 1024

M =16 32 64 128 256 512 1024
EN-M 1.7681e - 04 4.6676e — 05 1.2005e - 05 3.0402¢ - 06 7.6487e¢—-07 1.9194e - 07 4.783e—-08
RNM 1.9215 1.9591 1.9814 1.9909 1.9946 1.9989

Bold values emphasize that it concludes the rate of convergence for any small parameter.

10 B B B B HIB H B K 10"
10
10°
102
S 104}t S - ST
5 S0 b N s e s
£ =)
3 =]
E E o
S -5
8 1050 5
= =
10°¢
10°
107
107 i 10 i
10! 102 10° 10! 102 10°
Nnumber of Mesh Number of Mesh
- pu=10"&e=10" —— pu=10" & e=10 - u=10"&e=10%" —— u=10" & e=10"
o u=10% & e=10"—— o(N) o p=10&e=10""— o(N)

(a) (b)

FIGURE 4: Logarithmic scaled graphs of maximum error versus number of meshes: (a) Example 1 and (b) Example 2.

TaBLE 7: Comparison of the error estimate (EQ’[;M ) and rate of convergence (RZ;M ) of Example 1, for e = 107* and y = 107°.

Method M s 128
ENM 4.3817¢ - 02 1.670e — 02 7.4019¢ — 03 3.7490e - 03 1.9008¢ — 03
321 RYM 1.3875 1.1784 0.9804 0.9798
ERM 1.4464¢ — 02 5,6157¢ — 03 2.0072¢ - 03 6.3177¢ — 04 1.8123¢ - 04
53] RYM 1.3649 1.4843 1.6677 1.8016
ENM 1.9854¢ — 02 1.0658e — 02 5.5313¢— 03 2.8189¢ — 03 1.4231e-03
B4 6=1 RYM 0.8924 0.9463 0.9725 0.9861
ENM 1.4517e—03 3.6060¢e — 04 9.0006¢ — 05 2.2492¢ - 05 5.6226¢ — 06
B4, 0= (72) RYM 2.0092 2.0023 2.0007 2.0001
The present ENM 3.0452¢ - 02 1.9312¢ - 04 4.8256¢ - 05 1.2064¢ - 05 3.0158¢ - 06
RNM 7.3009 2.0007 2.0001 2.0000
The maximum absolute error, ENM, and the corre- ENM _ ax { EN-M }’
sponding rate of convergence, RMN, when both ¢ and u O<gp<1l K (75)

mutually tend to zero are defined by RMN _ logz( EN,M) _ logz( EZN,ZM).
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The error estimate and rate of convergence of nu-
merical solution of the test problems using the given
scheme (41), with the considered conditions, fixing one of
the perturbation parameters and reducing the other are
tabulated in Tables 1 and 2. Table 3 illustrates the max-
imum error estimate and the corresponding rate of
convergence of Example 1. A similar illustration is given
through Tables 4-6 for Example 2. The maximum point-
wise error decreases uniformly as the number of meshes
increase irrespective of perturbation parameters’ values
with the second order of convergence which is expected
from our theoretical result in the previous section. The
logarithmic scaled graph in Figure 4 strengthens the
predicted convergence rate.

The numerical solution in [34] compared the error and
convergence rate of problem 1, when e = 10"* and y = 10°
for mesh grid 64 <N = 4M <512, with the prior literature
results of [32, 33]. We also include our numerical out comes
in comparison with these prior results in Table 7.

7. Conclusion

In this study, a numerical method is developed to resolve
a one-dimensional parabolic problem with a long time
delay and two singularly perturbed parameters. Diffusion
and convection terms are multiplied by the perturbation
parameters. But we take into account areas where the
diffusion term predominates. In the time and spatial
dimensions, uniform mesh and piece-wise uniform
Shishkin mesh discretization are used, respectively. The
Crank-Nicolson method is used to formulate the nu-
merical scheme on two successive time steps, and average
central finite differences are used to approximate the
spatial derivatives. Under the premise of diffusion-
dominant problems (ap*<g¢e), we computationally
showed that the approach is uniformly convergent, in-
dependent of perturbation parameters. We also validated
the numerical solutions of the governing equation by
solving two test problems. The maximum point-wise
error decreases uniformly independent of perturbation
parameters with almost the second order of convergence
as the number of meshes doubles, which aligns with the
theoretical analysis. The logarithmic scaled graphs in
Figure 4 demonstrate the same convergence rate. Al-
though we restrict the method to convective-dominated
problems, the formulated scheme is more accurate and
efficient compared to numerical methods that exist in
prior literature. We focus on diffusion-dominant and
one-dimensional problems; one can extend this work to
two-dimensional problems and study the other case,
conviction-dominant problems.
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