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Hom–Lie algebras are generalizations of Lie algebras that arise naturally in the study of nonassociative algebraic structures. In this
paper, the concepts of solvable and nilpotent Hom–Lie algebras are studied further. In the theory of groups, investigations of the
properties of the solvable and nilpotent groups are well-developed. We establish a theory of the solvable and nilpotent Hom–Lie
algebras analogous to that of the solvable and nilpotent groups. We also provide examples to illustrate our results and discuss
possible directions for further research.
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1. Introduction

Te study of solvable and nilpotent groups has a long and
rich history that dates back to the early days of group theory.
Te frst examples of solvable groups were discovered by
Évariste Galois in the 19th century, who used them to study
the roots of polynomial equations. In the early 20th century,
Camille Jordan and Felix Klein introduced the modern
defnitions of solvable and nilpotent groups, respectively.

In the mid-20th century, the theory of solvable and
nilpotent groups gained importance in the context of fnite
group theory, particularly in the classifcation of fnite
simple groups. Te classifcation theorem for fnite simple
groups, completed in 1983, relies heavily on the theory of
solvable and nilpotent groups.

In the latter half of the 20th century, the study of solvable
and nilpotent groups expanded to include infnite groups and
their applications in geometry, topology, and number theory.
Notable contributions include the work of John Milnor on the
homology of solvable Lie groups and the study of nilpotent Lie
algebras in the context of algebraic geometry and string theory.

Today, the theory of solvable and nilpotent groups re-
mains an active area of research, with connections to a wide
range of felds in mathematics and physics. Researchers

continue to explore the deep connections between these
groups and other areas of mathematics, paving the way for
new insights and discoveries in the years to come.

Tere is a close relationship between solvable and nil-
potent groups and solvable and nilpotent Lie algebras. In
fact, the concepts of solvable and nilpotent Lie algebras were
developed specifcally to study the structure of solvable and
nilpotent Lie groups.

Given a Lie group, one can associate a Lie algebra to it by
considering the tangent space at the identity element. Tis
Lie algebra inherits many of the properties of the original
group, including its solvability and nil potency.

More specifcally, a Lie group is solvable if and only if its
Lie algebra is solvable. Similarly, a Lie group is nilpotent if
and only if its Lie algebra is nilpotent.

Te correspondence between Lie groups and Lie algebras
also allows for the translation of many results between the
two contexts. For example, the Lie–Kolchin theorem states
that a solvable algebraic group over an algebraically closed
feld has a triangular matrix representation. Tis result can
be translated into the language of Lie algebras to obtain
a similar statement for solvable Lie algebras.

Overall, the study of solvable and nilpotent groups and
Lie algebras is intimately connected, with each providing

Hindawi
International Journal of Mathematics and Mathematical Sciences
Volume 2023, Article ID 6633715, 9 pages
https://doi.org/10.1155/2023/6633715

https://orcid.org/0000-0002-5950-943X
mailto:shadi.s@yu.edu.jo
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6633715


insights into the other.Tis relationship has led to signifcant
advances in both areas of mathematics, as well as applica-
tions in physics and other felds.

Te Hom–Lie algebras which are generalizations of
classical Lie algebras were constructed by Hartwig et al. [1] in
2006. Ten, many mathematicians have been trying to ex-
tend known results in the setting of Lie algebras to the setting
of Hom–Lie algebras (see e.g., [2–5]). Hom–Lie algebras
have received a lot of attention lately because of their close
connection to discrete and deformed vector felds and dif-
ferential calculus [1].

In the present article, we study solvable and nilpotent
Hom–Lie algebras, which can be viewed as an extension of
solvable and nilpotent Lie algebras [6–9].

2. Preliminaries

Te following is a defnition from [1] with F denoting
a ground feld.

Defnition 1 (see [1]). A Hom–Lie algebra over F is a triple
(L, [, ], α) consisting of a vector space L over F, a linear map
α: L⟶ L, and a bilinear map [, ] : L × L⟶ L (called
a Hom–Lie bracket), which satisfes the following two
conditions:

(i) Skew-symmetry property: [x, y]� − [y, x] for all
x, y ∈ L

(ii) Hom–Jacobi identity: [α(x), [y, z]] + [α(y), [z, x]]

+[α(z), [x, y]]� 0, for all x, y, z ∈ L

If α([x, y]) � [α(x), α(y)] holds for all x, y ∈ L, then
the Hom–Lie algebra (L, [, ], α) is referred to as
multiplicative.

We consider two Hom–Lie algebras (L1, [, ]1, α1) and
(L2, [, ]2, α2) and defne a linear map φ: L1⟶ L2. If φ
satisfes the following two conditions, then it is called
a morphism of Hom–Lie algebras:

(i) φ([x, y]1) � [φ(x), φ(y)]2 for all x, y ∈ L1

(ii) φ ∘ α1 � α2φ

If φ: L1⟶ L2 is a bijective morphism of Hom–Lie
algebras, it is referred to as an isomorphism of Hom–Lie
algebras. In this case, we say L1 and L2 are isomorphic and
write L1 � L2.

Furthermore, a subspace H of L is called a Hom–Lie
subalgebra if α(x) ∈ H and [x, y] ∈ H for all x, y ∈ H. If
[x, y] ∈ H holds for all x ∈ H and y ∈ L, then H is called
a Hom–Lie ideal.

Example 1 (see [1]). Every Lie algebra can be considered as
a Hom–Lie algebra by taking α as the identity map, i.e.,
α � idL.

Example 2. Consider a vector space L over F, equipped with
an arbitrary skew-symmetric bilinear map [, ] : L × L⟶ L,
and let α: L⟶ L denote the zero map. It follows
straightforwardly that (L, [, ], α) forms a Hom–Lie algebra
with multiplication.

Example 3 (see [1]). Let L be a vector space and α: L⟶ L

be any linear operator. Ten, (L, [, ], α) is a Hom–Lie al-
gebra, where [x, y]� 0 for all x, y ∈ L. Such Hom–Lie al-
gebras are referred to as abelian (commutative) Hom–Lie
algebras.

Example 4 (see [6]). Suppose (L1, [, ]1, α1), (L2,

[, ]2, α2), . . . ,(Ln, [, ]n, αn) are Hom–Lie algebras. Ten, the
direct sum (L1 ⊕ L2 ⊕ · · · ⊕ Ln, [, ], α1 + α2 + · · · + αn) is also
a Hom–Lie algebra, where the Hom-bracket operation [, ] is
defned by the following expression:

[, ] : L1 ⊕ L2 ⊕ · · · ⊕ Ln( 􏼁 × L1 ⊕ L2 ⊕ · · · ⊕ Ln( 􏼁⟶ L1 ⊕L2 ⊕ · · · ⊕ Ln( 􏼁,

x1, . . . ,xn( 􏼁, y1, . . . ,yn( 􏼁( 􏼁 ↦ x1, y1􏼂 􏼃1, . . . , xn, yn􏼂 􏼃n( 􏼁,

(1)

and the linear operator is defned as follows:

α1 + α2 + · · · + αn( 􏼁: L1 ⊕ L2 ⊕ · · · ⊕Ln( 􏼁⟶ L1 ⊕ L2 ⊕ · · · ⊕Ln( 􏼁,

x1, x2, . . . , xn( 􏼁. ↦ α1 x1( 􏼁, α2 x2( 􏼁, . . . ,αn xn( 􏼁( 􏼁.

(2)

Example 5 (see [2]). Let F� C be the feld of complex
numbers. Consider the vector space C2 and defne the linear
map

α∗: C
2⟶ C

2
; (x, y)↦ (− y, − x). (3)

We defne the bilinear map [, ]∗: C
2 × C2⟶ C2, where

x1, x2( 􏼁, y1, y2( 􏼁􏼂 􏼃∗ � i x1y2 − x2y1( 􏼁, i x1y2 − x2y1( 􏼁( 􏼁.

(4)

Ten, (C2, [, ]∗, α∗) is a multiplicative Hom–Lie algebra.

Example 6 (see [2]). Consider the set

L �

i(x + y)

2
x

y
− i(x + y)

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

| x, y ∈ C

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (5)

with the linear map

α: L⟶ L; A↦ − A
T
, (6)

and the skew-symmetric bilinear map

[, ] : L × L⟶ L; (A, B)↦ [A, B], (7)

where [A, B] � ATBT − BTAT. Ten, (L, [, ], α) is a multi-
plicative Hom–Lie algebra.

Example 7. We can make (R[x], [, ], α) a Hom–Lie algebra,
where R[x] is the vector space of polynomials with co-
efcients in R, and α: R[x]⟶ R[x] is the linear map
defned by α(p(x)) � p(0) for any p(x)∈ R[x]. We defne
[p(x), q(x)] for any p(x), q(x)∈ R[x] by the following
expression:
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[p(x), q(x)] � p″(x)q′(x) − q″(x)p′(x) − p″(0)q′(0) + q″(0)p′(0). (8)

It can be verifed that [·, ·] is antisymmetric and satisfes
the Hom–Jacobi identity, which makes (R[x], [, ])

a Hom–Lie algebra. Indeed, if p(x), q(x)∈ R[x], then

[p(x), q(x)] � p″(x)q′(x) − q″(x)p′(x) − p″(0)q′(0) + q″(0)p′(0)

� − q″(x)p′(x) − p″(x)q′(x) − q″(0)p′(0) + p″(0)q′(0)( 􏼁

� − [q(x), p(x)].

(9)

For p(x), q(x), h(x) ∈ R[x], then one can easily see that

[α(h(x)), [p(x), q(x)]] � h(0), p″(x)q′(x) − q″(x)p′(x) − p″(0)q′(0) + q″(0)p′(0)􏼂 􏼃 � 0. (10)

Tus, for each p(x), q(x), h(x) ∈ R[x], we have the
following expression:

[α(h(x)), [p(x), q(x)]] +[α(p(x)), [q(x), h(x)]] +[α(q(x)), [h(x), p(x)]] � 0. (11)

Also,

α([p(x), q(x)]) � p″(0)q′(0) − q″(0)p′(0) − p″(0)q′(0) + q″(0)p′(0)

� 0

� [p(0), q(0)]

� [α(p(x)), α(q(x))].

(12)

It is clear that (R[x], [, ]) is not a Lie algebra, since

x
3
, x

4
, x

2
􏽨 􏽩􏽨 􏽩 + x

2
, x

3
, x

4
􏽨 􏽩􏽨 􏽩 + x

4
, x

2
, x

3
􏽨 􏽩􏽨 􏽩 � 96x

3 ≠ 0.

(13)

Example 8 (see [7]). Let (L, [, ], α) be a Hom–Lie algebra
and let H be a Hom–Lie ideal. Ten, the quotient space
(L/H, [, ], α) is a Hom–Lie algebra, where

[, ]:
L

H
×

L

H
⟶

L

H
; (x + H, y + H)↦ [x, y] + H, and

α:
L

H
⟶

L

H
; x + H↦ α(x) + H.

(14)

Consider H and K as Hom–Lie ideals in a Hom–Lie
algebra L. We defne the sum of H and K as the set H + K,
where H + K � h + k | h ∈ H, k ∈ K{ }. Moreover, we defne
the multiplication of H and K as the span of the set of all
possible commutators between H and K, denoted as [H, K].
Tus,

[H, K] � Span( [h, k] | h ∈ H and k ∈ K{ }). (15)

Te following theorem, as presented in the publication
by Casas et al. [7], lacks a formal proof.

Theorem 2 (see [7]). Let H and K be Hom–Lie ideals of
a multiplicative Hom–Lie algebra (L, [, ], α). Ten,

(i) [H, K] is a Hom–Lie subalgebra of L
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(ii) [H, K] is a Hom–Lie ideal of H and K, respectively
(iii) [H, K] is a Hom–Lie ideal of L when α is onto

Proof

(i) Let [h, k] ∈ [H, K], where h ∈ H and k ∈ K. Ten,
α[h, k] � [α(h), α(k)] ∈ [H, K]. To demonstrate
closure of multiplication under [H, K], we consider
[h1, k1] and [h2, k2] in [H, K] with h1, h2 ∈ H and
k1, k2 ∈ K. Since [h1, k1] ∈ H and [h2, k2] ∈ K, it
follows that [[h1, k1], [h2, k2]] ∈ [H, K].

(ii) It should be noted that [H, K]⊆H∩K⊆H, as
stated in (i). Tis implies that [H, K] is a Hom–Lie

subalgebra of both H and K. Furthermore, if
h, y ∈ H and k ∈ K, then [h, k] ∈ K, and conse-
quently [y, [h, k]] ∈ H. Tus, [H, K] is a Hom–Lie
ideal of H. Similarly, [H, K] is also a Hom–Lie ideal
of K.

(iii) As per (i), [H, K] is a Hom–Lie subalgebra of L.
Terefore, it sufces to prove that [z, y] ∈ [H, K]

whenever z ∈ [H, K] and y ∈ L. Let h ∈ H, k ∈ K,
and y ∈ L. Since y � α(x) for some x ∈ L, it follows
that [x, h], α(h) ∈ H and [k, x], α(k) ∈ K. Hence,

[y, [h, k]] � [α(x), [h, k]] � − [α(h), [k, x]] − [α(k), [x, h]] ∈ [H, K]. (16)

Te subsequent example demonstrates that Teorem 2
(iii) is invalid if α is not a surjective map. □

Example 9. Consider the multiplicative Hom–Lie algebra
(L, [, ], α), where L is a vector space over F with basis
e1, e2, e3, e4. Te map α is the zero map, and [,] is a skew-
symmetric bilinear map defned as follows:

e1, e2􏼂 􏼃 � e1, e3􏼂 􏼃

� e2, e3􏼂 􏼃

� e2, e4􏼂 􏼃

� e3, e4􏼂 􏼃

� e1, e1, e4􏼂 􏼃

� e2,

(17)

and [ei, ei]� 0 for all i � 1, 2, 3. Let H� Span(e1, e2, e3) and
K � Span(e1, e2). It can be observed that H and K are
Hom–Lie ideals of L. However, [H, K] � Span(e1) is not
a Hom–Lie ideal of L, as [e1, e4] � e2 ∉ Span(e1). Tis ex-
ample illustrates thatTeorem 2 (iii) does not hold when α is
not onto.

Example 10 (see [2]). Let (L, [, ], α) be a Hom–Lie algebra
andH be a Hom–Lie ideal. Ten, (L/H, [, ], α) is a Hom–Lie
algebra and the linear map

π : L⟶
L

H
;

x↦x + H,

(18)

is a morphism of Hom–Lie algebras.

3. Solvable Hom–Lie Algebra

Let (L, [, ], α) be a Hom–Lie algebra. Te sequence of
Hom–Lie subalgebras L1, L2, . . . ,Ln . . . such that

L � L0 ⊇L1 ⊇ · · · ⊇ Ln ⊇ · · ·. (19)

is called a descending series.

Defnition 3 (see [8]). Let (L, [, ], α) be a multiplicative
Hom–Lie algebra. We defne, L(i)􏼈 􏼉, i≥ 0, the derived series
of L by the following expression:

L
(0)

� L,

L
(1)

� [L, L],

L
(i)

� L
(i− 1)

, L
(i− 1)

􏽨 􏽩, i≥ 2.

(20)

Note that L(i) � [L(i− 1), L(i− 1)] is a Hom–Lie ideal of
L(i− 1) (by induction and Teorem 2 (ii)).

L � L
(0) ⊇L

(1) ⊇ · · · ⊇L
(i− 1) ⊇ L

(i)
· · · . (21)

Tus, the derived series is a descending series.

Defnition 4 (see [8]). A multiplicative Hom–Lie algebra
(L, [, ], α) is said to be solvable if there exists n∈ N such that
L(n) � 0{ }. We say L is solvable of class k if L(k) � 0{ } and
L(k− 1) ≠ 0{ }.

Clearly a multiplicative Hom–Lie algebra is solvable of
class ≤ k if L(k) � 0{ }. Metabelian Hom–Lie algebras are the
same as in the case of Lie algebras [9] which are the solvable
Hom–Lie algebras of class at most 2.

Example 11. Let L be the space spanned by a basis
e1, e2, . . . ,en􏼈 􏼉 (n≥ 5) over F. Consider the multiplicative
Hom–Lie algebra (L, [, ], α) where α is the zero map and [, ]

is the skew-symmetric bilinear map such that [ei, ej] � 0 if
i � j or i � 1 and [ei, ej] � ei− 1 if 1< i< j≤ n. Note that
[e2, [e4, e5]] + [e4, [e5, e2]] + [e5, [e2, e4]] � e1 ≠ 0. Tus, L is
not a Lie algebra.

Now, L(1) � [L, L] � Span( e1, e2, . . . ,en− 2􏼈 􏼉)

L(2) � [L(1), L(1)] � Span( e1, e2, . . . ,en− 4􏼈 􏼉)
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⋮
L(i)� Span( e1, e2, . . . , en− 2i􏼈 􏼉), i< n/2

If n is even, then L(n/2− 1)� Span( e1, e2􏼈 􏼉) and L(n/2) � 0{ }.
Tus, L is a solvable Hom–Lie algebra of class n/2. If n is odd,
then L(n− 1/2)� Span( e1􏼈 􏼉) and L(n+1/2) � 0{ }. Tus, L is
a solvable Hom–Lie algebra of class n + 1/2.

Defnition 5. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra.Ten, the descending series L � L0 ⊇L1 ⊇ . . . ⊇ Ln �

0{ } is called a solvable series if for each i, we have Li+1 which
is a Hom–Lie ideal of Li and Li/Li+1 is an abelian Hom–Lie
algebra.

Lemma 6. Let H be a Hom–Lie subalgebra of the Hom–Lie
algebra (L, [, ], α). Ten, H is a Hom–Lie ideal of L and L/H
is a abelian Hom–Lie algebra if and only if [L, L]⊆H.

Proof. If L/H is an abelian Hom–Lie algebra, then for any
[x, y] ∈ [L, L], we fnd H � [x + H, y + H] � [x, y] + H.
Terefore, [x, y] ∈ H. Conversely, if [L, L]⊆H, then
[x, y] ∈ H for all x ∈ H(⊆L) and y ∈ L, which implies H is
a Hom–Lie ideal of L. Also, for any x, y ∈ L, we have
[x + H, y + H] � [x, y] + H � H (because [x, y] ∈ [L, L]

⊆H). □
Corollary  . Let (L, [, ], α) be a Hom–Lie algebra. Ten, the
descending series L � L0 ⊇L1 ⊇ . . . ⊇ Ln � 0{ } is solvable if
and only if [Li, Li]⊆ Li+1 for each i� 0, 1, . . . , n− 1.

Proof. Tis follows directly from Defnition 5 and
Lemma 6. □
Theorem 8. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. Ten, (L, [, ], α) is a solvable Hom–Lie algebra of
class ≤k if L � L(0) ⊇ L(1) ⊇ · · · ⊇ L(k) � 0{ } is a solvable
series.

Proof. Tis follows directly from the defnition of the de-
rived series and the corollary above. □

Theorem 9. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. If L � L0 ⊇ L1 ⊇ · · · ⊇Ln � 0{ } is a solvable series,
then for each i, L(i) ⊆ Li.

Proof. We use induction. For k� 0, we have L(0) � L � L0.
For k> 0 and because of the induction assumption, we have
L(k+1) � [L(k), L(k)]⊆ [Lk, Lk]⊆ Lk+1. Now, according to
Corollary 7, we have [Lk, Lk]⊆ Lk+1. Terefore,
L(k+1) ⊆Lk+1. □
Theorem 10. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra.Ten, L is solvable of class ≤k if and only if there exists
a solvable series of length k.

Proof. If L is a solvable Hom–Lie algebra of class ≤k, then,
using Teorem 8, the series L � L(0) ⊇L(1) ⊇ . . . ⊇ L(k) � 0{ }

is solvable. Conversely, suppose that

L � L0 ⊇ L1 ⊇ · · · ⊇Lk � 0{ }, (22)

is a solvable series. Ten, using L(k) ⊆Lk � 0{ }, we fnd
L(k) � 0{ }. □

Corollary 11. Solvable Hom–Lie algebras of class 1 are the
abelian Hom–Lie algebras.

Proof. L is solvable of class 1 if there exists a solvable series
L � L0 ⊇ L1 � 0{ } of length 1 if L/ 0{ } is abelian Hom–Lie
algebra if L is abelian Hom–Lie algebra. □

Theorem 12. Let ϕ: (L1, [, ]1, α1)⟶ (L2, [, ]2, α2) be
a morphism of multiplicative Hom–Lie algebras. Ten,

(i) (ϕ(L1))
(i) � ϕ(L

(i)
1 )

(ii) If L1 is solvable of class k, then ϕ(L1) is solvable of
class ≤k

(iii) If ϕ is an isomorphism of Hom–Lie algebras, then L1
is solvable of class k if and only if L2 is solvable of
class k

Proof

(i) By applying induction, we fnd (ϕ(L1))
(0)

� ϕ(L1) � ϕ(L
(0)
1 ). Also, if (ϕ(L1))

(i) � ϕ(L
(i)
1 ),

then (ϕ(L1))
(i+1) � [(ϕ(L1))

(i), (ϕ(L1))
(i)] �

[ϕ(L
(i)
1 ), ϕ (L

(i)
1 )] � ϕ([L

(i)
1 , L

(i)
1 ]) � ϕ(L

(i+1)
1 ).

(ii) Since L1 is solvable of class k, it follows L
(k)
1 � 0{ }.

So, (ϕ(L1))
(k) � ϕ(L

(k)
1 ) � ϕ(0)� 0. Tus, ϕ(L1) is

solvable of class ≤k.
(iii) Using (ii) we may assume that L1 and L2 are

solvable of classes k and m, respectively. Again by
(ii) we have m≤ k. Also, since ϕ− 1 is an iso-
morphism of Hom–Lie algebras, then L1 � ϕ− 1(L2)

is solvable of class ≤m; that is k≤m. Tus,
k � m. □

Example 12. Te Hom–Lie algebras (L, [, ], α) (Example 6)
and (C2, [, ]∗, α∗) (Example 5) are isomorphic Hom–Lie
algebras. Since

ϕ: L⟶ C
2
;

i(x + y)

2
x

y
− i(x + y)

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

↦ (x, y), (23)

is an isomorphism Hom–Lie algebra ([2]). Now,
(C2)(1) � [C2,C2]∗ � (x, x); x∈ C{ }, and (C2)(2) �

[(C2)(1), (C2)(1)]∗ � 0{ }. Tus C2 is a solvable Hom–Lie
algebra of class 2. Also, L is a solvable Hom–Lie algebra of
class 2.

Lemma 13. Let (L, [, ], α) be a multiplicative Hom–Lie al-
gebra and H be a Hom–Lie subalgebra of L. Ten, H(i) ⊆ L(i),
for each i∈ N.

Proof. Clearly, H(0) ⊆L(0). Using induction, if H(i) ⊆L(i),
then H(i+1) � [H(i), H(i)]⊆ [L(i), L(i)] � L(i+1). □
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Theorem 14. Let (L, [, ], α) be a solvable Hom–Lie algebra of
class k. Ten,

(i) Any Hom–Lie subalgebra is solvable of class ≤k
(ii) Any quotient Hom–Lie algebra of L is solvable of class
≤k

Proof

(i) Let H be a Hom–Lie subalgebra. Ten, H is mul-
tiplicative (because L is multiplicative). Also,
according to the lemma above, we have
H(k) ⊆L(k) � 0{ }. Tus, H(k) � 0{ }.

(ii) Let I be a Hom–Lie ideal of L. Ten, so is L/I
(because L is multiplicative). Consider the natural
map π: L⟶ L/I in Example 10. According to
Teorem 12 (i), π(L(K)) � (π(L))(k), which implies

(L/I)
(k)

� (π(L))
(k)

� π L
(k)

􏼐 􏼑 � π( 0{ }) � 0 + I{ }. (24)
□

Theorem 15. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. If H is a solvable Hom–Lie ideal of class k and L/H is
solvable of class m, then L is solvable of class ≤k + m.

Proof. According to Teorem 10, we have the following two
solvable series:

H � H0 ⊇H1 ⊇ · · · ⊇Hk � 0{ },

L/H � (L/H)0 ⊇ (L/H)1 ⊇ · · · ⊇ (L/H)m � 0 + H{ }.
(25)

Consider the natural map π, and let
Li � π− 1((L/H)i), i� 1, 2, . . . , m. Hence, Li is a Hom–Lie
subalgebra of L and Li+1 ⊆ Li. Terefore,

L � L0 ⊇ L1 ⊇ · · · ⊇ Lm � π− 1
( 0 + H{ }) � H � H0 ⊇H1 ⊇ · · · ⊇Hk � 0{ }, (26)

is a descending series. Now, it sufces to prove that
[Li, Li]⊆ Li+1 (i� 0, 2, . . . , m− 1). If x, y ∈ Li � π− 1((L/H)i),
then π(x), π(y) ∈ (L/H)i and so π([x, y]) � [π(x), π(y)]

∈[(L/H)i, (L/H)i]⊆ (L/H)i+1 (Corollary 7). Terefore,
[x, y] ∈ π− 1((L/H)i+1) � Li+1 for each x, y ∈ Li. Tis shows
that [Li, Li]⊆ Li+1. Terefore,

L � L0 ⊇L1 ⊇ · · · ⊇Lm � H � H0 ⊇H1 ⊇ · · · ⊇Hk � 0{ },

(27)

is a solvable series of length k + m. ByTeorem 10, we have L

which is solvable of class ≤k + m.
In [4], we proved that if (L1, [, ]1, α1) and (L2, [, ]2, α2)

are Hom–Lie algebras and Hi is a Hom–Lie ideal of Li,
i � 1, 2., then H1 × H2 is a Hom–Lie ideal of L1 × L2 and

L1 × L2( 􏼁

H1 × H2( 􏼁
≡

L1

H1
×

L2

H2
. (28)

□

Theorem 16. Let (L1, [, ]1, α1) and (L2, [, ]2, α2) be solvable
Hom–Lie algebras of class k and m, respectively. Ten, (L1 ×

L2, [, ], α) is a solvable Hom–Lie algebra of class ≤k + m.

Proof. Note that, L1 × L2 is a multiplicative Hom–Lie algebra
because L1 and L2 are multiplicative Hom–Lie algebras. Since
L1 × 0{ } ≡ L1, so L1 × 0{ } is a solvable Hom–Lie ideal (of class
k) of L1 × L2. Also, (L1 × L2)/ (L1 × 0{ }) ≡ L1/L1
×L2/ 0{ } ≡ L2, so (L1 × L2)/(L1 × 0{ }) is a solvable Hom–Lie
algebra of class m. According to Teorem 15, L1 × L2 is
a solvable Hom–Lie algebra of class ≤k + m. □

4. Nilpotent Hom–Lie Algebra

Defnition 17 (see [8]). Let (L, [, ], α) be a multiplicative
Hom–Lie algebra. We defne, Li􏼈 􏼉, i≥ 0, the lower central
series of L by L0 � L, L1 � [L, L], and Li � [L, Li− 1].

Note that Li+1 � [L, Li] is a Hom–Lie ideal of Li (by
Teorem 2 (ii) and induction).

L � L
0 ⊇ L

1 ⊇ · · · ⊇L
i ⊇L

i+1 ⊇ · · ·. (29)

Tus, the lower central series is a descending series.

Defnition 18 (see [8]). Let (L, [, ], α) be a multiplicative
Hom–Lie algebra. We say that L is nilpotent, if there exists
n∈ N such that Ln� 0. It is nilpotent of class k if Lk � 0{ } and
Lk− 1 ≠ 0{ }.

It is clear now that L is nilpotent of class ≤k if Lk � 0{ }.

Example 13. Consider the multiplicative Hom–Lie algebra
(L, [, ], α) in Example 11 where α is the zero map and [, ] is
the skew-symmetric bilinear map such that [ei, ej]� 0 if i � j

or i� 1 and [ei, ej] � ei− 1 if 1< i< j≤ n.

Now, L1 � [L, L]� Span( e1, e2, . . . ,en− 2􏼈 􏼉)

L2 � [L, L1]� Span( e1, e2, . . . ,en− 3􏼈 􏼉)

⋮
Li� Span( e1, e2, . . . ,en− (i+1)􏽮 􏽯), i< n− 3
⋮
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Ln− 3� Span( e1, e2􏼈 􏼉)

Ln− 2 � 0{ }

Tus, L is a nilpotent Hom–Lie algebra of class n− 2.

Defnition 19. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. Ten, a descending series L � L0 ⊇L1 ⊇L2 ⊇ · · · is
said to be central, if for each i∈ N, [L, Li]⊆Li+1. It has
a length k∈ N if Lk � 0{ } but Lk− 1 ≠ 0{ }.

Theorem 20. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. Ten, (L, [, ], α) is a nilpotent Hom–Lie algebra of
class ≤k if L � L0 ⊇ L1 ⊇ · · · ⊇Lk � 0{ } is a central series.

Proof. It follows directly from the defnition of Li. □

Theorem 21. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra. If L � L0 ⊇ L1 ⊇L2 ⊇ · · · is a central series, then for
each i∈ N, Li ⊆ Li.

Proof. Applying induction we see L0 � L � L0. Also, if
Li ⊆Li then Li+1 � [L, Li]⊆ [L, Li]⊆Li+1. □

Theorem 22. Let (L, [, ], α) be a multiplicative Hom–Lie
algebra.Ten, L is nilpotent of class ≤k if there exists a central
series of length k.

Proof. If L is a nilpotent Hom–Lie algebra of class ≤k. Ten,

L � L
0 ⊇ L

1 ⊇ · · · ⊇L
k

� 0{ }, (30)

is a central series. Te converse is true, since Lk ⊆Lk � 0{ } so
Lk � 0{ }. □

Corollary 23. Nilpotent Hom–Lie algebras of class 1 are the
abelian Hom–Lie algebras.

Proof. A Hom–Lie algebra L is nilpotent of class 1 if there
exists a central series of length 1, L � L0 ⊇L1 � 0{ } if
[L, L0]⊆L1 if [L, L] � 0{ } if L is an abelian Hom–Lie
algebra. □
Theorem 24. Let ϕ: (L1, [, ]1, α1)⟶ (L2, [, ]2, α2) be
a morphism of multiplicative Hom–Lie algebras. Ten,

(i) (ϕ(L1))
i � ϕ(Li

1)

(ii) If L1 is nilpotent of class k, then ϕ(L1) is nilpotent of
class ≤k

(iii) If ϕ is an isomorphism of Hom–Lie algebras, then L1
is nilpotent of class k if and only if L2 is nilpotent of
class k

Proof

(i) We note that (ϕ(L1))
0 � ϕ(L1) � ϕ(L0

1). Also if
(ϕ(L1))

i � ϕ(Li
1), then (ϕ(L1))

i+1 � [(ϕ(L1)),

(ϕ(L1))
i] � [ϕ(L1), ϕ(Li

1)] � ϕ([L1, Li
1]) � ϕ(Li+1

1 ).
(ii) Since L1 is nilpotent of class k, then Lk

1 � 0{ }. So,
(ϕ(L1))

k � ϕ(Lk
1) � ϕ( 0{ }) � 0{ }. Tus, ϕ(L1) is

nilpotent of class ≤k.

(iii) Let L1 be nilpotent of class k. By (ii) L2 � ϕ(L1) is
nilpotent of class ≤k. Let L2 be nilpotent of class m.
Since ϕ− 1 is an isomorphism of Hom–Lie algebras,
it follows L1 � ϕ− 1(L2) is solvable of class ≤m. Tus,
k � m. □

Example 14. Consider Example 12. Since
(C2)1 � [C2,C2]∗ � (x, x); x∈ C{ }, (C2)2 � [C2, (C2)1]∗
� (C2)1 and (C2)i � (C2)1, i> 1. Tus, C2 is not a nilpotent
Hom–Lie algebra and so L is not a nilpotent Hom–Lie
algebra.

Lemma 25. Let (L, [, ], α) be a multiplicative Hom–Lie al-
gebra and H be a Hom–Lie subalgebra of L. Ten, Hi ⊆ Li, for
each i∈ N.

Proof. H0 � H⊆ L � L0, and by using induction, if Hi ⊆Li,
then Hi+1 � [H, Hi]⊆ [L, Li] � Li+1. □

Theorem 26. Let (L, [, ], α) be a nilpotent Hom–Lie algebra
of class k.

(i) Any Hom–Lie subalgebra is nilpotent of class ≤k
(ii) Any quotient Hom–Lie algebra of L is nilpotent of

class ≤k

Proof.

(i) A Hom–Lie subalgebra H of a multiplicative
Hom–Lie algebra is multiplicative. By the lemma
above, we have Hk ⊆ Lk � 0{ }. Tus, Hk � 0{ }.

(ii) Let I be a Hom–Lie ideal of L. Te Hom–Lie algebra
L/I is multiplicative. Consider the natural morphism
π: L⟶ L/I. According to Teorem 24 (i),
π(Lk) � (π(L))k, which implies (L/I)k � (π(L))k �

π(Lk) � π( 0{ }) � 0{ }. □

Remark 27. Let (L, [, ], α) be a multiplicative Hom–Lie al-
gebra. If H is a nilpotent Hom–Lie ideal and L/H is a nil-
potent Hom–Lie algebra, then L need not be a nilpotent
Hom–Lie algebra.

Example 15. Let L be the space spanned by a basis e1, e2􏼈 􏼉

over F. Consider the multiplicative Hom–Lie algebra
(L, [, ], α) where α is the zero map and [, ] is the skew-
symmetric bilinear map such that [e1, e1] � [e2, e2]� 0 and
[e1, e2] � e1. Let H� Span( e1􏼈 􏼉). Ten, H is a nilpotent
Hom–Lie ideal, because H1 � [H, H] � 0{ }. Also, L/H is
a nilpotent Hom–Lie algebra, because [L/H, L/H] � H. But
L is not a nilpotent Hom–Lie algebra, since
L1 � [L, L]� Span( e1􏼈 􏼉) � H, and Li � [L, Li− 1] � [L, H]

� Span( e1􏼈 􏼉)≠ 0{ } for all i∈ N.

Theorem 28. Let (L1, [, ]1, α1) and (L2, [, ]2, α2) be nilpotent
Hom–Lie algebras of class k and m, respectively. Ten, (L1 ×

L2, [, ], α) is a nilpotent Hom–Lie algebra of class
M� Max m, k{ }.
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Proof. We use induction to show that (L1 × L2)
i � Li

1 × Li
2.

For i� 0, we have (L1 × L2)
0 � L1 × L2 � L0

1 × L0
2. For i> 0

and because of the induction assumption, we have
(L1 × L2)

i+1 � [L1 × L2, (L1 × L2)
i] � [L1× L2, Li

1 × Li
2] �

[L1, Li
1]1 × [L2, Li

2]2 � Li+1
1 × Li+1

2 .
We may assume that m≤ k. Since L1 and L2 are nilpotent

Hom–Lie algebras of class k and m, respectively, then Lk
1 �

0{ } and Lk− 1
1 ≠ 0{ } and Lk

2 � 0{ }.
Now, (L1 × L2)

k � Lk
1 × Lk

2 � 0{ } × 0{ } � (0, 0){ } and
(L1 × L2)

k− 1 � Lk− 1
1 × Lk− 1

2 ≠ (0, 0){ }. Tus, L1 × L2 is a nil-
potent Hom–Lie algebra of class k� Max m, k{ } � M. □

Theorem 29. Every central series is a solvable series.

Proof. Let (L, [, ], α) be a Hom–Lie algebra and
L � L0 ⊇L1 ⊇ L2 ⊇ · · ·Lk be a central series. Ten, for each
i� 0, 1, . . . ,k− 1, [L, Li]⊆Li+1. Since [Li, Li]⊆ [L, Li]⊆ Li+1, so
L � L0 ⊇L1 ⊇ L2 ⊇ · · ·Lk is a solvable series (Teorem 8). □

Corollary 30. Every nilpotent Hom–Lie algebra is a solvable
Hom–Lie algebra.

Proof. If (L, [, ], α) is a nilpotent Hom–Lie algebra, then
there exists a central series L � L0 ⊇L1 ⊇ L2 ⊇ · · ·Lk (Teo-
rem 22). From the theorem, L � L0 ⊇L1 ⊇L2 ⊇ · · ·Lk is
a solvable series. Tus, (L, [, ], α) is a solvable Hom–Lie
algebra (Teorem 10).

Te converse is not true, as in the following
example. □

Example 16. Consider the Hom–Lie algebra (R[x], [, ], α)

in Example 7. It is easy to show that H � p(x)􏼈

∈ R[x]: deg(p)≤ 3} is a Hom–Lie subalgebra of R[x]. For
any pi(x) � aix

3 + bix
2 + cix + di ∈ H, [p1, p2] � (6a1b2− 6

a2b1)x
2 + (6a1c2− 6a2c1)x, where ai, bi, ci, di∈ R, and so

H(1) � [H, H] � Ax2 +Bx: A, B∈ R􏼈 􏼉 and H(2) � [H(1),

H(1)] � 0{ }. Tus, H is a solvable Hom–Lie algebra of class 2.
But H is not a nilpotent Hom–Lie algebra, since
H1 � [H, H] � Ax2 + Bx: A, B∈ R􏼈 􏼉, H2 � [H, H1] � H1,
and Hi � H1 ≠ 0{ } for all i> 1.

Example 17. Consider the Hom–Lie subalgebra
H � p(x)∈ R[x]: deg(p)≤ 4􏼈 􏼉 of (R[x], [, ], α) in Example
7. For any pi(x) � aix

4 + bix
3 + cix

2 + dix + ei ∈ H,
[p1, p2] � (12a1b2 − 12a2b1)x

4 + (16a1c2 − 16 a2c1)x
3 +

(12a1d2 − 12a2 d1 + 6b1c2 − 6b2c1)x
2 + (6b1d2 − 6b2d1)x,

where ai, bi, ci, di, ei∈ R, and so H(1) � [H, H] � Ax4 + Bx3􏼈

+Cx2 +Dx: A, B, C, D∈ R}, H(2) � [H(1), H(1)] � H(1), and
H(i) � H(1) ≠ 0{ } for all i> 1. Tus, H is not a solvable
Hom–Lie algebra. Also, H is not a nilpotent Hom–Lie algebra
by Corollary 30.

Note that, (R[x], [, ], α) is not a solvable and not a nil-
potent Hom–Lie algebra because there exists a nonsolvable
and non-nilpotent Hom–Lie subalgebra of R[x] (Teorems
14 (i) and 26 (i)).

5. Question for Further Research

Question 1. What are the precise conditions for a Hom–Lie
algebra to be solvable or nilpotent? Can these conditions be
expressed in terms of the underlying Lie algebra and the
Hom morphism?

Question 2. What are some examples of solvable Hom–Lie
algebras, and what properties do they have? Are there any
interesting relationships between these examples and other
areas of mathematics, such as Lie theory or algebraic
geometry?

Question 3. What are some examples of nilpotent Hom–Lie
algebras, and how do they compare to nilpotent Lie algebras?
Can the classifcation of nilpotent Lie algebras be extended
to the Hom–Lie algebra setting?

Question 4. How do solvable and nilpotent Hom–Lie al-
gebras arise in physics, particularly in the context of su-
persymmetry and other quantum feld theories? What are
the implications of these structures for our understanding of
fundamental physics?

Question 5. What is the relationship between solvable and
nilpotent Hom–Lie algebras and other algebraic structures,
such as associative algebras or Lie super algebras? Can
techniques from these other areas be used to study solvable
and nilpotent Hom–Lie algebras more efectively?

Question 6. How can the representation theory of Hom–Lie
algebras be studied, particularly in the case of solvable and
nilpotent algebras? What are some interesting examples of
Hom–Lie algebra representations, and what do they tell us
about the structure of these algebras?

Question 7. Study of Hom–Lie super algebras: Hom–Lie
super algebras are a natural generalization of Hom–Lie al-
gebras that incorporate a Z2-grading. Investigating solvable
and nilpotent Hom–Lie super algebras can lead to in-
teresting results in the study of supersymmetry and related
topics in physics.

Question 8. Generalization of results to other categories:
Hom–Lie algebras are defned in the category of vector
spaces, but similar structures can be defned in other cat-
egories, such as modules or abelian groups. Investigating
solvable and nilpotent Hom–Lie algebras in these categories
can provide insight into the interplay between diferent areas
of algebra.

Question 9. Cohomology of Hom–Lie algebras: Co-
homology is a powerful tool for understanding the structure
of Lie algebras, and similar techniques can be applied to
Hom–Lie algebras. Investigating the cohomology of solvable
and nilpotent Hom–Lie algebras can provide insights into
their structure and classifcation.
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Question 10. Quantum Hom–Lie algebras: Quantum
Hom–Lie algebras are a generalization of Hom–Lie algebras
that arise in the context of quantum groups and deformation
theory. Investigating solvable and nilpotent quantum
Hom–Lie algebras can lead to interesting results in
these areas.

Question 11. Applications to cryptography and coding
theory: Hom–Lie algebras have recently been applied to
cryptography and coding theory. Investigating solvable and
nilpotent Hom–Lie algebras in this context can lead to new
methods for error-correction and secure communication.

Tese questions are just a starting point, and there are
many other avenues for research in this area. By exploring
these and other questions, researchers can gain a deeper
understanding of the properties and applications of solvable
and nilpotent Hom–Lie algebras and advance our knowl-
edge of this important area of algebraic research.

6. Conclusion

In conclusion, this paper presents an extraction algorithm
for Hom–Lie algebras that is based on solvable and nilpotent
groups. Te algorithm involves several steps. Te algorithm
is illustrated with examples, which demonstrate its efec-
tiveness in extracting Hom–Lie algebra structures.

Overall, the extraction algorithm presented in this paper
provides a useful tool for studying Hom–Lie algebras, which
have important applications in various areas of mathematics
and physics. Te algorithm is particularly well-suited for
Hom–Lie algebras that are related to solvable and nilpotent
groups, which are important classes of groups that arise in
many diferent contexts.

Further research could be done to investigate the ef-
fectiveness of the extraction algorithm for Hom–Lie algebras
that are not related to solvable or nilpotent groups and to
explore its potential applications in other areas of mathe-
matics and physics. Nevertheless, the algorithm presented in
this paper is a valuable contribution to the study of Hom–Lie
algebras and provides a useful framework for further in-
vestigation of these important algebraic structures.
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