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Weighted Cox regression models were proposed as an alternative to the standard Cox proportional hazards models where
consistent estimators can be obtained with more relative strength compared to unweighted cases. We proposed censoring
balancing functions which can be built in a way that allows us to obtain the maximum possible signifcant treatment efects that
may have gone undetected due to censoring. Te harm caused by this is compensated and new weighted parameter estimates are
found.Tese functions are constructed to be monotonic because even the hazard ratios are not exactly constant as in the ideal case,
but are violated bymonotonic deviations in time. For more than one covariate, even the interaction between covariates in addition
to censoring can lead to the loss of signifcance for some covariates’ efects. Undetected signifcant efects of one covariate can be
obtained, still keeping the signifcance and approximate size of the remaining one(s).Tis is performed by keeping the consistency
of the parameter estimates. Te results from both the simulated datasets and their application to real datasets supported the
importance of the suggested censoring balancing functions in both one covariate and more than one covariate cases.

1. Introduction

1.1. Background. Survival data analysis has many appli-
cations in the real world such as engineering like testing
the lifetime of life bulbs and medicine like testing the
efciency of diferent treatments and it even found its role
in social sciences. Cox proportional hazard models have
been hugely exploited since their introduction by Cox [1]
and many modifcations have been made with the aim of
improving the models’ accuracy. In its nature, a Cox
model is built based on the hazard (rate) of a given event of
interest in a specifc group and the two hazard models
corresponding to the two groups under comparison are
used to fnd the hazard ratio. Tis is also referred to as the
risk ratio, and in Cox proportional hazards models, it is
assumed to be proportional over the whole time of
the study.

Te hazard rate is sometimes assumed to be associated
with covariates which can be continuous or categorical and
their efects are deducted from the computed regression
parameters. Recently, weighted Cox models attracted the
attention of many, and the weights used are the same as
those employed in weighted logrank tests. We even recall
that the weighted logrank tests are derived from the partial
likelihood of the weighted Cox models [2]. In our recent
work, censoring balancing functions were introduced to
balance the negative efects of censoring on the power of
such tests and they were found to be of some remarkable
improvement. In this work, such functions will be
employed to investigate covariate efects. Yu et al. [3] used
what they referred to as “censoring correction” in weighted
Cox regression by using the inverse probability distribu-
tion of censoring, G(t)− 1 combined with the selected
weight where G(t) is the Kaplan–Meier estimate of
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censoring. In their work, they also explored the average
hazards ratio and the same technique had been used by
Schemper et al. [4].

1.2. Parameter Estimation in Cox Regression. Te general
form of a Cox proportional hazard model as introduced by
Cox [1] and widely used in many works such as [5], [6], and
[7] is expressed as

λ(t|X) � λ0(t) exp(Xβ), (1)

where X is a vector of covariates and β is the Cox regression
parameter for the covariates and λ0(t) is the baseline hazard
function which can be estimated from any parametric
distribution. If the vector of covariates X is made of k
covariates, such that X � (X1, X2, . . . , Xk), then β will also
be of the same size since for each component Xi, there must
be the corresponding regression coefcient βi.

If one is interested in the hazard ratio, it can be im-
mediately deducted from the two hazards with the same
baseline hazard without knowing or estimating this since it
may be canceled out in both quantities.Te covariates can be
constant or time-dependent, and in the latter case, they are
written as X(t). Te regression coefcient β can also be time-
dependent. We highlight that when exploring the Cox
proportional hazards models, the main interest is in the
failure time, let us say, T. Tus, the hazard λ(t|X) can be
understood as the rate of failure for the objects that still
survive till then.

If t is a failure time, then the likelihood that it is the
specifc subject i that fails at that time is given by

Li(t, β) �
exp Xiβ( 


j∈Ri

exp Xjβ 
,

(2)

where Ri is the set of all subjects at risk at time t.
Te resulting partial likelihood is obtained by multi-

plying these individual probabilities. Tat is,

L(t, β) � 
M

i�1

exp Xiβ( 


j∈Ri

exp Xjβ 
. (3)

When we take a more general case where there may be
ties in occurrences of events, M event times which were
observed, will be reduced to m tied event times, where we
will denote by Si, i.e., the sum of covariates’ Xi of all in-
dividuals who underwent the event of interest at time ti and
equation (3) will then be rewritten as

L(t, β) � 
m

i�1

exp Siβ( 


j∈Ri

exp Xjβ 
.

(4)

In our next deductions and computations, we will refer
to the notation in equation (3) since it is the one generally
used in other research works. Survival data are practically
characterized by censoring and the likelihood expression can
be rewritten otherwise once the times considered are not
specifed as the times of occurrence for the event of interest.

Tis is so because they may observe either the event of
interest (such as death, failure, or any other) or the cen-
soring. So, if the censoring times are also recorded, being
known that the likelihood is considered and estimated only
at time points of occurrence of the event of interest, Lin [5]
and Fisher and Lin [8], among others, rewrote equation (3)
as

L(t, β) � 
N

i�1

exp Xiβ( 


j∈Ri

exp Xjβ 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δi

, (5)

where δi is the indicator function and it is such that δi � 1 if
it is the event of interest that occurred at time ti and 0 in the
case of censoring.

Te aim is to fnd the regression parameter β which
maximizes the partial log-likelihood function and this is
computed as follows:

l(t, β) � log(L(t, β))

� 
N

i�1
δi Xiβ − log 

j∈Ri

exp Xjβ ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.
(6)

Note that, M is the number of distinct times of occur-
rence for the event of interest [9] while N is the total number
of times including the censoring ones. Any logic from either
equation (6) or (7) is understandable because at the cen-
soring time, the corresponding quantity in equation (5) is
raised to power 0 and it gives 1, which, once multiplied by
other quantities, brings no change. In the same way, for the
log partial likelihood, the sum of logarithms will remain the
same since the quantities corresponding to censoring are
multiplied by 0.

In the next transformations, we will continue with the
form of partial log-likelihood which does not contain δi and
we get

l(t, β) � 
M

i�1
Xiβ − log 

j∈Ri

exp Xjβ ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (7)

To maximize l(t, β) in equation (7), we need to fnd β
which is a solution to the following equation:

zl(t, β)

zβ
� 0. (8)

Equation (8) is called the score statistic from the partial
log-likelihood, sometimes referred to as U(t, β) and is
written as

U(t, β) � 
M

i�1
Xi −

j∈Ri
exp Xjβ Xj

j∈Ri
exp Xjβ 

⎡⎢⎣ ⎤⎥⎦. (9)

From equation (9), the concept of using weight functions
to obtain weighted covariate efects was introduced and
worked on by many authors including Fisher and Lin [8],
León et al. [10], Lin andWei [11], Lin [5], Murphy et al. [12],
and Sasieni [7].
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Te weighted score function is obtained from equation
(9) where the same weight functions as those used in
weighted logrank tests are used. Moreover, the weight
function which gives more power to the weighted logrank
test is the one also preferred to obtain the regression pa-
rameter βmax once Uw(t, β) � 0 is solved for β. Te weighted
score function is expressed as follows:

Uw(t, β) � 
M

i�1
w(t) Xi −

j∈Ri
exp Xjβ Xj

j∈Ri
exp Xjβ 

⎡⎢⎣ ⎤⎥⎦. (10)

1.3. Censoring in Cox Regression. Censoring is known as the
special characteristic of survival data which is also a major
threat at the same time. It is always reported to negatively
afect the results of both weighted logrank tests and Cox
regression. Weighted Cox regression was adopted to sup-
plement the usual Cox regression and its parameter esti-
mates are still consistent just as for the case of nonweighted
Cox regression provided that the proportionality of hazard
holds. Treatment efects can be underestimated or over-
estimated in the presence of censoring and the deviation
increases as the censoring level goes higher.

In Cox regression, hazard rates and survival times of
diferent (two or more groups) groups are considered. As
stated by Persson and Khamis [13], censoring distribution
plays a big role in the negative efects being observed. In their
work, the types of censoring under consideration were early,
late, or random censoring. All types of censoring heavily
afect the estimates when their proportions are relatively
higher and the worst case is observed for early censoring
when the proportionality of hazards is observed [13]. Sasieni
[7] highlighted that allocating lower weights to latter failures
through artifcial censoring enhances the relative infuence
of the outlier and this leads to a higher bias. In our present
work, our analysis was performed under the consideration of
random censoring. Dunkler et al. [9] stated that the un-
weighted Cox estimates are relatively more efcient than the
weighted ones even though they overtake when the pro-
portional hazards scenario is not met. Moreover, in contrast
to the unweighted estimates, the weighted ones remain fairly
constant irrespective of the size and type of censoring. Tis
relative strength is still kept while calculating the concor-
dance probability because the unweighted estimate tends to
underestimate it. Again, even though the unweighted esti-
mate performs well in the PH case, the weighted one remains
acceptable since it does not introduce bias.

Te main problem being addressed in this work is the
following: “Aren’t there cases where negative or positive
prognoses are found not signifcant because of censoring
while they probably or really are?” If so, what might they be?
If they were reported as signifcant, are they the real ones?
What may be their possible maximum? Can’t low efects be
interfered by other covariates in addition to censoring? If
yes, can their real strength be optimally detected without
afecting other covariates?

2. Methods

2.1. Inverse Probability of Censoring Weighting (IPCW)
Method. When other conditions are fxed, the higher the
censoring rate, the higher the loss of power of the analysis, or
simply the higher the bias of the estimates. Schemper et al.
[4] used the Fleming–Harrington (FH (ρ, c)) family of
weights and the weight which gave higher power in the
weighted logrank tests was the one to be used for the
computation of β in Cox regression. To compensate the
harm from censoring, Schemper et al. [4] attached on the
weight the inverse of the censoring distribution function,
often denoted by G(t), and the resulting weight was
w(t)G(t)− 1. G(t) is found the same way as the usual
Kaplan–Meier estimates S(t) are found but with the reversed
status variable. It is understood that G(t) is decreasing as
censoring is observed and hence G(t)− 1 is increasing and is
at least equal to 1.

In Yu et al.’s study [3], just as in Schemper et al.’s study
[4], the same quantity G(t)− 1 was investigated and used
while referred to as “censoring correction.” It was still ap-
plied in León et al. [10] and Dunkler et al.’s study [9] where it
was annexed to diferent weights that were explored to fnd
the maximum of treatment efects. It had also been
employed separately as an independent weight function by
Xu and O’Quigley [14]. All those transformations were
performed with the aim of maximizing the eforts in re-
storing the ability to capture the treatment efects, which in
most cases is referred to as the hazard ratio. Te concept of
weighting in Cox regression led to the name “average
hazards ratio” or “average regression efects” where eβ is like
the weighted mean. Weighting by G(t)− 1 was also explored
in logrank tests where it is referred to as the inverse of the
probability of censoring weight (IPCW) and it is used to
address some biases due to censoring in diferent estimations
such as survival probabilities. In general, IPCWhas been and
is still employed as a response to noncompliance from
censoring as found in the studies of Kvamme and Borgan
[15], Matsouaka and Atem [16], Satten and Datta [17],
Wakounig et al. [18], and Robins and Finkelstein [19]. Dong
et al. [20] found that an estimate of treatment efects ob-
tained through the IPCW-adjusted win ratio statistic is
unbiased. However, Howe et al. [21] demonstrated its
limitations in the presence of a strong selection bias or in the
case of unmeasured common predictors, sample size, or
model misspecifcation.

2.2. Censoring-Balanced Weight Function. Censoring bal-
ancing functions were proposed to balance the negative
efects of censoring on the respective results. In this work,
they will be implied in the computation of the Cox re-
gression coefcients which help to measure the covariates’
efects or even hazards ratio. Te proposed censoring bal-
ancing function is defned as

f(c(t)) � (1 +(t))
r
, (11)
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where c(t) indicates the censoring rate until event time t.
Te parameter “r” can vary and take on any value in Z

depending on the researcher’s judgment and aim.Te aim of
this study as mentioned before is fnding the ideal maximum
possible value (signifcance) of the treatment efects for the
univariate (multivariate) case. Negative values reduce the
size of the original weight and hence will act like penalties
whereas the positive ones improve it which makes them act
like compensations.

As the IPCW through G(t)− 1 on the existing weights
brings some improvement, the newly proposed censoring
balancing functions are built in a more fexible way which
gives them the ability to be modifed diferently to have the
desired nature and size. Tis will make their use more
friendly and adaptive.

Te general censoring-balanced weight function will be
of the following form:

WCB(t) � (1 + c(t))
r
w(t). (12)

Te index CB is used to indicate that the weight under
consideration is censoring-balanced. w(t) is the initial
weight function and in our case, we will focus on w(t)� 1 as
the initial weight and hence will apply diferent levels of
compensations by manipulating the censoring balancing
function as given above through varying the parameter r.
Our main focus is on the average hazard ratio obtained
under a specifc weight function. Te negative impact of
censoring will be dealt with to see if there is any im-
provement brought by the censoring balancing function
(CBFs) on the quantity exp(β) which stands for the average
hazard ratio. Under random censoring, it is more likely that
the treatment efects are underestimated.Te proposed form
of censoring balancing weight function will help to com-
pensate for that loss of sensitivity. However, the loss can be
overcompensated since in real applications, the true treat-
ment efects are not known. So, we will compute the ex-
pected maximum possible treatment efects which may even
exceed the true treatment efects. To understand this,
a simulated dataset will be used to describe the situation.
Since the monotone deviations from the proportionality are
the most encountered, the proposed functions will be
combined with w(t)� 1 because they themselves will act like
weights. So, we do not need to combine them with another
weight now, but it can be explored afterward. Terefore, the
weighted Cox regression that will be dealt with will be from
the weight function of the following form:

WCB(t) � (1 + c(t))
r
. (13)

2.3. Application of the Goodness-of-Fit Test. Te assumption
of proportional hazards can be tested against linear
monotone departures where the regression coefcient β will
be replaced by a linear monotone function of time, let us say,
a(t). Hence, the hypothesis which will be tested is
H0: λ(t, X) � λ0(t)exp(X(t)β) against H1: λ(t, X) � λ0(t)

exp(X(t)a(t)).

a(t) is assumed to be monotone because the monotone
departures from the proportional hazards assumptions are
the most generally encountered ones in real scenarios of
model misspecifcation. From this, monotone weight
functions are the most appropriate since they are more
sensitive to such monotone departures. Te weighted Cox
regression was found to be efcient when some deviation
from the proportionality assumption was observed. Lin [5]
proposed a test for goodness-of-ft analysis which remains
consistent even under model misspecifcation and helps to
detect the diference between the two Cox regression pa-
rameters which are β and βw.

So, the same method can also be employed to test the
following hypothesis:

H0: βw � β againstH1: βw ≠ β. (14)

Tey stated that when the proportionality assumption is
held, the two parameters do not difer signifcantly in terms
of magnitude or absolute value. We recall that in this work,
we will consider diferent levels of censoring balancing
functions. Te proposed test is of the following form:

Qw � n βw − β 
′
Dw(β)

− 1 βw − β , (15)

where

(i) βw is the weighted regression parameter estimate,
(ii) β is the unweighted regression parameter estimate,
(iii) Dw(β) is the diference of the covariance matrices.

i.e., Dw(β) � C(βw) − C(β).

C(βw) andC(β) are the covariance matrices from βw and
β, respectively, and they are computed as below. Te basic
expression to be defne is

S
(r)

(β, t) �
1
n



n

i�1
exp Xi(t)β( .Xi(t)

⊗r
, (16)

where r� 0, 1, 2 and Xi(t) is the covariates vector for the
individual i whose event time is t (it does not mean that the
covariates are time-dependent).

Te following quantities are deduced from S(r)(β, t)

according to r:

S
(0)

(β, t) �
1
n



n

i�1
exp Xi(t)β( ,

S
(1)

(β, t) �
1
n



n

i�1
exp Xi(t)β( .Xi(t),

S
(2)

(β, t) �
1
n



n

i�1
exp Xi(t)β( .Xi(t)

⊗2
.

(17)

With E(β, t) defned as E(β, t) � S(1)(β, t)/S(0)(β, t), the
score function defned in equation (10) can be rewritten as

Uw(t, β) � 
M

i�1
w(t) Xi(t) − E(β, t) . (18)
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Te resulting information matrix from which we will get
the standard errors for the respective components of β is
obtained by the second derivative of the partial log-
likelihood function and in terms of S(r)’s, we have

V(β, t) �
S

(2)
(β, t)

S
(0)

(β, t)
−

S
(1)

(β, t)
⊗2

S
(0)

(β, t) 
2

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. (19)

By using the E(β, t) defned previously, V(β, t) can be
written as

V(β, t) �
S

(2)
(β, t)

S
(0)

(β, t)
− E(β, t)

⊗2⎡⎣ ⎤⎦. (20)

To make the notation more logically understandable to
the reader, we will write V(β, Xi) instead of V(β, t). Tis is
because the summation is made over event times and the
subscript i will make the summation more logical. Te
variance of the weighted regression estimator is computed
as

Cw(β) � Aw(β)
− 1

Bw(β)Aw(β)
− 1

, (21)

with

Aw(β) �
1

M


M

i�1
w Xi( V β, Xi( ,

Bw(β) �
1

M


M

i�1
w Xi( 

2
V β, Xi( .

(22)

It is easily noticed that Aw(β) and Bw(β) are diferent
only in the sense that they are computed with weights w(Xi)

and w(Xi)
2, respectively.

2.4. Optimization of the Parameter. Equation (10) will be
solved for many options to obtain the optimum parameter.
For a single covariate, the efects can be found signifcant or
not and, in that case, we will fnd their probable maximum
value since censoring is expected to have afected it. For two
or more covariates, we try to maintain the parameter
component which was found to be signifcant and we try to
fnd the solution for equation (10) under diferent values of r
where the optimal solution will be the one with a small
deviation from the already signifcant component (βr[j] −

β[j]) or with nearly the same norm as the initial parameter
(|βr| � |β|) but with the signifcance of efects for targeted
covariates, β[i]. In short, the optimization is performed as
follows.

For a single covariate, the optimization is performed as

βmax � maxr βr: Uwr
(t, β) � 0 . (23)

For two or more covariates, the optimization is per-
formed as

βopt � maxr βr


: Uwr

(t, β) � 0 and βr[i] is signifcant ,

(24)

or

βopt � minr βr[j] − β[j]: Uwr
(t, β) � 0 and βr[i] is signifcant .

(25)

Note that, we avoid the notation βmax but used βopt for
the case of more than one covariate because the aim is not
the maximum in size but the signifcance of efects for as
many as possible covariates. León et al. [10] computed βmax
from a set of weights of the Fleming–Harrington (Gρ,c)

family, but in this study, it will be found by varying r. For
each dataset or case, the optimal r is reported together with
the censoring level where it gave the intended optimal so-
lution which was also reported and compared with the
initially obtained parameter.

3. Data Description and Analysis

We dealt with two simulated datasets from a Weibull dis-
tribution and showed the proportional hazards nature and
two real ones. For each of the simulated datasets, the total
sample size is 200 with a 1 :1 allocation ratio. We hence
assumed three levels of censoring which are 20%, 40%, and
60%. Te censoring times were assumed randomly from the
previously simulated time points. For each censoring level,
the regression parameter was estimated. In the case of one
covariate, the level of censoring balancing functions which
yields the absolute maximum value of the parameter was
obtained and this was compared with the one obtained
under censoring. For two covariate cases, the alternative
regression parameter was estimated with the aim of small
deviation from the signifcant component targeting the
parameter whose all components are signifcant. Once the
targeted weighted parameter was obtained, it was compared
with the one previously obtained under censoring using the
stated test to see if the obtained parameter is still consistent.

For real data applications, two datasets were used. Tose
are the colon cancer dataset and the lung cancer dataset which
are freely accessible online and can be imported to diferent
data analysis software.Te colon dataset has a total sample size
of 1858 with an overall censoring rate of 50.48%.Te covariate
of interest was sex where there were 968 males (sex� 1) and
890 females (sex� 0) who were subjected to three treatments
and the variable of interest was the time of the event of interest
(death) or recurrence. Since the two groups (from the sex
variable) show the PHnature, we applied the Cox regression to
investigate the sex covariate efects. Te lung cancer dataset is
made of an overall sample size of 228 with an overall censoring
rate of 27.63% where 90 of them are females (sex� 1 in our
analysis) and 138 are males. After performing the analysis with
this single covariate, we also analyzed the same dataset with
two covariates: “sex” and “age.”

For each dataset (simulated or real one), β and βw were
computed, respectively. Te parameter from weighted Cox
regression βw was then compared with the initial parameter
from unweighted Cox regression. Tis is why in the fol-
lowing tables, Dw(β), Qw, and the corresponding p values
are in the row of weighted regression where r≠ 0 in the
column (c, r). c represents the censoring rate and r is the level
of the censoring balancing functions that resulted in the
maximum or optimum covariates’ efects. Te test statistic
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Qw has a central chi-square distribution with degrees of
freedom equal to the dimension of the regression parameter.
Te data analysis task was performed in Python.

4. Results and Discussion

4.1. Simulation Results. 4.2. Application to Real Data. 4.3.
Discussion of the Results. For the simulated datasets, the
estimates in the noncensoring cases are obtained. As cen-
soring occurs, the deviation from the true coefcient in-
creases and the smaller components in terms of absolute
value can even change the sign. For more than one covariate
case, while investigating the efects’ signifcance for one
covariate, the magnitude of efects for the remaining one(s)
may be slightly afected. Low censoring (≤ 20%) gives es-
timates still close to the real ones as seen in Table 1 and the
application of censoring balancing functions may mislead
since they tend to overcompensate the small harm from the
low censoring.Tis can be seen in estimates in the cases of 20
and 16 with 0.54012 vs 0.6829 where obtaining a signifcant
component for the failing one will cause a noticeable de-
crease in the preexisting signifcant component, and again,
on 20 and 136, we have 1.2296 vs 0.7411 to show a higher
deviation in the case of one covariate (Table 1). Tis is
supported by the real data application where the lung dataset
with sex covariate is treated separately as shown in Table 2,
and the coefcient increase was approximately 66% (from
−0.5311 to −0.8816), while for the simulated dataset 1, it was
nearly 77.5% (from 0.7411 to 1.2296).

Te censoring level of 40% gives estimates which are
relatively far from the real ones. However, when searching
for the possible maximum, it does not go as far as the 20%
censoring level. Tis means that it is the level where the
negative impacts of censoring are unavoidable and the
censoring balancing functions will play their role more
appropriately (refer to rows 40 and 64 with 0.8503 vs 0.7411
and 40 and 13 with 0.675 vs 0.6829 in Table 1).

Te covariates with small coefcients are more likely to
change the sign when it comes to searching for their sig-
nifcance when the censoring is too high (≥ 50%). Tis can
be checked on row 60 and 20 with 0.1312 vs −0.1095 in
Table 1 and is supported by the real application on row 50.48
and 7 with 0.1642 vs −0.0336 in Table 2.Te change of sign is
logical and can be understood from the fact that non-
signifcant efects are represented by a parameter estimate
whose confdence interval includes 0 and hence, it can be
either positive or negative while for hypothetical signif-
cance, it must be on one side and statistically diferent
from 0.

So, for colon cancer, if covariate “sex” has undetected
signifcant efects, they are more likely positive and they may
be of βw � 0.1642 giving the hazard rate of
e0.1642 ≈ 1.18 ∈ (1.05, 1.32). In the same way, for the lung
dataset, if the efects of the covariate “sex” treated separately
were afected by censoring, whatever they might be, they are
likely less than βmax � −0.8816 corresponding to the hazards
ratio of 0.41 from 0.60. Still, if the covariate age treated
together with covariate “sex” has undetected signifcant

Table 1: Results from simulation.

c, r βw

95% confdence
interval Dw(β) Qw P value

For simulated dataset 1 with one covariate “treatment”
0, 0 0.7411 [0.4434, 1.0388] — — —
20, 0 0.6948 [0.3714, 1.0181] — — —
20, 136 1.2296 [1.2294, 1.2298] 199.51 0.2868 0.5923
40, 0 0.6426 [0.2714, 1.0138] — — —
40, 64 0.8503 [0.8502, 0.8505] 345773.86 0.000025 0.996
60, 0 0.7574 [0.2881, 1.2268] — — —
60, 11 0.7833 [0.6900, 0.8766] 583.14 0.00023 0.988

For simulated dataset 2 with two covariates “sex” and “treatment”

0, 0 −0.1095
0.6829 

[−0.4009, 0.1818]

[0.3972, 0.9687]
— — —

20, 0 −0.1155
0.7177 

[−0.432, 0.201]

[0.406, 1.029]
— — —

20, 16 −0.1634
0.54012 

[−0.3195, −0.007]

[0.385, 0.695]

32.991 −2.324
−2.324 34.34  0.2962 0.8623

40, 0 −0.0421
0.9634 

[−0.407, 0.323]

[0.601, 1.326]
— — —

40, 13 −0.149
0.675 

[−0.245, −0.053]

[0.581, 0.769]

21.1143 −1.705
−1.705 21.692  0.5546 0.7578

60, 0 0.1443
1.0276 

[−0.318, 0.607]

[0.5813, 1.474]
— — —

60, 20 0.1312
0.6843 

[0.1189, 0.1435]

[0.6728, 0.6958]

5.1475 −1.4403
−1.4403 7.9741  1.2751 0.5286
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efects due to censoring, they might be just around 0.01728
meaning that the person is at a higher risk with a hazard ratio
of e0.01728 ≈ 1.02 but it is still less than 1.04 compared to the
one with the same sex to whom they are one year older. In
that case, females are at a lower risk than males of the same
age with a hazard ratio of e− 0.4932 ≈ 0.61.

As we highlighted that r can be positive or negative, the
optimal weight obtained in a row (27.63, 1) in Table 2 was also
obtained with r� −409 and the diference observed was only
in the corresponding 95% CIs for the respective components
where the 95% CIs at r� −409 are [−0.5086, −0.4778] and
[0.0164,0.0181] which are too much narrower and hence
better. Note that, this level of r� −409 was the one which
yielded themaximum efects when covariate “sex” was treated
separately, but when treated together with age, the same level
yielded the signifcance of age covariate efects with a mini-
mum deviation from the existing sex covariate efects. In
addition, by referring to the magnitudes of the two param-
eters, we obtain |βw| � 0.4935 and |β| � 0.5136 with a dif-
ference of 0.02 which is relatively small.

In general, by looking at the obtained test statistic in the
two tables of the results either from the simulation or real data
application, we fail to reject the null hypothesis, and since the
p values are relatively higher, it categorically discredits the
assumed model. Te same results were obtained on the three
datasets analyzed in our reference work of [5]. So, there is no
signifcant diference between the efects of the covariates
under censoring (normally obtained) and those obtained
under the use of censoring balancing functions.

5. Conclusion

Censoring generally negatively afects the results of the Cox
regression. Te signifcance of treatment efects can be
detected if lost due to censoring but their magnitude (or size)
must be controlled with due attention for them to remain
realistic. For one covariate case, the possible maximum
efects can be estimated. If censoring is very high, for ex-
ample up to 40 % or above, some covariates can be judged as
nonsignifcant while they really are and in some cases, they
may even be in the opposite direction. Tis means that the

efects were found to be positive (negative) but not signif-
icant under censoring while they were negative (positive)
and signifcant. Te employed chi-square statistic test helps
to know if the newly obtained regression parameter estimate
is still consistent by comparing it to the initial one.When the
diference is detected, Lin [5] proposed to perform a com-
ponent-wise comparison of the two parameters. Tis is why
the detection of the probably undetected signifcant efects is
performed while controlling the deviation in the compo-
nents which is already signifcant. In this work, the signif-
icance of some covariates’ efects was detected through the
employment of censoring balancing functions without ex-
periencing a signifcant diference between the parameters’
magnitudes.

For low censoring (for example, below 20%), the cen-
soring does not have stronger negative efects that the
probable existing signifcance might be lost unless probably
worsened by smaller sample sizes. For this, censoring bal-
ancing functions can mislead the researcher by over-
estimating the coefcient while the harm from censoring is
not really that high. Te reliance on compensation depends
on the harm caused. However, the general remark is that the
covariates’ efects obtained under the use of censoring
balancing functions are also consistent as proved by Lin [5]
for the general weighted Cox regression. Te use of weight
functions defned in the same context as censoring balancing
functions (proposed in this work) will help researchers in
clinical trials and pharmaceutical studies to maximize the
strength of their statistical tests and make sure that no
covariates with really signifcant efects are reported as
nonsignifcant due to censoring. Te proposed censoring
balancing functions can, therefore, be recommended for use
while aiming at the investigation of signifcant covariates’
efects which were undetected in the presence of censoring.

Data Availability

Te real datasets used in this study are available and freely
accessible online and especially in R where both the lung
cancer data and colon cancer data are accessed through the
“survival” package.

Table 2: Results from real data application.

c, r βw

95% confdence
interval Dw(β) Qw P value

For colon cancer dataset with covariate “sex”
50.48, 0 −0.0336 [−0.1629, 0.0957] — — —
50.48, 7 0.1642 [0.0470, 0.2814] 218.55 0.3327 0.5641
For lung cancer dataset with covariate “sex” alone
27.63, 0 −0.5311 [−0.859, −0.2034] — — —
27.63, −409 −0.8816 [−1.763, −0.00007] 39.02 0.7177 0.3969
For lung cancer dataset with covariates “sex” and “age”

27.63, 0 −0.5133
0.0171 

[−0.8415, −0.1851]

[−0.0010, 0.0351]
— — —

27.63, 1 −0.4932
0.01728 

[−0.8042, −0.1822]

[0.000018, 0.0346]

29.475 −45.17
−45.17 12037.7  0.00314 0.9984
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