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In this work, we establish three common fxed point results for expansive maps satisfying implicit relations in metric and
dislocatedmetric spaces.We do this by utilizing recently developed concept of occasionally weakly biasedmaps of type (A).Tese
studies about the theory of common fxed points refne several earlier ones. Some illustrative examples are ofered to support our
theorems, and even better, a pertinent application is supplied to demonstrate the viability and applicability of one of these results.

1. Introduction and Preliminary Notes

In fxed point theory, many researchers investigated the
existence and uniqueness of fxed and common fxed points
for contractive maps, while several authors concentrated
their investigations on expansive maps, and of course, some
other mathematicians focused their inquiries on both
contractive and expansive maps simultaneously. According
to Chouhan and Malviya [1], the research about fxed points
of expansive maps was initiated in 1967 by Machuca [2].
Later, many works searched fxed and common fxed points
for expansive maps in diferent spaces.

On the other hand, in 1985, in his thesis, Matthews [3]
proposed the kind of metric domains and he observed that
there is a bijection between the family of metric domains and
the one of metric spaces. He introduced this new space to
show that fxed points can exist in other spaces under various
contractive conditions.

Defnition 1 (see [3]). A metric domain is a pair 〈Φ,φ〉

whereΦ is a nonempty set, and φ is a function fromΦ ×Φ to
R+ such that

(1) ∀ρ, κ ∈ Φ: φ(ρ, κ) � 0⇒ ρ � κ.
(2) ∀ρ, κ ∈ Φ: φ(ρ, κ) � φ(κ, ρ).

(3) ∀ρ,κ,ϖ ∈ Φ: φ(ρ, κ)≤φ(ρ,ϖ) + φ(ϖ, κ).

In 2001, in his thesis, Hitzler [4] used metric domains
under the name of dislocated metrics. In 2012, Amini-
Harandi [5] suggested a new generalization of the metric
space which is called a metric-like space. In fact, the notions
of metric domains, metric-like spaces, and dislocated metric
spaces are exactly the same, and these spaces are sometimes
called as d-metric spaces.

Defnition 2 (see [4, 5]). Let X be a nonempty set. A
function d: X × X⟶ [0, +∞) is said to be a dislocated
metric on X if for any ρ, κ,ϖ ∈ X, the following conditions
hold:

(1) d(ρ, κ) � 0⇒ ρ � κ.
(2) d(ρ, κ) � d(κ, ρ).
(3) d(ρ,ϖ)≤ d(ρ, κ) + d(κ,ϖ).

Te pair (X, d) is then called a dislocated metric space.
Recently, in 2019, Markin and Sichel [6] introduced the

notion of expansive maps and their types as follows.

Defnition 3 (see [6]). Let (X, d) be a metric space. A map
M: X⟶ X on (X, d) such that
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∀μ, ] ∈ X: d(Mμ,M])≥ d(μ, ]), (1)

is called an expansive map (or expansion).

Defnition 4 (see [6]). Let (X, d) be a metric space.

(1) An expansion E: X⟶ X such that

∀μ, ] ∈ X: d(Eμ,E]) � d(μ, ]), (2)

is called an isometry, which is the weakest form of
expansive maps.

(2) An expansion E: X⟶ X such that

∃μ, ] ∈ X, μ≠ ]: d(Eμ,E])>d(μ, ]), (3)

and we call it a proper expansion.
(3) An expansion E: X⟶ X such that

∀μ, ] ∈ X, μ≠ ]: d(Eμ,E])> d(μ, ]), (4)

and we call it a strict expansion.
(4) An expansion E: X⟶ X such that

∃α> 1∀μ, ] ∈ X: d(Eμ,E])≥ αd(μ, ]), (5)

and we call it an anti-contraction with expansion con-
stant α.

Now, to combine the existing extensions and generaliza-
tions of Banach fxed-point theorem, diferent methods were
used by many authors. Among them, Popa, in 1997 and 1999,
in his articles [7, 8], established the implicit relation’s idea.
Afterwards, several researchers used this good combination for
proving fxed and common fxed point theorems for single and
multi-valued maps in various spaces (see for instance [9–26]).
In this paper, we will introduce new kinds of implicit relations
in order to use them to prove unifed common fxed point
theorems in metric and dislocated metric spaces.

In the sequel, our principal results will be presented and
proved.

2. Unique Common Fixed Points for Quadruple
Maps in Metric Spaces

In this section, we will present our new defnitions and
introduce some implicit relations in order to prove our frst
result.

2.1. NewConcepts. In 2022, in [27], we initiated the notions of
occasionally weakly M-biased (respectively, N-biased) maps
of type (A), and we revealed that these defnitions coincide
with our concepts: occasionally weaklyM-biased (respectively,
N-biased)maps given in [28]. Note that several authors proved
the existence of fxed points for occasionally weakly biased,
subweakly biased, and biased maps (see for instance [29–32]).

Defnition 5 (see [27]). Let M and N be maps from
a nonempty set X into itself. Maps M and N are called
occasionally weakly M-biased (respectively, N-biased) of

type (A), if there is an element p inX such thatMp � Np

implies

d(MMp,Np)≤ d(NMp,Mp),

d(NNp,Mp)≤ d(MNp,Np),
(6)

respectively.

2.2. Implicit Relations. As we said above, in his papers, Popa
[7, 8] unifed several explicit contractions under the so-called
implicit contraction. Motivated by Popa’s technique, we
instigate the following.

Let Γ be a set of functions c: [0, +∞)6⟶ R such that c

is nondecreasing in r2, r3, r4, r5, and r6 and satisfes the next
condition:

c(r, r, 0, 0, r, r),

c(r, r, 2r, 0, r, r),

c(r, r, 0, 2r, r, r),

(7)

are negative for all r positive.

Example 1. c(r1, r2, r3, r4, r5, r6) � −r1 + ρmax r2, r3, r4􏼈 􏼉+

ϱ(r5 + r6), where ρ, 9> 0 and 2ρ + 2ϱ < 1.

(i) Trivially, c is nondecreasing in r2,r3,r4,r5, and r6.
(ii) c(r, r, 0, 0, r, r) � −r + ρmax r, 0, 0{ } + ϱ(r + r) � r

[ρ + 2ϱ − 1] < 0∀r> 0.
(iii) c(r, r, 2r, 0, r, r) � −r + ρmax r, 2r, 0{ } + ϱ(r + r) �

r[2ρ + 2ϱ − 1]< 0∀r> 0.
(iv) c(r, r, 0, 2r, r, r) � −r + ρmax r, 0, 2r{ } + ϱ(r + r)

� r[2ρ + 2ϱ − 1]< 0∀r> 0.

Example 2. c(r1, r2, r3, r4, r5, r6) � −r1 + μmax r2, r3, r4􏼈 􏼉+

]max r5, r6􏼈 􏼉, where μ, ]> 0 and 2μ + ]< 1.

(i) Clearly, c is nondecreasing in variables r2,r3,r4,r5,
and r6.

(ii) c(r, r, 0, 0, r, r) � −r + μmax r, 0, 0{ } + ]max r, r{ }

� r[μ + ] − 1]< 0∀r> 0.
(iii) c(r, r, 2r, 0, r, r) � −r + μmax r, 2r, 0{ } + ]max

r, r{ } � r[2μ + ] − 1]< 0∀r> 0.
(iv) c(r, r, 0, 2r, r, r) � −r + μmax r, 0, 2r{ } + ]max

r, r{ } � r [2μ + ] − 1]< 0∀r> 0.

Example 3. c(r1, r2, r3, r4, r5, r6) � −r1 + ζ[r2 + r3 + r4]

+ ξ[r5 + r6], where ζ,ξ > 0 and 3ζ + 2ξ < 1.

(i) It is evident to see that c is nondecreasing in var-
iables r2,r3,r4,r5, and r6.

(ii) c(r, r, 0, 0, r, r) � −r + ζ[r + 0 + 0] + ξ[r + r] � r[ζ
+2ξ− 1]< 0∀r> 0.

(iii) c(r, r, 2r, 0, r, r) � −r + ζ[r + 2r + 0] + ξ[r + r] � r

[3ζ + 2ξ − 1]< 0∀r> 0.
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(iv) c(r, r, 0, 2r, r, r) � −r + ζ[r + 0 + 2r] + ξ[r+ r] � r

[3ζ + 2ξ − 1]< 0∀r> 0.

Example 4. c(r1, r2, r3, r4, r5, r6) � −r1 + σ[r2 + r3 + r4]+

ςmax r5, r6􏼈 􏼉, where σ,ς> 0 and 3σ + ς< 1.

(i) Evidently, c is nondecreasing in variables r2,r3,r4,r5,
and r6.

(ii) c(r, r, 0, 0, r, r) � −r + σ[r + 0 + 0] + ςmax r, r{ } � r

[σ + ς − 1]< 0∀r> 0.

(iii) c(r, r, 2r, 0, r, r) � −r + σ[r + 2r + 0] + ςmax r, r{ }

� r[3σ + ς− 1]< 0∀r> 0.
(iv) c(r, r, 0, 2r, r, r) � −r + σ[r + 0 + 2r] + ςmax r, r{ }

� r[3σ + ς − 1]< 0∀r> 0.

Theorem 6. Let B, C, D, and E be maps from a metric
space (X, d) into itself, such that, for all x, y ∈ X, we have

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))≥ 0, (8)

where c ∈ Γ. Assume that mapsB andD (respectively,C and
E) are occasionally weakly D-biased (respectively, E-biased)
of type (A); then, B,C,D, and E admit only one common
fxed point.

Proof. According to the assumptions, we have the existence
of two elements ρ and μ inX which verifyBρ � Dρ implies
d(DDρ,Bρ)≤d(BDρ,Dρ) and Cμ � Eμ implies
d(EEμ,Cμ)≤ d(CEμ,Eμ).

Firstly, we will show that Bρ � Cμ. Let us assume that
Bρ≠Cμ, and the use of inequality (8) yields

c(d(Bρ,Cμ), d(Dρ,Eμ), d(Bρ,Dρ), d(Cμ,Eμ), d(Dρ,Cμ), d(Bρ,Eμ))

� c(d(Bρ,Cμ), d(Bρ,Cμ), 0, 0, d(Bρ,Cμ), d(Bρ,Cμ))≥ 0,
(9)

a contradiction, and thus Bρ � Cμ. Secondly, we assure that BBρ � Bρ. Imagine we have
the opposite; then, using assumption (8), we get

c(d(BBρ,Cμ), d(DBρ,Eμ), d(BBρ,DBρ), d(Cμ,Eμ), d(DBρ,Cμ), d(BBρ,Eμ))

� c(d(BBρ,Bρ), d(DBρ,Bρ), d(BBρ,DBρ), 0, d(DBρ,Bρ), d(BBρ,Bρ))≥ 0.
(10)

As maps B and D are occasionally weakly D-biased of
type (A), c is nondecreasing in r2, r3, and r5; using the
triangle inequality, we obtain

c(d(BBρ,Bρ), d(BBρ,Bρ), 2d(BBρ,Bρ), 0, d(BBρ,Bρ), d(BBρ,Bρ))≥ 0, (11)

and this contradiction implies that BBρ � Bρ and so
DBρ � Bρ.

Tirdly, suppose that CCμ≠Cμ. Using inequality (8),
we obtain

c(d(Bρ,CCμ), d(Dρ,ECμ), d(Bρ,Dρ), d(CCμ,ECμ), d(Dρ,CCμ), d(Bρ,ECμ))

� c(d(Cμ,CCμ), d(Cμ,ECμ), 0, d(CCμ,ECμ), d(Cμ,CCμ), d(Cμ,ECμ))≥ 0.
(12)
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Again, as c is nondecreasing in r2, r4, and r6 and mapsC
and E are occasionally weakly E-biased of type (A), by the
triangle inequality, we fnd

c(d(Cμ,CCμ), d(Cμ,CCμ), 0, 2d(Cμ,CCμ), d(Cμ,CCμ), d(Cμ,CCμ))≥ 0, (13)

which is a contradiction, and hence CCμ � Cμ and so
ECμ � Cμ, i.e., CBρ � Bρ and EBρ � Bρ. Put
Bρ � Dρ � Cμ � Eμ � p; therefore, p is a common fxed
point of maps B, C, D, and E.

Fourthly, assume the existence of another common fxed
point (say q). From (8), we have

c(d(Bp,Cq), d(Dp,Eq), d(Bp,Dp), d(Cq,Eq), d(Dp,Cq), d(Bp,Eq))

� c(d(p, q), d(p, q), 0, 0, d(p, q), d(p, q))≥ 0,
(14)

which implies that q � p. □

Te following example supports our result.

Example 5. Equip X � [0, 10) with the usual metric
d(x, y) � |x − y| and set up the following maps:

Bx �

1
2
for x is in [0, 1),

1 for x is in [1, 10),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Cx �

3
4
for x is in [0, 1),

1 for x is in [1, 10),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dx �

3 for x is in [0, 1),

1
x
for x is in [1, 10),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Ex �

3 for x is in [0, 1),

1
x
2 for x is in [1, 10).

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

Trivially, maps B and D (respectively, C and E) are
occasionally weakly D-biased (respectively, E-biased) of
type (A). Putting c(r1, r2, r3, r4, r5, r6) �

−r1 + 1/4max r2, r3, r4􏼈 􏼉 + 1/5(r5 + r6), we get

(1) Firstly, for x, y ∈ [0, 1), we have Bx � 1/2,
Cy � 3/4, Dx � 3 � Ey, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c
1
4
, 0,

5
2
,
9
4
,
9
4
,
5
2

􏼒 􏼓

� −
1
4

+
1
4
max 0,

5
2
,
9
4

􏼚 􏼛 +
1
5

9
4

+
5
2

􏼒 􏼓

�
53
40
≥ 0.

(16)

(2) Secondly, for x, y ∈ [1, 10), we have Bx � Cy � 1,
Dx � 1/x, Ey � 1/y2, and
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c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c 0,
1
x

−
1
y
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 1 −

1
x

, 1 −
1
y
2, 1 −

1
x

, 1 −
1
y
2􏼠 􏼡

�
1
4
max

1
x

−
1
y
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 1 −

1
x

, 1 −
1
y
2􏼨 􏼩 +

1
5

1 −
1
x

+ 1 −
1
y
2􏼠 􏼡≥ 0.

(17)

(3) Tirdly, for x ∈ [0, 1), y ∈ [1, 10), we have
Bx � 1/2, Cy � 1, Dx � 3, Ey � 1/y2, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c
1
2
, 3 −

1
y
2,
5
2
, 1 −

1
y
2, 2,

1
2

−
1
y
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡

� −
1
2

+
1
4
max 3 −

1
y
2,
5
2
, 1 −

1
y
2􏼨 􏼩 +

1
5

2 +
1
2

−
1
y
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡≥ 0.

(18)

(4) Fourthly, for x ∈ [1, 10), y ∈ [0, 1), we haveBx � 1,
Cy � 3/4, Dx � 1/x, Ey � 3, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c
1
4
, 3 −

1
x

, 1 −
1
x

,
9
4
,
3
4

−
1
x

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, 2􏼒 􏼓

� −
1
4

+
1
4
max 3 −

1
x

, 1 −
1
x

,
9
4

􏼚 􏼛 +
1
5

3
4

−
1
x

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 2􏼒 􏼓≥ 0.

(19)

Tereby, all the theorem’s conditions are fulflled, and
the four maps admit 1 as the sole common fxed point.

Remark 7. Note that Teorem 2 of [33] is inapplicable
because the space is incomplete and the four maps are
discontinuous. Also, we mention that Teorems 4.1 and 4.4
of [34] are not applicable because E(X) � (1/100,

1]∪ 3{ }⊈ 1/2, 1{ } � B(X) and D(X) � (1/10, 1]∪ 3{ }⊈
3/4, 1{ } � C(X).

3. Unique Common Fixed Points for Four
Maps in Dislocated Metric Spaces

In this part, we will present a new type of implicit relations in
order to use them for proving the existence and uniqueness

of a common fxed point for two pairs of occasionally weakly
biased maps of type (A).

3.1. Implicit Relations. Now, let Γ be a set of functions
c: [0, +∞)6⟶ R such that c is nondecreasing in r2, r3, r4,
r5, and r6 and satisfes the next condition:

c(r, r, 2r, 2r, r, r)< 0, (20)

for all r> 0.

Example 6. c(r1, r2, r3, r4, r5, r6) � −r1 + ηmax r2, r3, r4,􏼈

r5, r6}, where η ∈ (0, 1/2).

(i) It is trivial that c is nondecreasing in r2, r3, r4, r5,
and r6.
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(ii) c(r, r, 2r, 2r, r, r) � −r + ηmax
r, 2r, 2r, r, r{ } � r(2η − 1)< 0∀r> 0.

Example 7. c(r1, r2, r3, r4, r5, r6) � −r1 + θ[r2 + r3 + r4 + r5
+ r6], where θ ∈ (0, 1/7).

(i) It is evident to see that c is nondecreasing in vari-
ables r2, r3, r4, r5, and r6.

(ii) c(r, r, 2r, 2r, r, r) � −r + θ[r + 2r + 2r + r + r]

� r(7θ − 1)< 0∀r> 0.

Example 8. c(r1, r2, r3, r4, r5, r6) � −r1 + αr2 + βr3 + δr4
+ λr5 + ωr6, where α, β, δ, λ, ω> 0 and
α + 2(β + δ) + λ + ω< 1.

(i) Clearly, c is nondecreasing in variables r2, r3, r4, r5,
and r6.

(ii) c(r, r, 2r, 2r, r, r) � −r + αr + 2βr + 2δr + λr + ωr �

r[α + 2β + 2δ + λ + ω − 1]< 0∀r> 0.

Theorem 8. Let B, C, D, and E be four maps from a dis-
located metric space (X, d) into itself satisfying

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))≥ 0, (21)

for all x, y ∈ X, where c ∈ Γ. Suppose that maps B and D

(respectively, C and E) are occasionally weakly D-biased
(respectively,E-biased) of type (A); then, mapsB,C,D, and
E possess only one common fxed point.

Proof. As in the demonstration of the frst theorem, since
maps B and D as well as C and E are occasionally weakly
D-biased (respectively, E-biased) of type (A), there are two

points ρ and μ in X such that Bρ � Dρ implies
d(DDρ,Bρ)≤d(BDρ,Dρ) and Cμ � Eμ implies
d(EEμ,Cμ)≤ d(CEμ,Eμ). We need four steps to prove the
existence and uniqueness of the common fxed point, as
follows.

First step: We claim that Bρ � Cμ. Suppose that we
have the contrary; using inequality (21), we get

c(d(Bρ,Cμ), d(Dρ,Eμ), d(Bρ,Dρ), d(Cμ,Eμ), d(Dρ,Cμ), d(Bρ,Eμ))

� c(d(Bρ,Cμ), d(Bρ,Cμ), d(Bρ,Bρ), d(Cμ,Cμ), d(Bρ,Cμ), d(Bρ,Cμ))≥ 0.
(22)

Since c is nondecreasing in the third and fourth var-
iables, we get

0≤ c(d(Bρ,Cμ), d(Bρ,Cμ), d(Bρ,Bρ), d(Cμ,Cμ), d(Bρ,Cμ), d(Bρ,Cμ))

≤ c(d(Bρ,Cμ), d(Bρ,Cμ), 2d(Bρ,Cμ), 2d(Cμ,Bρ), d(Bρ,Cμ), d(Bρ,Cμ)),
(23)

a contradiction, which implies that d(Bρ,

Cμ) � 0⇒Bρ � Cμ.
Second step: If d(BBρ,Bρ)> 0, the use of condition
(21) gives

c(d(BBρ,Cμ), d(DBρ,Eμ), d(BBρ,DBρ), d(Cμ,Eμ), d(DBρ,Cμ),

d(BBρ,Eμ))

� c(d(BBρ,Bρ), d(DDρ,Bρ), d(BBρ,DDρ), d(Bρ,Bρ), d(DDρ,Bρ),

d(BBρ,Bρ))≥ 0.

(24)

Using the properties of c, we get
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c(d(BBρ,Bρ), d(DDρ,Bρ), d(BBρ,Bρ) + d(Bρ,DDρ), 2d(Bρ,BBρ),

d(DDρ,Bρ), d(BBρ,Bρ))≥ 0.
(25)

Again by the nondecreasing assumption of c and using
the relationship between maps B and D, we fnd

c(d(BBρ,Bρ), d(BDρ,Dρ), d(BBρ,Bρ) + d(BDρ,Dρ), 2d(Bρ,BBρ),

d(BDρ,Dρ), d(BBρ,Bρ))≥ 0,
(26)

i.e.,

c(d(BBρ,Bρ), d(BBρ,Bρ), 2d(BBρ,Bρ), 2d(Bρ,BBρ), d(BBρ,Bρ),

d(BBρ,Bρ))≥ 0,
(27)

which is a contradiction, and hence
d(BBρ,Bρ) � 0⇒BBρ � Bρ; consequently,
d(DBρ,Bρ) � 0⇒DBρ � Bρ.

Tird step: Now, assume that d(CCμ,Cμ) is positive;
then,

c(d(Bρ,CCμ), d(Dρ,ECμ), d(Bρ,Dρ), d(CCμ,ECμ), d(Dρ,CCμ),

d(Bρ,ECμ))

� c(d(Cμ,CCμ), d(Cμ,ECμ), d(Cμ,Cμ), d(CCμ,ECμ), d(Cμ,CCμ),

d(Cμ,ECμ))≥ 0.

(28)

Using our hypotheses, we get

c(d(Cμ,CCμ), d(Cμ,EEμ), 2d(Cμ,CCμ), d(CCμ,Cμ) + d(Cμ,EEμ),

d(Cμ,CCμ), d(Cμ,EEμ))≥ 0.
(29)

Ten, we have

c(d(Cμ,CCμ), d(Eμ,CEμ), 2d(Cμ,CCμ), d(CCμ,Cμ) + d(Eμ,CEμ),

d(Cμ,CCμ), d(Eμ,CEμ))

� c(d(Cμ,CCμ), d(Cμ,CCμ), 2d(Cμ,CCμ), 2d(CCμ,Cμ), d(Cμ,CCμ),

d(Eμ,CEμ))≥ 0,

(30)

a contradiction, which implies that d(CCμ,Cμ)

� 0⇒CCμ � Cμ; consequently, d(ECμ,Cμ) � 0
which implies that ECBμ � Cμ.

Fourth step: Put Bρ � Cμ � ζ and assume the exis-
tence of another common fxed point (say ξ); utilizing
(21), we obtain
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c(d(Bζ ,Cξ), d(Dζ,Eξ), d(Bζ,Dζ), d(Cξ,Eξ), d(Dζ ,Cξ), d(Bζ,Eξ))

� c(d(ζ , ξ), d(ζ, ξ), d(ζ, ζ), d(ξ, ξ), d(ζ, ξ), d(ζ, ξ))≥ 0.
(31)

As c is nondecreasing in the third and the fourth var-
iables, we get

c(d(ζ , ξ), d(ζ , ξ), 2d(ζ , ξ), 2d(ξ, ζ), d(ζ, ξ), d(ζ, ξ))≥ 0,

(32)

which is a contradiction; hence, ξ � ζ, and this completes
the proof. □

To support our result, we furnish the next example.

Example 9. Endow X � (−10, +∞) with the dislocated
metric d(x, y) � max |x|, |y|􏼈 􏼉 and establish the following
maps:

Bx �

x for x is in (−10, 0],

1
9
for x is in (0, +∞),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Cx �

x for x is in (−10, 0],

1
8
for x is in (0, +∞),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Dx �

−9x for x is in (−10, 0],

x + 9 for x is in (0, +∞),

⎧⎪⎨

⎪⎩
Ex �

−8x for x is in (−10, 0],

x + 8 for x is in (0, +∞).

⎧⎪⎨

⎪⎩

(33)

First of all, the occasionally weakly biased of type (A)

assumption is satisfed. Defne
c(r1, r2, r3, r4, r5, r6) � −r1 + 1/8(r2 + r3 + r4 + r5 + r6), and
we get

(1) For x, y ∈ (−10, 0], we have Bx � x, Cy � y,
Dx � −9x, Ey � −8y, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c(max |x|, |y|􏼈 􏼉, max |−9x|, |−8y|􏼈 􏼉, max |x|, |−9x|{ },

max |y|, |−8y|􏼈 􏼉, max |−9x|, |y|􏼈 􏼉, max |x|, |−8y|􏼈 􏼉)

� −max |x|, |y|􏼈 􏼉 +
1
8

(max |−9x|, |−8y|􏼈 􏼉 + max |x|, |−9x|{ }

+ max |y|, |−8y|􏼈 􏼉 + max | −9x|, |y|􏼈 􏼉 + max |x|, |−8y|􏼈 􏼉)≥ 0.

(34)

(2) For x, y ∈ (0, +∞), we have Bx � 1/9, Cy � 1/8,
Dx � x + 9, Ey � y + 8, and
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c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c max
1
8
,
1
9

􏼚 􏼛, max |x + 9|, |y + 8|􏼈 􏼉, max
1
9
, |x + 9|􏼚 􏼛,􏼒

max
1
8
, |y + 8|􏼚 􏼛, max |x + 9|,

1
8

􏼚 􏼛, max
1
9
, |y + 8|􏼚 􏼛􏼓

� −
1
8

+
1
8

max |x + 9|, |y + 8|􏼈 􏼉 + max
1
9
, |x + 9|􏼚 􏼛 + max

1
8
, |y + 8|􏼚 􏼛􏼒

+max |x + 9|,
1
8

􏼚 􏼛 + max
1
9
, |y + 8|􏼚 􏼛􏼓≥ 0.

(35)

(3) For x ∈ (−10, 0], y ∈ (0, +∞), we have Bx � x,
Cy � 1/8, Dx � −9x, Ey � y + 8, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c max |x|,
1
8

􏼚 􏼛, max |− 9x|, |y + 8|􏼈 􏼉, max |x|, |−9x|{ },􏼒

max
1
8
, |y + 8|􏼚 􏼛, max |− 9x|,

1
8

􏼚 􏼛, max |x|, |y + 8|􏼈 􏼉􏼓

� −max |x|,
1
8

􏼚 􏼛 +
1
8

􏼒max |−9x|, |y + 8|􏼈 􏼉 + max |x|, |−9x|{ }

+max
1
8
, |y + 8|􏼚 􏼛 + max |−9x|,

1
8

􏼚 􏼛 + max |x|, |y + 8|􏼈 􏼉􏼓≥ 0.

(36)

(4) Finally, for x ∈ (0, +∞), y ∈ (−10, 0], we have
Bx � 1/9, Cy � y, Dx � x + 9, Ey � −8y, and

c(d(Bx,Cy), d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey))

� c max
1
9
, |y|􏼚 􏼛, max |x + 9|, |−8y|􏼈 􏼉, max

1
9
, |x + 9|􏼚 􏼛,􏼒

max |y|, |−8y|􏼈 􏼉, max |x + 9|, |y|􏼈 􏼉, max
1
9
, |−8y|􏼚 􏼛􏼓

� −max
1
9
, |y|􏼚 􏼛 +

1
8

max |x + 9|, |−8y|􏼈 􏼉 + max
1
9
, |x + 9|􏼚 􏼛􏼒

+max |y|, |−8y|􏼈 􏼉 + max |x + 9|, |y|􏼈 􏼉 + max
1
9
, |−8y|􏼚 􏼛􏼓≥ 0.

(37)

Tereby, all hypotheses of the theorem are satisfed; the
four maps accept 0 as the only common fxed point.

Remark 9. Mention thatE(X) � [0, +∞)⊈ (−10, 0] ∪ 1/9{ }

� B(X) and D(X) � [0, +∞)⊈ (−10, 0]∪ 1/8{ } � C(X).
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UsingTeorem 8 and Example 6, we gain the next result. Corollary  0. Suppose that B, C, D, and E are four maps
from a dislocated metric space (X, d) into itself such that for
all x, y ∈ X, the following condition holds:

d(Bx,Cy)≤ ηmax d(Dx,Ey), d(Bx,Dx), d(Cy,Ey), d(Dx,Cy), d(Bx,Ey)􏼈 􏼉, (38)

where η ∈ (0, 1/2). If B and D, C and E are occasionally
weakly D-biased (respectively, E-biased) of type (A), then,
there exists only one point (say θ) which verifes
Bθ � Cθ � Dθ � Eθ � θ.

Proof. Indeed, by assumptions, we have the existence of two
elements ρ and μ in X which verify

Bρ � Dρ implies d(DDρ,Bρ)≤ d(BDρ,Dρ),

Cμ � Eμ implies d(EEμ,Cμ)≤d(CEμ,Eμ).
(39)

Te proof needs four cases.

Case one: assume that Bρ≠Cμ; the use of inequality
(38) gives

d(Bρ,Cμ)≤ ηmax d(Dρ,Eμ), d(Bρ,Dρ), d(Cμ,Eμ), d(Dρ,Cμ), d(Bρ,Eμ)􏼈 􏼉

� ηmax d(Bρ,Cμ), d(Bρ,Bρ), d(Cμ,Cμ), d(Bρ,Cμ), d(Bρ,Cμ)􏼈 􏼉

≤ ηmax d(Bρ,Cμ), 2d(Bρ,Cμ), 2d(Cμ,Bρ), d(Bρ,Cμ), d(Bρ,Cμ)􏼈 􏼉

� 2ηd(Bρ,Cμ)

<d(Bρ,Cμ),

(40)

a contradiction, and hence Bρ � Cμ. Case two: suppose that BBρ≠Bρ; using condition
(38), we get

d(BBρ,Bρ) � d(BBρ,Cμ)≤ ηmax d(DBρ,Eμ), d(BBρ,DBρ), d(Cμ,Eμ), d(DBρ,Cμ), d(BBρ,Eμ)􏼈 􏼉

� ηmax d(DDρ,Bρ), d(BBρ,DDρ), d(Bρ,Bρ), d(DDρ,Bρ), d(BBρ,Bρ)􏼈 􏼉

≤ ηmax d(DDρ,Bρ), d(BBρ,Bρ) + d(Bρ,DDρ), 2d(Bρ,BBρ), d(DDρ,Bρ), d(BBρ,Bρ)􏼈 􏼉

≤ ηmax d(BDρ,Dρ), d(BBρ,Bρ) + d(BDρ,Dρ), 2d(Bρ,BBρ), d(BDρ,Dρ), d(BBρ,Bρ)􏼈 􏼉

� ηmax d(BBρ,Bρ), 2d(BBρ,Bρ), 2d(Bρ,BBρ), d(BBρ,Bρ), d(BBρ,Bρ)􏼈 􏼉

� 2ηd(BBρ,Bρ)

<d(BBρ,Bρ),

(41)
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which is a contradiction, and hence d(BBρ,Bρ)

� 0⇒BBρ � Bρ; consequently, d(DBρ,Bρ) � 0⇒
D Bρ � Bρ.

Case three: now, if d(CCμ,Cμ) is positive, then

d(Cμ,CCμ) � d(Bρ,CCμ)≤ ηmax d(Dρ,ECμ), d(Bρ,Dρ), d(CCμ,ECμ), d(Dρ,CCμ), d(Bρ,ECμ)􏼈 􏼉

� ηmax d(Cμ,ECμ), d(Cμ,Cμ), d(CCμ,ECμ), d(Cμ,CCμ), d(Cμ,ECμ)􏼈 􏼉

≤ ηmax d(Cμ,EEμ), 2d(Cμ,CCμ), d(CCμ,Cμ) + d(Cμ,EEμ), d(Cμ,CCμ), d(Cμ,EEμ)􏼈 􏼉

≤ ηmax d(Eμ,CEμ), 2d(Cμ,CCμ), d(CCμ,Cμ) + d(Eμ,CEμ), d(Cμ,CCμ), d(Eμ,CEμ)􏼈 􏼉

� ηmax d(Cμ,CCμ), 2d(Cμ,CCμ), 2d(CCμ,Cμ), d(Cμ,CCμ), d(Eμ,CEμ)􏼈 􏼉

� 2ηd(Cμ,CCμ)

<d(Cμ,CCμ),

(42)

a contradiction, which implies that
d(CCμ,Cμ) � 0⇒CCμ � Cμ; consequently,
d(ECμ,Cμ) � 0 which implies that ECμ � Cμ.

Case four: put Bρ � Cμ � θ and assume the existence
of another element (say ϑ) which satisfes
Bϑ � Cϑ � Dϑ � Eϑ � ϑ; by inequality (38), we obtain

d(θ, ϑ) � d(Bθ,Cϑ)≤ ηmax d(Dθ,Eϑ), d(Bθ,Dθ), d(Cϑ,Eϑ), d(Dθ,Cϑ), d(Bθ,Eϑ){ }

� ηmax d(θ, ϑ), d(θ, ϑ), d(θ, θ), d(ϑ, ϑ), d(θ, ϑ), d(θ, ϑ){ }

≤ ηmax d(θ, ϑ), d(θ, ϑ), 2d(θ, ϑ), 2d(ϑ, θ), d(θ, ϑ), d(θ, ϑ){ }

� 2ηd(θ, ϑ)

< d(θ, ϑ),

(43)

a contradiction; hence, ϑ � θ, and the uniqueness of the
common fxed point is satisfed; this achieves the proof. □

3.2. Unique Common Fixed Points for a Sequence of Maps

Theorem   . Suppose that D, E, and Bn􏼈 􏼉n�1,2,... are maps
from a metric space (X, d) into itself such that for all x,
y ∈ X, the next condition holds:

c d Bnx,Bn+1y( 􏼁, d(Dx,Ey), d Bnx,Dx( 􏼁, d Bn+1y,Ey( 􏼁, d Dx,Bn+1y( 􏼁( ,

d Bnx,Ey( 􏼁􏼁≥ 0,
(44)

where c ∈ Γ. In addition, assume that maps Bn and D

(respectively, Bn+1 and E) are occasionally weakly D-biased
(respectively, E-biased) of type (A); then, there exists one
element z which satisfes Dz � Ez � Bnz � z for
n � 1, 2, . . ..

Theorem  2. Let D, E, and Bn􏼈 􏼉n�1,2,... be maps from
a dislocated metric space (X, d) into itself such that for all x,
y ∈ X, the following inequality holds:

c(d Bnx,Bn+1y( 􏼁, d(Dx,Ey), d Bnx,Dx( 􏼁, d Bn+1y,Ey( 􏼁, d Dx,Bn+1y( 􏼁,

d Bnx,Ey( 􏼁􏼁≥ 0,
(45)

where c: [0, +∞]6⟶ R is a function, nondecreasing in
variables r2, r3, r4, r5, and r6, and satisfes
c(r, r, 2r, 2r, r, r)< 0 for all r> 0. If Bn and D (respectively,

Bn+1 and E) are occasionally weakly D-biased (respectively,
E-biased) of type (A), then there is only one element z which
verifes Dz � Ez � Bnz � z for n ∈ N.
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4. Application to an Integral Equation

Consider the next integral equation:

u(z) � fn(u(z)) + 􏽚
z

α
y(z, s)jn(s, u(s))ds + 􏽚

β

α
x(z, s)ln(s, u(s))ds, (46)

for all z ∈ [α, β], where

(1) fn: [α, β]⟶ R, n � 1, 2, are continuous.
(2) y(z, s), x(z, s): [α, β] × [α, β]⟶ R+ are continu-

ous functions.
(3) jn, ln: [α, β] × R⟶ [0, +∞], n � 1, 2, are contin-

uous functions.

Let X � C[α, β] be the set of real continuous functions
on [α, β], endowed with the dislocated metric

d(u, v) � ‖u‖∞ +‖v‖∞

� max
z∈[α,β]

u(z) + max
z∈[α,β]

v(z),
(47)

for all u, v ∈ X. It is evident that (X, d) is a dislocated
metric space.

Theorem  3. Integral equation (46) has only one solution in
X for ϱξ2 < 1 and χ + ρξ1/1 − ϱξ2 � η< 1/2 if the next as-
sumptions hold:

(1) 􏽒
β
α maxz∈[α,β] |y(z, s)|ds � ξ1 < +∞.

(2) 􏽒
β
α maxz∈[α,β] |x(z, s)|ds � ξ2 < +∞.

(3) Te functions commute at their each
coincidence point.

(4) Tere is 0< ρ< 1 such that for all s ∈ [α, β] and
u ∈ X, |jn(s, u(s))|≤ ρ|u(s)| for n � 1, 2.

(5) Tere is 0< ϱ< 1 such that for all s ∈ [α, β] and
u ∈ X, |ln(s, u(s))|≤ ϱ|u(s)| for n � 1, 2.

(6) Tere is 0< χ < 1 such that for all s ∈ [α, β],
|fn(s)|≤ χ|s|.

Proof. Defne P, Q, C, D, R, S: X⟶ X by

Pu(z) � f1(u(z)) + 􏽚
z

α
y(z, s)j1(s, u(s))ds,

Qu(z) � f2(u(z)) + 􏽚
z

α
y(z, s)j2(s, u(s))ds,

Mu(z) � 􏽚
β

α
x(z, s)l1(s, u(s))ds,

Nu(z) � 􏽚
β

α
x(z, s)l2(s, u(s))ds,

Ru(z) � (I − M)u(z),

Su(z) � (I − N)u(z),

(48)

where I is the identity function on X.

By the virtue of condition 3, we can see thatP andR as
well as Q and S are occasionally weakly R-biased (re-
spectively, S-biased) of type (A).

Now, we prove that condition (38) of Corollary 10 is
satisfed.

|Pu(z)| � f1(u(z)) + 􏽚
z

α
y(z, s)j1(s, u(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ f1(u(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽚
z

α
y(z, s)j1(s, u(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ f1(u(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + 􏽚
z

α
|y(z, s)| j1(s, u(s))

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤ f1(u(z))
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + ρ􏽚
z

α
|y(z, s)||u(s)|ds

≤ χ max
z∈[α,β]

|u(z) +ρ􏽚
β

α
| y(z, s)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
max
s∈[α,β]

|u(s)|ds

≤ χ‖u‖∞ + ρ‖u‖∞ 􏽚
β

α
max

z∈[α,β]
|y(z, s)|ds,

(49)

which implies that

‖Pu‖∞ ≤ χ + ρξ1( 􏼁‖u‖∞. (50)

It follows that for all u, v ∈ X,

d(Pu,Qv)≤ χ + ρξ1( 􏼁d(u, v). (51)

Similarly, we have

|Mu(z)| � 􏽚
β

α
x(z, s)l1(s, u(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ 􏽚
β

α
|x(z, s)| l1s, u(s)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌ds

≤ ϱ􏽚
β

α
|x(z, s)||u(s)|ds

≤ ϱ􏽚
β

α
|x(z, s) max

s∈[α,β]
|u(s)|ds

≤ ϱ‖u‖∞ 􏽚
β

α
max

z∈[α,β]
|x(z, s)|ds,

(52)

which implies that

‖Mu‖∞ ≤ϱξ2‖u‖∞. (53)

It follows that for all u, v ∈ X,

d(Mu,Nv)≤ ϱξ2d(u, v). (54)
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Hence, we have

d(Ru,Sv) � ‖Ru‖∞ +‖Sv‖∞

� max
z∈[α,β]

Ru(z) + max
z∈[α,β]

Sv(z)

� max
z∈[α,β]

[Ru(z) + Sv(z)]

� max
z∈[α,β]

[(I − M)u(z) +(I − N)v(z)]

� max
z∈[α,β]

[u(z) + v(z)] − max
z∈[α,β]

[Mu(z) + Nv(z)]

� d(u, v) − d(Mu,Nv)≥ d(u, v) − ϱξ2d(u, v)

� 1 − ϱξ2( 􏼁d(u, v),

(55)

which implies that

d(u, v)≤
1

1 − ϱξ2
􏼠 􏼡d(Ru,Sv). (56)

From (51) and (56), we get

d(Pu,Qv)≤
χ + ρξ1
1 − ϱξ2

􏼠 􏼡d(Ru,Sv)

� ηd(Ru,Sv)

≤ ηmax d(Ru,Sv), d(Pu,Ru), d(Qv,Sv), d(Ru,Qv), d(Pu,Sv){ }.

(57)

As a result, the assumptions of Corollary 10 are fulflled.
Tus, there exists only one element u′ ∈ X which satisfes
Pu′ � Qu′ � Ru′ � Su′; consequently, u′ is a unique so-
lution of (46). □

5. Conclusion

Tree common fxed point results for expansive maps
meeting implicit relations are proved in this article. Addi-
tionally, we have determined the basic characteristics of
these maps in metric and dislocated metric spaces. Our
recently created concept of occasionally weakly biased maps
of type (A) served as the foundation for this. Tese fndings
improve a number of previous results about the notion of
common fxed points. Our theorems have been supported by
some illustrated examples; also, a relevant application has
been provided to show the viability and usefulness of one of
these results. Te relevant work shown and discussed in
[4, 5] is expanded upon and improved by our results.
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