Hindawi

International Journal of Mathematics and Mathematical Sciences
Volume 2023, Article ID 6916596, 14 pages
https://doi.org/10.1155/2023/6916596

Research Article

@ Hindawi

Improved Finite Difference Technique via Adomian Polynomial to
Solve the Coupled Drinfeld’s—Sokolov—Wilson System

Israa Th. Younis

and Ekhlass S. Al-Rawi

Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul, Iraq

Correspondence should be addressed to Ekhlass S. Al-Rawi; drekhlass-alrawi@uomosul.edu.iq

Received 20 August 2023; Revised 13 November 2023; Accepted 16 November 2023; Published 6 December 2023

Academic Editor: Chin-Chia Wu

Copyright © 2023 Israa Th. Younis and Ekhlass S. Al-Rawi. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

This study presents a new algorithm for effectively solving the nonlinear coupled Drinfeld’s-Sokolov-Wilson (DSW) system using
a hybrid explicit finite difference technique with the Adomian polynomial (EFD-AP). The suggested approach addresses the
problem of accurately solving the DSW system. Numerical results are obtained by comparing the exact solution with absolute and
mean square errors using a test problem to assess the EFD-AP accuracy against the exact solution and the conventional explicit
finite difference (EFD) method. The results exhibit excellent agreement between the approximate and exact solutions at different
time values, and the results showed that the proposed EFD-AP method achieves superior accuracy and efficiency compared to the
EFD method, which makes it a promising method for solving nonlinear partial differential systems of higher order.

1. Introduction

The exploration of nonlinear equations has a long and
storied history, dating back to ancient civilizations. Math-
ematicians of the past were driven to address challenges
involving curved shapes and nonlinear phenomena. How-
ever, it was not until the 17th century when Sir Isaac Newton
and Gottfried Wilhelm Leibniz developed calculus that the
fundamental groundwork for solving nonlinear equations
began to take shape. Throughout the centuries, renowned
figures in the world of mathematics and science, such as
Lagrange, Gauss, and Poincaré, made substantial contri-
butions to the theory and methods for solving nonlinear
equations [1].

In the 18th and 19th centuries, the finite difference
method emerged as a numerical technique for approxi-
mating solutions to differential equations [2]. Initially, it was
applied to linear equations, but its popularity surged with the
advent of digital computers in the mid-20th century. The
finite difference method involves discretizing the continuous
domain by dividing it into a grid of discrete points and
approximating derivatives using finite difference formulas.
This approach effectively transforms differential equations

into systems of algebraic equations, enabling numerical
solutions. The scope of the finite difference method ex-
panded to encompass nonlinear equations, rendering it
a potent tool for addressing challenges in fields such as
physics, engineering [3], and finance. Various fields, in-
cluding mathematical physics, theoretical physics, and in-
tegrable systems, heavily rely on the coupled
Drinfeld’s-Sokolov-Wilson (DSW) system. Its applications
encompass understanding soliton solutions in nonlinear
wave equations, shedding light on quantum fields and string
theories, and exploring nonlinear dynamics, chaos theory,
and nonlinear optical phenomena, particularly in optical
fiber technology. Moreover, it plays a vital role in in-
formation theory, quantum computing, and mathematical
modeling across numerous physical domains. In the aca-
demic realm, the DSW system serves as an invaluable re-
source for advanced studies and instruction in mathematics
and physics [4].

In summary, nonlinear equations boast a rich historical
background and the development of the finite difference
method has been pivotal in enabling numerical solutions.
These advancements have significantly enhanced our grasp
of intricate nonlinear phenomena and our capacity to
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address real-world challenges. For instance, methods such as
the Adomian decomposition method with modified Bern-
stein polynomials [5], Bernstein polynomials in conjunction
with artificial neural networks [6], and the Elzaki de-
composition method for tackling higher-order inte-
grodifferential equations have all contributed to this
progress  [7-14]. 'The formula for the Drin-
feld’s—Sokolov-Wilson (DSW) system also plays a critical
role in this context [14-18].
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In the system of (1) and (2), p, g, 1, and s are nonzero
constants, originally introduced by Drinfeld, Sokolov [8],
and Wilson [1], and they represent a model for water waves
and find extensive applications in the field of fluid dynamics.
Over the years, various numerical and analytical methods
have been developed to address these equations, including
the Adomian decomposition method [16], the exp-function
method [10], the improved F-expansion method [19], the
bifurcation method [20], and qualitative theory [21]. These
methods offer diverse approaches to solve systems (1) and
(2), contributing to a better understanding of their behavior
and properties. Traditionally, techniques such as the inverse
scattering transform, Hirota’s bilinear method, and other
integrable methods have been employed to analyze the DSW
system.

The motivation behind this research is to introduce
a novel hybrid approach that combines the finite difference
method with the Adomian polynomial. This hybrid method
aims to address the nonlinear term in the DSW system and
handle cases where points fall outside the solution region. By
doing so, this innovative technique enhances the accuracy
and efficiency of the solution while dealing with the non-
linearities present in the system. In this research, we cover
fundamental concepts, the mathematical formulation of the
EFD and EFD-AP methods, their respective algorithms, the
convergence analysis of EFD-AP, and their practical ap-
plication, see [22-24].

2. Main Concepts

2.1. Explicit Finite Difference (EFD) Method. The equations
in question contain a third derivative term, which presents
a distinctive challenge that calls for the adoption of a spe-
cialized numerical solution method. The peculiar impact of
the third derivative on these equations and their behavior

makes it necessary to employ a different approach or method
to ensure accurate and efficient problem solving. To address
this, we will utilize the following set of discrete
equations [25].

Forward formulas:
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2.2. The Adomian Polynomial (AP). The method assumes
that the nonlinear term can be approximated by an infinite
series of polynomials expressed in a specific form.

N(u) = ZAn(uO,ul,...,un), (13)
n=0

where A, are the Adomian polynomials [26] defined as

A, = Un![d"[dp"N (L5, p't;)] pog» where n=0, 1,2, ...
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Now,

Ap = Ugllgys
Ay = Uy, + Ugly
Ay = Uyl + U Uy + Ugllyys

I3

(14)
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The Adomian decomposition method’s stability was
examined in the research conducted by Azim and Hosseini
[27]. Furthermore, the analysis of its convergence was
established by Ahmed [28] and Zhang [19].

3. Methodology

In this section, the finite difference method involves solving
the DSW system by substituting the derivatives in (1) and (2)
with central finite difference derivatives as given in (7) and
(9). This transformation converts the system into a set of
regular algebraic equations that can be solved using standard
methods to determine the values of certain variables. On the
other hand, the hybrid method, which is the EFD-AP
method, relies on replacing the nonlinear component in the
finite differences with central derivatives. After this sub-
stitution, we simplify the system, resulting in a set of al-
gebraic equations that are solved to obtain the values of u
and v.

3.1. Mathematical Formulation of the EFD Method for the
DSW System. When applying the EFD method, solutions
appear outside the region and, therefore, this case is dealt
with in the second equation of the system in the following
manner.

i i i+l

k

vt =y N —51/5 +18v/
1 20’

Suppose that = k/2H?,u = k/2H and by rearranging
the above equation, we get

J
= 24V, + 14v]; -

ALY qy(— 51/{ +18v/

i i i+1

3vi7+4) - Bsv(i, j)(— 3ul +4ul,| - uf+2) —rau(i, j)(—I 3vl + 4l - vl{rz).

m=s n=0

Divide the rectangle R = {(x,t): a< x <b,0<t <c} into
n—1 and m-1 of rectangles length of each side (Ax = H) and
(At = k). We start from t =t, =0, where the solution values
are calculated from the initial conditions as follows:

_ 2
u(x,0) = psech” (x), (15)
v(x,0) = gsech(x).

Then, the calculation of approximations is explained for
u(x,t) and v(x,t), and the grid points of the other rows
{u(xi, tj),v(xi,tj),i =12,...,n-1,j=12,... ,m} and the
solution method will be as follows.

To calculate the approximate value of the solution
u(x;,t j)» we use (3) and the central finite difference (7), and
substituting them into (1), we get

il i
u —u oo Vi T Vi
MG ) Ve g (16)
2 pvj) =

Let o =k/2H and by rearranging the above equation, we

get

u{” = uf —apv(i, j)(v{+1 - vlj_l). (17)

This equation computes the value of the solution u at level
j+1 from the known values of level jati=1,2,...,n—-1
from (1), and to calculate approximate values for the solution
v(x;,t;) when i=1, we use forward difference equations (3),
(4), and (6), and substituting them into (2), we get

2H 2H

- 24sz+2 + 14sz+3 - 3V{+4> + SV(i,j)<_3u{ + 4u{+1 ~ u{+2> + I'U.(i, ])<_3Vl] + 4V1]+1 - Vi]+2) =0.

(19)



Equation (19) denotes the solution v at point x; on
the grid.

International Journal of Mathematics and Mathematical Sciences

To determine the remaining approximate values
v(x;, tj), where i is in the range of 2, 3, ..., n— 2 within the
same row, we substitute the central (7) and (9) into (2) as
follows:

) ol v, il -l V-l
Y T : +q( h = 201 12;13 )+sv(z ])< HIZHMI 1) +ru(i, ])( l+12H ’1) =0. (20)
By compensating for values of &, 8, and y and rear-
ranging equation (20), we get
V{H ‘1/4( Vi =2V, +2VJ ) Bsv (i, J)( Uiy — i‘ 1) aru (i, J)(VJ _V{q)- (21)

Equation (21) computes the value of the solution v at
level j+1 using the known values of level j at
i=3,4,...,n-2.

— 18ul,, + 24u,, — 14ul, +3ul,,) - Psv (i,

This equation calculates the solution v at the point x,,_,
of the grid.

Upon examining the central numerical approximation of
the third derivative as defined in (22), we observe that the
two approximate solutions computed at grid node locations
include values for points situated beyond the boundaries of
the solution domain and these values remain unknown.
Furthermore, the boundary conditions cannot be applied to
these points as they do not fall within the boundary con-
straints. It is important to highlight that the local truncation
error for these points is significant that the local truncation
error for the method is (i, j) = O (k) + O (H?); the method is
stable and its stability condition is 0 < a < 1/2 (Algorithm 1).

Subsequently, we can calculate the values of v at level
j+1wheni=n-1.

Similarly, by substituting the backward equations (10)
and (12) into (2) and rearranging, we obtain

(22)

4”z+1 + ”z+2) - rau(i, j)< 4Vz+1 + V1+2)

D(3u]

3.2. Mathematical Formulation of the EFD-AP Method.
To calculate the approximate value of the solution u (x;,t;),
we substitute the central finite difference (7) into (1), and in
the second step, we substltute the Adomian polynomial
Y% An into (22), i.e, /™" — ul/k + pY S, An = 0, where

A = VoVox

Al =V + VoV

A, = vV, + ViVt VoVoes (23)
.

A, =V Vo Vo1 Vie + VyaVay + o oo+ VoV

Now, by replacing the above derivative by the finite
differences formula

1 (Vi —vE
Ay =, >
2H
j-1 j—1 j Jj
A =V Vier ~ Vic1 ol Vi ~Vie )
2H 2H
j—1 j—1 j
i1 Vis, — Vi if Vigg—V
A = V]+1 i+1 i-1 + V] i+1
2o 2H i 2H
2 : i—1 i—1 j
—1+m —1+n
A= X 2T - (i
m=s n=0
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Input: the values of a, b, h, and confections p, g,r,and s, number of space fragmentation #, and for time m.
Step 1: evaluate H = (b — a)/n space step size and k = t/m time step size.
Step 2: find the values of a=T/2H, f=T/H?, and y=k/2H*
Step 3: compute the initial condition and boundary conditions
u(x,0) = uy (x), v(x,0) = vy (x), a<x<b
u(a,t) =uy (1), u(b,t) = u,(t)
v(a,t) = v, (1), (b,t) =v,(t), 0<t<c.
Step 4: compute the numerlcal solution u ! from
]H -apv(i, ])(v’+l ) where]—l 2,...,m-1,and i=1,2,...,n-1
Step 5: compute the numerlcal solution v/ from
VIt =] qu(=5v] + 18V],, — 24v),, + 14Vl = 3v]) — Bsv(i, ) (<3u) +4ul,, — ul,) —rau(i, j) (<3v] + 4, — ),
where 1— 1 and for i=n —1 compute the numerlcal solution v/* . from
f+ - qu(5u! —18ul,, +24ul,, — 14ul , + 3u,+4) Bsv(i, ])(3u 4"‘t+1 + ”z+2) rou (i, ])(31/‘} 4sz+1 + VH_Z) ;
Step 6 compute the numerical solution vj for i=2, 3, ..., n-2 from v/ =v/ —qu( f =2V,
+2V{71 - i—z) Bsv (i, j) (“i+1 i—l) aru (i, j) (V{H 171)
Step 7: print the numerical solutions u(x,t) and v(x,t).
ALGORITHM 1: Algorithm of the EFD method.
and by compensating equation (24) in (1), we obtain Ay = tgVos
) ; : A =uyvy, +ugv
+1 1+m 1+n —1+n 1 170x 0"1x>
- ZZ(V’ )i ™) = (V™)
m=s n=0 AZ = UpVox T UV T UpVoxo
(25) .
This equation computes the value of the solution u at Ay = Uy Vor + Uy Vi + Uy oVor + o UV 27)
level j + 1 from the known values of level jati = 1,2,...,n— B. —
0 = Yolox>
1 from (1).
To calculate approximate values for the solution v (x;,t ) By = vittg, + Vol
when i =1, we use forward difference equations (3), (4), and B, = vty + ViU, + Volhyrs
(6), and substituting them into (2), we get
ou v X =
ek Poeh ;)An + SZ(:)B” =0, (26) By, = Vylox + Vyq Uy + Vyplhy o Vbl

Now, by replacing the above derivative by the finite

where Y ° An and Y.’ Bn are Adomian polynomials as
follows:

differences formula

i i-1
R via —vh
0 2H )
Y Y Y
A = I/IJ i+l i-1 + ufl i+1 i-1
Lo 2H i 2H )
i1 i1 i i j+1 j+1
A, = uljﬂ VzJ+1 - V{—l + ”zj VzJ+1 V{—l + uljfl V£+1 - V{—1 X
2H 2H 2H
) -
B =} ulp —ul,
0 2H ’
. . ) )
B =/ uly —ul ! uly —ul,
Lo 2H i 2H /)

(28)
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ul \2H) + v (u]ly

B, = v{“ (uf1 - u{:ll/ZH) + v,] (uj

1 i+1 i+1
—u{,l /2H), and so on, we obtain

Vj“ = V] - q‘u(—Svlj + 181/'ii+1 - 241/zJ+2 + 14Vij+3

1 1

0 s

j-l+m j-1+n j-1+n
—ar 2, 2 () (v ™) ™),

m=s n=0

where y = k/2H?, 3 = k/2H.

j+1

m=s n=0

Subsequently, we can calculate the values of v at the level
j+1wheni=n-1.

L . .
vt =] - ‘1.”(51’{ —18v],, +24v],, - 14v]

m=s n=0

By expressing nonlinearities through Adomian poly-
nomials, we can enhance the precision in approximating
nonlinear components. This has the potential to result in
a more precise overall solution, particularly when extending
the polynomial expansion to higher degrees. In addition,
augmenting the number of terms in the Adomian poly-
nomial can boost the efficiency of the method proposed.
However, choosing the optimal number of terms in the
Adomian expansion to strike a balance between accuracy
and computational efficiency can be a challenging task.

where T ; is the local truncation error.

0 s
A <=2 v o) 5 300

14v) ., +3

(7)) )

)< Y S - )

(29)

To determine the remaining approximate values v (x;,f ),
where iisin the range of 2, 3, . . ., n — 2 within the same level,
we substitute the central equations into equation (2) as
follows:

zxﬂwﬁwﬁ-m(ii@rWWMﬂ—wrw)

(30)

Similarly, by substituting the backward equations (10)
and (12) into (2) and rearranging, we obtain

- £ 00 - ()
o £ 3 - 01}

m=s n=0

(31)

Similar to other numerical methods, errors have the po-
tential to propagate and amplify, especially if not applied
correctly.

3.21. Convergence Analysis of the EFD-AP Method.
Consider the approximate solution for the DSW system
from (25) and the exact solutions of this system U, V and all
the necessary derivatives of U, V exist and from (25), we have

(32)
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Input: the values of g, b, h, and confections p,q,r,and s, number of space fragmentation n, and for time m.
Step 1: evaluate H = (b — a)/n space step size and k = t/m time step size.

Step 2: find the values of a=T/2H, f=T/H?, and y=k/2H?

Step 3: compute the initial condition and boundary conditions

u(x,0) = uy (x), v(x,0) = v, (x), a<x<b

u(a,t) =uy (1), u(b,t) = u, (t)

v(a,t) = v, (1), (bt) =v,(t),0<t<c.

Step 4: calculate the Adomian polynomials

ZM OAn = Zm sZn O(V] 1+m) (Vz]+11+n - i—11+n)
Te2oBn = (Tpe Tneo (] " (W = V™)

Step 5: compute the numerical SOlU.thIl u’” from
1 1 1 1
zj+ - u - pk/ZH(Zm:sZnZO( z] +m)(Vz]+1 +”) - ] +”).
where]—12 L,m=1, and1—12 on—1
compute the numerical solution v/* "ati=1 from

V2] g (v 18V~ 240 14 = 39— B (R0 D () ) — ) — ar (50 S (Y ) -
")

i— 1

and the numerical solution v/*" at i=n—1 from ‘ A

VI =] = qu(Sy] = 18v) + 2470 = 14V 4 300 = Bs (80, Do 01 @l = ) = ar (D0 B ] 0L
—‘VJ +Yl)

Step 6: when i=2, 3, .., n-2, compute the numerical solution v/*' from v/ =v/—qu(v/, -2 +2v],

vl ) = B (80 Sy 0 G ) = B (88, S M G <

Step 7: print the numerical solutions u(x, t) and v(x, t).

ALGORITHM 2: Algorithm of the EFD-AP method.

TaBLE 1: Comparing the EFD and EFD-AP methods with the analytical solution for the DSW system for wu.

X Ugxact Ugrp ABSE UEpD-AP ABSE

-20 0.000000000000000 0.000000000000000 0.000000e + 00 0.000000000000000 0.000000e + 00
-18 0.000000000000002 0.000000000000002 0.000000e + 00 0.000000000000003 0.000000e + 00
-16 0.000000000000130 0.000000000000112 1.700000e — 14 0.000000000000152 1.000000e — 15
-14 0.000000000007070 0.000000000006119 9.520000e — 13 0.000000000008297 6.600000e — 14
-12 0.000000000386035 0.000000000334082 5.195200e - 11 0.000000000453014 3.607000e — 12
-10 0.000000021076791 0.000000018240133 2.836658¢ — 09 0.000000024733709 1.969470e — 10
-8 0.000001150753581 0.000000995445776 1.553078e - 07 0.000001350414470 1.075295¢ - 08
-6 0.000062828370830 0.000053705269772 9.123101e— 06 0.000073729242103 5.870768e — 07
—4 0.003428388362795 0.002899003871216 5.293845¢ - 04 0.004022830562664 3.201161e - 05
-2 0.181578470291215 0.181311969465876 2.665008¢e — 04 0.211951898242369 1.627998¢e - 03
0 2.980881623890990 2.999776943549420 1.889532¢ — 02 3.000000000312190 4.799980¢ — 05
2 0.247183304832390 0.242768208620821 4.415096¢ — 03 0.211953050552054 1.640126¢ — 03
4 0.004720311275506 0.005191658272445 4.713470e — 04 0.004022873546090 3.226855e — 05
6 0.000086522352175 0.000096544463815 1.002211e - 05 0.000073730044055 5.917936e - 07
8 0.000001584734592 0.000001782921624 1.981870e — 07 0.000001350429164 1.083933e - 08
10 0.000000029025434 0.000000032665115 3.639681¢ — 09 0.000000024733978 1.985290¢e — 10
12 0.000000000531619 0.000000000598286 6.666600e — 11 0.000000000453019 3.636000e — 12
14 0.000000000009737 0.000000000010958 1.221000e — 12 0.000000000008297 6.700000e — 14
16 0.000000000000178 0.000000000000201 2.200000e — 14 0.000000000000152 1.000000e — 15
18 0.000000000000003 0.000000000000004 0.000000e + 00 0.000000000000003 0.000000 + 00
20 0.000000000000000 0.000000000000000 0.000000e + 00 0.000000000000000 0.000000e + 00
MSE 3.807658e — 04 4.533085844¢ — 05

Bold values represent the overall mean for MSE.
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TaBLE 2: Comparing the EFD and EFD-AP methods with the analytical solution for the DSW system for v.

x VExact VEFD ABSE VEFD-AP ABSE

=20 0.000000007610738 0.000000006675452 9.35286e - 10 0.000000008162226 0.000000e + 00
-18 0.000000056236173 0.000000049325291 6.91088¢e — 09 0.000000060311146 3.000000e - 15
-16 0.000000415532237 0.000000364467339 5.10649¢ - 08 0.000000445642439 1.520000e - 13
-14 0.000003070391012 0.000002693069248 3.77322e-07 0.000003292876984 8.297000e — 12
-12 0.000022687291435 0.000019899092759 2.78820e — 06 0.000024331252426 4.530140e - 10
-10 0.000167637668860 0.000146977305345 2.06604e — 05 0.000179784855851 2.473371e—08
-8 0.001238684022889 0.001074570778155 1.64113e—04 0.001328416707133 1.350414e - 06
—6 0.009152658690634 0.007973830914374 1.17883e—03 0.009817959806057 7.372924e - 05
-4 0.067610535301286 0.068261515182232 6.50980e — 04 0.072999276292701 4.022831e—-03
-2 0.492041285925229 0.524515277312650 3.24740e - 02 0.532436818143197 2.119519¢ - 01
0 1.993617022362784 1.999494403179591 5.87738e—-03 1.999999762175650 3.000000e + 00
2 0.574088616658195 0.539384921903072 3.47037e—-02 0.530772248534432 2.119531e-01
4 0.079333147973226 0.078209018431132 1.12413e—-03 0.073476928282824 4.022874e—-03
6 0.010740723263978 0.011851152313279 1.11043e - 03 0.010011775130338 7.373004¢e - 05
8 0.001453609114015 0.001612040439639 1.58431e—- 04 0.001355290064193 1.350429¢ - 06
10 0.000196724626664 0.000219748058095 2.30234e - 05 0.000183423393176 2.473398e — 08
12 0.000026623783132 0.000029747622897 3.12384e - 06 0.000024823678933 4.530190e - 10
14 0.000003603137231 0.000004025923061 4.22786e - 07 0.000003359519675 8.297000e — 12
16 0.000000487631598 0.000000544849488 5.72179¢ - 08 0.000000454661547 1.520000e — 13
18 0.000000065993760 0.000000073737360 7.74360e — 09 0.000000061531749 3.000000e — 15
20 0.000000008931284 0.000000009979266 1.04798e - 09 0.000000008327417 0.000000e + 00
MSE 1.0495530e - 03 8.93920866¢ — 05

Bold values represent the overall mean for MSE.

Defining the function y;;,, =y

i1 2 j+1
J Ui

and then

This is trivially true for the cases i=0 and i=n+1.

subtracting (25) from (32), we get

€1 <€;+KT, (36)
+ 1+m 1+n "i_l+n
1] ' = Y - ”( z Z( T )( 1]+1 ) _(}’1{11 )) +KkT; ;. and from the initial condition €, = 0 and
m=s n=0
€, <KT,
(33) 1 (37)
€, <2KT,
The initial and boundary conditions are y =0, yO =0,
and y,; =0. by induction, we can show that €; < jKT forall j>0.
w lDeﬁne the function €;_max, g, ¥/}, and €, MaX; 51 Since t; =t,, jK, then t;= jK and
Vi L
|u,¥—uf|sejstT - 1T, (38)
0 s
j+1 1j=ltm j-l4n j—14n
|Y < |Y,' +rl. Z Z( >< Yin ) _(YH ) +KT, We have convergence if keeping x;,¢; fixed and letting
m=s n=0 . . .
i — 00, j — 00,h —> 0,k — 0; we note that since T =
B39 0k +0(H), then T — 0ash— 0,k— 0 and
where T'=max; . |T; |, then therefore qu - UIJI — 0, which gives the convergence.
’ By the same approach, we have the approximate solution
. from (30); similarly, if we take the approximate solution
|€J+1| 'E '+|r| Z Z(:) - 1+m)(( - 1+ﬂ) _(EJ*IM)) +KT, from (29) and (31), we obtain
|ej+1| < 'ej' + KT.
(35)

0 s . .
~ i ~ i14m & j1tn 2 j—1+n
Viz) —Bs Z Z Vi 1 Uiy _<Ui—1 )

m=s n=0

(39)

0 3\ 2j-l4m n
var( Y YOV VL) )k,

i+1
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Figure 1: 2D solutions of the exact, EFD, and EFD-AP methods for each of u and v at a=0 and c=2.
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FiGure 2: 3D solutions of the exact, EFD, and EFD-AP methods for each of u and v at a=0 and ¢=2.
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Figure 3: Comparison EFD, EFD-AP, and exact solutions for u with different times.

. . i+ i+l
By defining the function y, ;,, = vt - v/ ", we get

0 s
v ; : ; ; i i1+m/( 'j-l4n rj=1l+n
Y =] = Ru(v = v+ vl =) s Y Y (VI -y )

m=s n=0

0 s .
Jlm o1an j—1+n
+ar Z Z Vi (Vi+1 —Via ) +KT; ;.

m=s n=0

In these three cases, we have |vlj - \N/Z| — 0, which gives 4, Numerical Application

the convergence.
It is worth mentioning that the proposed method is  Theanalytic solution of the DSW system given by [2, 29] is as

stable and its stability condition is 0 < R< 1/2 (Algorithm 2).  follows:
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(41)

u(x,t) = %sech2<\g (x—ct—a)),
v(x,t) = csech( <§> (x—ct —a)).

To assess the accuracy and convergence of the numerical
solution in comparison to the exact solution (as outlined in
(41) and (42)), we will employ two error criteria, namely, the
absolute error (ABSE) and the mean square error (MSE).
These error metrics enable us to quantitatively evaluate how
closely the numerical solution aligns with the exact solution.
The application of these error measures yields valuable in-
sights into the effectiveness and reliability of the numerical
method being used.

(42)

ABSE = u; (x,£) — u(x, )],

e oy @

n

MSE =

When equations (1) and (2) are solved by equations (3),
4), (6), (7), (9), (10), and (12), the results are shown in
Tables 1 and 2, all computations we fixed a =0,
c=2,t=001, H=04,k=0.002, and s=5 are the
number of iterations by using MATLAB R2022a.

Comparing Tables 1 and 2, it becomes evident that the
MSE values obtained through the proposed technique
surpass those achieved by the explicit approach. This implies
that better results can be achieved using the proposed
method. In addition, Figures 1 and 2 depict the exact
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solution alongside the numerical solutions generated by the
EFD and EFD-AP methods for both u and v. These visual
representations correspond to specific parameter values,
namely, a=0, c=2, t=0.01, H=0.4, k=0.002, and s=5,
where “s” denotes the number of iterations in 2D and 3D,
respectively.

These results underscore the efficiency of the EFD-AP
method in adeptly managing the nonlinearity within the
equation, leading to accurate and efficient solutions. In
addition, the comparison of outcomes derived from the
EFD-AP and EFD methods against the exact solution further
reinforces this point.

5. Conclusion

In this study, we introduce a novel approach called EFD-AP,
which integrates the finite difference method with the
Adomian polynomial to address the nonlinearity within the
DSW system. This innovative method offers a fresh per-
spective on handling the nonlinear aspects of the equations,
resulting in improved accuracy and efficiency of the solu-
tions. By combining the strengths of these two methods, our
goal is to overcome the limitations of conventional nu-
merical techniques, achieve more precise approximations
for the DSW system, and address situations where points fall
outside the solution region. The finite difference method
provides a robust framework for discretizing the equations
in space, while the Adomian polynomial offers a systematic
and efficient method for solving the resulting nonlinear
subproblems. We conducted a convergence analysis of the
proposed method and found that EFD-AP exhibits greater
stability compared to the EFD method, as shown in Figure 3,
as evidenced by the results presented in Tables 1 and 2 and in
Figures 1-4. The EFD-AP approach offers enhanced com-
putational efficiency, higher precision, reduced mean square
error, improved stability with larger time step sizes, and
faster convergence. This approach also proves to be highly
efficient and suitable for approximating solutions. In the
future, this method can be extended to tackle nonlinear
fractional systems and nonlinear fuzzy systems. In addition,
there is a potential to develop new techniques by combining
the homotopy method with the finite difference method.
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