
Research Article
Nth Composite Iterative Scheme via Weak
Contractions with Application

Tariq Qawasmeh ,1 Anwar Bataihah ,2 Khalaf Bataihah ,3 Ahmad Qazza ,4

and Raed Hatamleh 1

1Department of Mathematics, Faculty of Science and Information Technology, Jadara University, Irbid, Jordan
2Ministry of Education, Irbid, Jordan
3Department of Basic and Applied Sciences, Shoubak University College, Al-Balqa Applied University, Al-Salt, Jordan
4Department of Mathematics, Zarqa University, Zarqa 13110, Jordan

Correspondence should be addressed to Ahmad Qazza; aqazza@zu.edu.jo

Received 13 February 2023; Revised 14 May 2023; Accepted 26 June 2023; Published 19 July 2023

Academic Editor: Seppo Hassi

Copyright © 2023 Tariq Qawasmeh et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Te main goal of this study is to formulate an efective iterative scheme, namely, an nth− composite iterative scheme for ap-
proximating the fxed point of a self-map T: U⟶ U with weak contraction property. We show that the nth− composite iterative
scheme is faster than the scheme obtained by Sintunavarat–Pitea’s iterative scheme. We present some examples using the
MATLAB simulator to illustrate our results. Finally, we approximate the solution of some integral equations using our scheme and
the Sintunavarat–Pitea scheme.

1. Introduction

Te main concern of fxed point theory in distance spaces
is to determine the existence and uniqueness of solutions
to problems not only in mathematics but also in other
felds of science. Many well-known equations can easily
be converted to fxed-point equations. One of the im-
portant applications of fxed point theory is also the
solution of integral and diferential equations (existence
and uniqueness). However, the challenges are to create
some iteration to speed up the computation or approach
the solution for such problems. Some creative researchers
used iteration schemes to compute the fxed point
numerically.

Te result of Banach [1] is considered a principle in the
theory of the fxed point. After that, many generalizations of
this result were obtained by many researchers, see [2–20].
For example, Berinde [21] introduced the weak contraction
as follows.

Defnition 1 (See [21]). Suppose (U, d) is a metric space and
T: U⟶ U is a self-mapping onU. Ten, we call T a weak
contraction if for some k ∈ 0, 1 and β≥ 0, the following in-
equality holds for all u1, u2 ∈ U, we have the following
equation:

d Tu1, Tu2( 􏼁≤ kd u1, u2( 􏼁 + βd u1, Tu2( 􏼁. (1)

In normed, the weak contraction is as follows:

Tu1 − Tu2
����

����≤ k Tu1 − Tu2
����

���� + β u1 − Tu2
����

����. (2)

In this paper, we consider the weak contraction when
β � 0.

In general, fxed point theory has studied the uniqueness
and existence of fxed points for self-maps under certain
conditions and has various applications in several felds of
science such as economics, physics, applied mathematics,
and some engineering subjects.
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In mathematics, certain equations can easily be con-
verted into fxed-point equations, for example, the integral
equations,

ω(t) � ω0 + 􏽚
t

t0

H(r,ω(r))dr, (3)

where H is continuous with H: I × R⟶R and ω ∈ C(I)

where C(I) is the class of real valued and continuous
functions and I is an interval inR.Tis integral equation has
identically a solution to which is the solution of the fxed
point for the self-mapping L: C(I)⟶ C(I) which is de-
fned as follows:

Lω(t) � ω0 + 􏽚
t

t0

H(r,ω(r))dr. (4)

Numerical analysis plays a key role in creating an it-
eration scheme for approximating fxed points for self-maps
that require some constraints by less iterations. Many re-
searchers have obtained several iteration schemes for ap-
proximating the existing fxed points for self-maps, see
[22–24]. For example, Sintunavarat and Pitea [25] estab-
lished an iteration process by which (Sn) is defned as
follows:

s0 ∈ C,

xn � 1 − bn( 􏼁sn + bnTsn,

yn � 1 − cn( 􏼁sn + cnxn,

sn+1 � 1 − an( 􏼁Tyn + anTxn.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sn( 􏼁 (5)

Recently, Berinde [26] introduced some defnitions for
the convergence rate, which is important for our study.

Defnition 2. [26] Suppose that (βn) and (cn) are two se-
quences in R and β, c, r ∈ R such that limn⟶ +∞βn � β and
limn⟶ +∞cn � c assume that

lim
n⟶+∞

βn − β
cn − c

� r. (6)

(1) If r � 0, then (βn) converges to β faster than (cn) to c

(2) If r ∈ (0, +∞), then (βn) and (cn) have the same rate
of convergence

Defnition 3. [26] Suppose that (U, ‖.‖) is a normed space
and (un) and (tn) are two sequences inU. Also, assume that
the two sequences (un) and (tn) are converges to an element
u ∈ U. Ten, the error estimates ‖un − u‖≤ βn and
‖tn − u‖≤ cn are available and (βn) and (cn) are in 0, +∞
such that βn, cn⟶ 0.

If βn⟶ 0 faster than cn⟶ 0, then un⟶ u faster
than tn⟶ u.

2. Main Results

Next, we construct a new iterative scheme, namely, nth−

composite iterative scheme for approximating the fxed
point of a self-mapping T on U of weak contraction kind.

Henceforth, we assume that (U, ‖.‖) is a Banach space,
∅≠C⊆U is closed and convex, and T: C⟶ C is a self-
mapping. We defne the nth− composite iterative scheme
(BQn) by the following expression:

b0 ∈ C,

wn � 1 − an
′( 􏼁T

n
bn + an
′Tn+1

bn,

qn � 1 − an
″( 􏼁T

n
bn + an
″Tn

wn,

bn+1 � 1 − an( 􏼁T
n+1

qn + anT
n+1

wn.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

BQn( 􏼁 (7)

Theorem 4. Suppose that T: C⟶ C satisfes condition 1
and u is a fxed point of T. If (bn) is a sequence in C defned by
(QBn), and (an), (an

′) and (an
″) are sequences in C such that

(an) in [a, 1 − a], (an
′) in [a′, 1 − a′], and (an

″) in [a′, 1 − a″],
with a, a′, a″ ∈ (0, 1/2). If a≥ a″/2, then BQn⟶ u faster
than (Sn).

Proof. For any positive integer n, utilizing (BQn), we obtain
the following equation:

bn+1 − u
����

���� � 1 − an( 􏼁T
n+1

qn + anT
n+1

wn − u
����

����

≤ 1 − an( 􏼁 T
n+1

qn − u
����

���� + an T
n+1

wn − u
����

����

≤ k
n+1 1 − an( 􏼁 qn − u

����
���� + an wn − u

����
����􏽨 􏽩.

(8)

So,

bn+1 − u
����

����≤ k
n+1 1 − an( 􏼁 qn − u

����
���� + an wn − u

����
����􏽨 􏽩. (9)

Now,

qn − u
����

���� � 1 − an
″( 􏼁T

n
bn + an
″Tn

wn − u
����

����

≤ 1 − an
″( 􏼁 T

n
bn − u

����
���� + an
″ T

n
wn − u

����
����

≤ k
n 1 − an

″( 􏼁 bn − u
����

���� + an
″ wn − u
����

����􏽨 􏽩.

(10)

Terefore,

qn − u
����

����≤ k
n 1 − an

″( 􏼁 bn − u
����

���� + an
″ wn − u
����

����􏽨 􏽩. (11)

In addition,

wn − u
����

���� � 1 − an
′( 􏼁T

n
bn + an
′Tn+1

bn − u
����

����

≤ 1 − an
′( 􏼁 T

n
bn − u

����
���� + an
′ T

n+1
bn − u

����
����

≤ k
n 1 − an

′( 􏼁 bn − u
����

���� + kan
′ bn − u
����

����􏽨 􏽩

� k
n 1 − (1 − k)an

′( 􏼁 bn − u
����

����􏽨 􏽩.

(12)

Terefore,

wn − u
����

����≤ k
n 1 − (1 − k)an

′( 􏼁 bn − u
����

����􏽨 􏽩. (13)

From (11) and (13), we obtain the following equation:

qn − u
����

����≤ k
n 1 − an

″( 􏼁 bn − u
����

���� + an
″ wn − u
����

����􏽮 􏽯

≤ k
n 1 − an

″( 􏼁 bn − u
����

���� + k
n
an
″ 1 − (1 − k)an

′􏼂 􏼃􏽮 􏽯 bn − u
����

����

� k
n 1 − 1 − k

n
( 􏼁an

″ − (1 − k)k
n
an
″an
′􏼈 􏼉 bn − u

����
����.

(14)
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Tus,

qn − u
����

����≤ k
n 1 − 1 − k

n
( 􏼁an

″ − (1 − k)k
n
an
″an
′􏼈 􏼉 bn − u

����
����.

(15)

Now,

bn+1 − u
����

����≤ k
n+1 1 − an( 􏼁 qn − u

����
���� + an wn − u

����
����􏽮 􏽯

≤ k
n+1 1 − an( 􏼁k

n 1 − 1 − k
n

( 􏼁an
″ − (1 − k)k

n
an
″an
′􏼈 􏼉 bn − u

����
���� + an wn − u

����
����􏽮 􏽯

≤ k
n+1 1 − an( 􏼁k

n 1 − 1 − k
n

( 􏼁an
″ − (1 − k)k

n
an
″an
′􏼈 􏼉􏼈

+ank
n 1 − (1 − k)an

′( 􏼁􏼉 bn − u
����

����

� k
2n+1 1 − an( 􏼁 1 − 1 − k

n
( 􏼁an

″ − (1 − k)k
n
an
″an
′􏼂 􏼃􏼈

+an 1 − (1 − k)an
′( 􏼁􏼉 bn − u

����
����

� k
2n+1 1 − 1 − k

n
( 􏼁 1 − an( 􏼁an

″ − (1 − k)an
′ k

n
an
′ 1 − an( 􏼁 + an􏼂 􏼃􏼈 􏼉 bn − u

����
����

≤ k
2n+1 1 − 1 − k

n
( 􏼁aa

″
− (1 − k)a

′
k

n
a
″
a + a􏼔 􏼕􏼚 􏼛 bn − u

����
����

� k
2n+1 1 − 1 − k

n
( 􏼁aa

″
− (1 − k)aa

′ 1 + k
n
a
″

􏼔 􏼕􏼚 􏼛 bn − u
����

����.

(16)

Terefore,

bn − u
����

����≤ k
2n 1 − 1 − k

n− 1
􏼐 􏼑aa

″
− (1 − k)aa

′ 1 + k
n− 1

a
″

􏼔 􏼕􏼚 􏼛
n

b0 − u
����

����. (17)

But the iterative process tn implies

sn − u
����

����≤ s0 − u
����

���� 1 − a
′
(1 − k) a

″
− a 1 − a

″
􏼒 􏼓􏼒 􏼓􏼚 􏼛

n

.

(18)

Let αn � k2n 1 − (1 − kn− 1)aa″ − (1 − k)aa′􏽮 [1+ kn− 1c]}n

‖b0 − u‖ and

βn � 1 − (1 − k)a
′

a
″

− a 1 − a
″

􏼒 􏼓􏼒 􏼓􏼚 􏼛
n

s0 − u
����

����. (19)

Ten, we obtain the following equation:

lim
n⟶+∞

bn − u
����

����≤ lim
n⟶+∞

k
2n 1 − 1 − k

n− 1
􏼐 􏼑aa

″
− (1 − k)aa

′ 1 + k
n− 1

a
″

􏼔 􏼕􏼚 􏼛
n

b0 − u
����

���� � 0, (20)

and

lim
n⟶+∞

sn − u
����

����≤ lim
n⟶+∞

1 − (1 − k)a
′

a
″

− a 1 − a
″

􏼒 􏼓􏼒 􏼓􏼚 􏼛
n

s0 − u
����

���� � 0. (21)

Since α1 � k2 1 − (1 − k)aa′[1 + a″]􏽮 􏽯 ‖b0 − u‖< β1 �

1 − (1 − k)a′(a″ − a(1 − a″))􏽮 􏽯 ‖s0 − u‖, we have

lim
n⟶+∞

k2n 1 − 1 − kn− 1( 􏼁aa″ − (1 − k)aa′ 1 + kn− 1a″􏽨 􏽩􏽮 􏽯

1 − (1 − k)a′ a″ − a 1 − a″( 􏼁( 􏼁

⎧⎨

⎩

⎫⎬

⎭

n

� 0. (22)
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Consequently, we obtain our result. □

3. Numerical Examples

Example 1. Suppose U � R with the usual normed and
suppose C � [0, 50]. Assume that T: C⟶ C is defned by
T(x) � (5x2 − 2x + 48)1/3. Let a � 0.45, a′ � 0.25, and a″ �

0.1 and let an � 0.45, an
′ � 0.75 − (1/(4 + n)) and

an
″ � 0.4 + (1/(2 + n)), n ∈ N∪ 0{ }. By mean value theorem,

one can insures that T satisfes condition 1. Moreover, the
sequences (an), (an

′), and (an
″) and the constants a, a′, and a″

satisfy the conditions of Teorem 4 Tus, (BQn) is faster
than (Sn). Table 1 illustrates the results obtained by using
(BQn) and (Sn) for reckoning the approximated fxed point
of T when we start from an arbitrary point b0 � 50.

One can see in the above table that the solution was
attained by BQn scheme at 8th round while it needed 39th

round to be achieved through Sn scheme which means that
BQn is faster and more efective than Sn under the assumed
conditions.

Example 2. Suppose U � R with the usual normed and
suppose C � [0, 2]. Assume that T: C⟶ C is defned by
T(x) � esinx− 3/2. Let a � 0.35, a′ � 0.25, and a″ � 0.1 and let
an � 0.6 − (2/(9 + n)), an

′ � 0.75 − (1/(4 + n)) and
an
″ � 0.2, n ∈ N∪ 0{ }. By mean value theorem, one can in-

sures that T satisfes condition 1. Moreover, the sequences
(an), (an

′), and (an
″) and the constants a, a′, and a″ satisfy the

conditions of Teorem 4. Tus, (BQn) is faster than (Sn).
Table 2 illustrates the results obtained by using (BQn) and
(Sn) for reckoning the approximated fxed point of T when
we start from an arbitrary point b0 � 2.

BQn is faster and more efective than Sn under the as-
sumed conditions since one can see in the above table that
the solution was attained by BQn scheme at 6th round while
it needed 22th round to be achieved through Sn scheme.

Example 3. Suppose U � R with the usual normed and
suppose C � [0, 1]. Assume that T: C⟶ C is defned by
T(x) � 1 + x2/7 − x2. Let a � 0.35, a′ � 0.25, and a″ � 0.1
and let an � 0.6 − (2/(9 + n)), an

′ � 0.75 − (1/(4 + n)), and
an
″ � 0.4 + (1/(2 + n)), n ∈ N∪ 0{ }. It follows by mean value

theorem that T satisfes condition 1. Moreover, the se-
quences (an), (an

′), and (an
″) and the constants a, a′, and a″

satisfy the conditions of Teorem 4. Tus, (BQn) is faster
than (Sn). Table 3 illustrates the results obtained by using
(BQn) and (Sn) for reckoning the approximated fxed point
of T when we start from b0 � 0.

Observe that under the assumed conditions BQn is faster
and more efective than Sn since one can see in Tables 1–3
that the solution was attained by BQn scheme at 4th round
while it needed 10th round to be achieved through Sn

scheme.

4. Applications

Next, we aim to give an application on our result in physics
particularly the newton law of heat transfer. For that end, we
need the following results.

Lemma  (See [27, 28]). w(x) is a solution for the I.V.P (the
initial value problem)

Table 2: Te results obtained by using (BQn) and (Sn) for reck-
oning the approximated fxed point of T when we start from b0 � 2.

Steps BQn Sn

1 0.582038390039836 0.578010282006729
2 0.305245535842560 0.364824050158744
3 0.299794445763490 0.313785066271133
4 0.299786904117514 0.302692991943990
5 0.299786903282173 0.300379353073023
6 0.299786903282166 0.299906280405721
⋮ ⋮ ⋮
19 0.299786903282166 0.299786903282234
20 0.299786903282166 0.299786903282179
21 0.299786903282166 0.299786903282168
22 0.299786903282166 0.299786903282166
23 0.299786903282166 0.299786903282166

Table 3: Te results obtained by using (BQn) and (Sn) for reck-
oning the approximated fxed point of T when we start from b0 � 0.

Steps BQn Sn

1 0.143592129157553 0.143586038445553
2 0.146365378902920 0.146295558732113
3 0.146365489032898 0.146363792725813
4 0.146365489032909 0.146365448771654
5 0.146365489032909 0.146365488088288
6 0.146365489032909 0.146365489010892
7 0.146365489032909 0.146365489032398
8 0.146365489032909 0.146365489032897
9 0.146365489032909 0.146365489032908
10 0.146365489032909 0.146365489032909
11 0.146365489032909 0.146365489032909

Table 1: Te results obtained by using (BQn) and (Sn) for reck-
oning the approximated fxed point of T when we start from
b0 � 50.

Steps BQn Sn

1 19.073217881051000 19.097061775637600
2 7.078653010637430 10.841595160852900
3 6.028447204181710 7.947865238145880
4 6.000212620262850 6.805241334232650
5 6.000000455488770 6.335322149502770
6 6.000000000282000 6.139844663267220
7 6.000000000000050 6.058315233977350
8 6 6.024304287747400
⋮ ⋮ ⋮
37 6 6.000000000000200
38 6 6.000000000000080
39 6 6
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ζ ′(t) � H(t, ζ(t)), ζ t0( 􏼁 � ζ0; (23)

⇔ζ(t) � ζ0 + 􏽚
t

t0

H(r, ζ(r))dr. (24)

Let I is an interval in R and let C(I) stands for the class
of real-valued continuous functions ζ: I⟶ R with the
sup-norm

‖ζ‖∞ � supt∈I|ζ(t)|. (25)

Te theorem below is obtained in [29].

Theorem 6. [29] Suppose H: I × R⟶ R, where I is an
interval in R and let t0 be an interior point of I. Assume that
H(t, x) is a continuous function of (t, x) satisfying the fol-
lowing condition for some μ> 0

|H(t, x) − H(t, y)|≤ μ|x − y|, (26)

for all x, y ∈ R, t ∈ I. Ten, equation (23) has a unique
continuously diferentiable solution w ∈ C(I).

Newton’s law of cooling is formed as a diferential
equation predicting the cooling of a warm body in a cold
environment, which can be formed as follows:

x
′
(t) � − μ x(t) − xδ( 􏼁, (27)

where x(t) is temperature of the object, xδ the environment
temperature which is constant, and μ is a constant of
proportionality.

If x(t0) � x0, then we get the I.V.P.

x
′
(t) � − μ x(t) − xδ( 􏼁, x t0( 􏼁 � x0. (28)

Suppose H(t, x) � − μ (x(t) − xδ). Ten, it is easy to
verify that H satisfes condition 13. Hence, by Teorem 10,
there is a unique solution for 15.

In fact, one can solve 15 to fnd that the exact solution is

x(t) � xδ + x0 − xδ( 􏼁 e
− μ t− t0( ). (29)

Now, we move on to show the usability of the
nth− composite scheme (BQn) through the following
example.

Example 4. A piece of iron with an initial temperature of
920° is removed from the furnace and then placed in a room
with a temperature of 20° to cool. Suppose that the tem-
perature of the piece of iron initially decreases at a rate of
9°/min. What is the relationship between the temperature of
the piece of iron and time?

Assuming that the iron piece follows the Newton’s law
for cooling, so we obtain the following equation:

x
′
(t) � − μ x(t) − xδ( 􏼁, x(0) � 920, x

′
(0) � − 9. (30)

It is easy to fgure out that μ � 0.01, hence the solution is
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Figure 1: Comparative results between the exact solution and the
6th term obtained by BQn and Sn schemes.
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x(t) � 900 e
− 0.01t

+ 20. (31)

Next, suppose Tx(t) � 920 + 􏽒
t

0 − 0.01(x(r) − 20)dr,
where H(t, x) � − 0.01(x(t) − 20). Ten, T has a unique
fxed point after the argument in Teorem 10.

Figures 1–3 show the results for calculating the ap-
proximate fxed point of T when we start at x(t) � cos t.
Note that we only do 6 iterations with MATLAB.

5. Conclusions

In the presented study, we developed a new iterative scheme
for approximating the fxed point for weak contraction-type
mappings. In the numerical examples, we conclude that our
iterative scheme computes the fxed point faster than that of
Sintunavarat–Pitea. We approximated the function that
described the relation between time and temperature of
some materiel that obeys Newton’s law for heat transfer by
utilizing our signifcant scheme. Tis application shows the
applicability of the fxed point theory in diferent scientifc
felds.
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