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Topological index (TI) is a mapping that associates a real number to the under study (molecular) graph which predicts its various
physical and chemical properties. Te generalized degree distance index is the latest developed TI having compatible signifcance
among the list of distance-based TIs. In this paper, the minimum generalized degree distance of unicyclic, bicyclic, and four cyclic
graphs is determined. Mainly, the associated extremal (minimal) graphs are also identifed among all the aforesaid classes of
graphs.

1. Introduction

Let class of n-vertices connected graphs is denoted by Gn.
Ten, Gα

n represents the subclass of Gn with α linearly in-
dependent cycles and n + (α − 1) edges. In this paper, α �

1, 2, 4 is considered. For any graph G ∈ Gn, d(a, b) repre-
sents the shortest distance between the vertices a, b ∈ V(G),
and the maximum of d(a, b) for any a, b ∈ V(G) is defned
to be the diameter of G, denoted by di am(G). A well-known
topological index is the Wiener index, which gives the sum
of distances between all pairs of vertices of a graph. A new
graph invariant named degree distance was introduced by
Dobrynin and Kotchetova [1] and Gutman [2] and defned
as

D
′
(G) � 􏽘

a,b{ }⊆V(G)

d(a, b)(d(a) + d(b)). (1)

For a graph G, an additively weighted Harary index is
given by [3]

HA(G) � 􏽘
a,b{ }⊆V(G)

d
−1

(a, b)(d(a) + d(b)). (2)

For every vertex a, the generalized degree index denoted
by Hλ(a) is defned as follows:

Hλ(a) � D
λ
(a)dG(a), (3)

where Dλ(a) � 􏽐b∈V(G)d
λ(a, b). For a graph G,

Hλ(G) � 􏽘
a∈V(G)

Hλ(a) � 􏽘
a,b{ }⊆V(G)

d
λ
(a, b)(d(a) + d(b))

�

HA(G), if λ � −1,

4m, if λ � 0,

D
′
(G), if λ � 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

where λ is a real number. Let τ be a family of graphs a graph
G′ ∈ τ is called extremal graph if τ(G′)≤ τ(G′)∀G ∈ τ or
τ(G′)≥ τ(G′)∀G ∈ τ.

1.1. Research Gaps and Motivation. Asma et al. found the
minimum generalized degree distance of tricyclic graphs in
[5]. Moreover, Jianzhong et al. [6] have found degree dis-
tance topological indices for derived graphs. One can also
fnd the results on the degree distance of strong products of
graphs in [7]. Tis suggests that there is still room for the
research on the topic of the minimum generalized degree
distance of n-cyclic graphs for n � 1, 2, and 4.
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1.2. Novelty and Contributions. In this paper, all the
extremal unicyclic, bicyclic, and four cyclic graphs having
minimum generalized degree distance are determined.
Troughout this paper, G1

n, G2
n and G4

n denote the class of
unicyclic, bicyclic, and four cyclic graphs on n vertices,
respectively.

2. Applications

Te topological indices fnd their application in the areas of
chemistry such as drug discovery, fnding the physio-
chemical properties of compounds such as melting point,
boiling point, and π-electron energy. Also, they are helpful
in providing the correlation between the aforesaid properties
of chemical compound and thermodynamical properties.
Moreover, it explains the molecular branching and cyclicity
of chemical compound. Moreover, it also establishes cor-
relations with various parameters of chemical compounds.
To fnd more on their applications in chemical strata, see
[4, 8, 9].

3. Classification of Cyclic Graphs

Te characterizations of connected unicyclic, bicyclic, and 4-
cyclic graphs by their degree sequence are given as follows.

Lemma 1 (see [10]). Te degrees of vertices of a unicyclic
graph are the integers n − 1≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 1, if and
only if:

(i) n≥ 3
(ii) 􏽐

n
j�1aj � 2n

(iii) aj ≥ 2, for at least three indices

Lemma 2 (see [10]). Te degrees of the vertices of a bicyclic
graph are the integers n − 1≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 1 if and only
if:

(i) n≥ 4
(ii) 􏽐

n
j�1ai � 2n + 2

(iii) ai ≥ 2, for at least four indices
(iv) a1 ≤ n − 1.

Lemma 3 (see [11]). Te degrees of the vertices of a four cyclic
graph are the integers n − 1≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 1 if and only
if:

(i) n≥ 5
(ii) 􏽐

n
j�1ai � 2n + 6

(iii) ai ≥ 2, for at least fve indices.

Let the number of vertices of graph G of degree i is
denoted by bi, for 1≤ i≤ n − 1. If dG(v) � t, then

D
λ
(a) � 􏽘

b∈V(G)

d
λ
(a, b) � 􏽘

a,b{ }⊆V(G),d(a,b)�1
d
λ
(a, b) + 􏽘

a,b{ }⊆V(G),d(a,b) ≥ 2
d
λ
(a, b)

≥ 2λn − 2λ(t + 1) + t,

Hλ(G) � 􏽘
a∈V(G)

dG(a)Dλ(a)≥ 􏽘
n−1

t�1
tbt 2λn − 2λ(t + 1) + t􏼐 􏼑.

(5)

Let us denote

Fλ b1, b2, . . . , bn−1( 􏼁 � 􏽘
n−1

t�1
tbt 2λn − 2λ(t + 1) + t􏼐 􏼑. (6)

To determine the minimum of Fλ(b1, b2, . . . , bn−1) over
all integers b1, b2, . . . , bn−1, which satisfy the conditions of
above three lemmas.

Tus, Lemma 1-Lemma 3 with the help of aforesaid
notions can be rewritten as follows:

Lemma 4 (see [10]). Te integers b1, . . . , bn−1 ≥ 0 are the
multiplicities of the degrees of a unicyclic graph if and only if:

(i) n≥ 3
(ii) 􏽐

n−1
i�1 bi � n

(iii) 􏽐
n−1
i�1 ibi � 2n

(iv) b1 ≤ n − 3

Lemma 5 (see [10]). For bicyclic graph, the integers
b1, . . . , bn−1 ≥ 0 represent the multiplicities of the degrees of
vertices if and only if:

(i) n≥ 4
(ii) 􏽐

n−1
i�1 bi � n

(iii) 􏽐
n−1
i�1 ibi � 2n + 2

(iv) b1 ≤ n − 4

Lemma 6 (see [11]). Te integers b1, . . . , bn−1 ≥ 0 are the
multiplicities of the degrees of a four cyclic graph if and only if:

(i) n≥ 5
(ii) 􏽐

n−1
i�1 bi � n

(iii) 􏽐
n−1
i�1 ibi � 2n + 6

(iv) b1 ≤ n − 5
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Te set of vectors (b1, b2, . . . , bn−1), which satisfy the
conditions of Lemma 4, 5, and 6, is denoted by △1,△2, and
△3, respectively.

Now, we consider the transformation T1, which is de-
fned for i≥ 2, j> 0, i + j≤ n − 2, bi ≥ 1, bj ≥ 1, as follows [10]:
T1(b1, . . . , bn−1) � (b1′, . . . , bn−1′) � (b1, . . . , bi−1 + 1, bi − 1,

. . . , bi+j − 1, bi+j+1 + 1, . . . , bn−1).
We have bm � bm

′ for m≠ i − 1, i, i + j, i + j + 1􏼈 􏼉.
Let 2≤ i≤ i − 2 and bi ≥ 2 the transformation T2 defned

as t2(b1, . . . , bn−1) � (b1′, . . . , bn−1′) � (b1, · · · ., bi−1 + 1, bi

−2, bi+1 + 1, . . . , bn−1) for bm � bm
′ for m≠ i − 1, i, i + 1{ }.

Lemma 7. Suppose λ is a positive integer and (b1, b2 · · · ,

bn−1) ∈ △i, for i � 1, 2, 3.

(a) T1(b1, b2 · · · , bn−1) ∈
△1 or△2, if m≠ 2, and b1 ≠ n − 3
△3, if m≠ 2, and b1 ≠ n − 5􏼚

(b) Fλ(T1(b1, b2, . . . , bn−1))<Fλ(b1, b2, . . . , bn−1)

Proof

(a) As 􏽐
n−1
i�1 bi � 􏽐

n−1
i�1 bi
′ and 􏽐

n−1
i�1 ibi � 􏽐

n−1
i�1 ibi
′. If

(b1, . . . , bn−1) ∈ △i, for i � 1, 2 and m � 2 and
b1 � n − 3, then b1′ > n − 3 a contradiction. Also, if
(b1, . . . , bn−1) ∈ △3, and m � 2 and b1 � n − 5, then
b1′ > n − 5 a contradiction.

(b) By simple calculations, Fλ(b1, . . . , bn−1)

−Fλ(T1(b1, . . . , bn−1)) � (2λ − 1)(2j + 2)> 0. □

Lemma 8. Suppose λ≥ 0 and (b1, . . . , bn−1) ∈ △i, i � 1, 2, 3.

(a) T2(b1, b2 · · · , bn−1) ∈
△1 or△2, if m≠ 2, and b1 ≠ n − 3
△3, if m≠ 2, and b1 ≠ n − 5􏼚

(b) Fλ(T2(b1, . . . , bn−1))<Fλ(b1, . . . , bn−1)

Proof. (a) Proof of (a) is the same as above
(b) By putting p � 0 in the above, it holds that

Fλ(T2(b1, . . . , bn−1))<Fλ(b1, . . . , bn−1) □

4. Main Result

Tis section deals with the main results related to our fnding
of the minimum generalized degree distance index for the
diferent families of the cyclic graphs.

Theorem  . For every n≥ 3 and G ∈ G1
n, it holds that

minHλ(G) � 2λ n
2

− n − 6􏼐 􏼑 + n
2

− n + 6􏼐 􏼑, (7)

and the unique extremal graphs is K1,n−1 + e.

Proof. For n � 3, the only unicyclic graph is C3 and
Hλ(C3) � 12.

For n≥ 4, if bn−1 > 1, we will get at least two cycles that do
not satisfy the hypothesis. Tus, bn−1 ≤ 1. Next, we in-
vestigate the values of bi for 3≤ i≤ n − 2. If bi ≥ 1 and bj ≥ 1,
then by applying the transformation T1 at position i and j,
we get a smaller value of Fλ(T1(b2, b2, . . . , bn−1)). Now, for
b3 � b4 � · · · � bn−2 � 0, the value of b2 ≠ 0. If b2 � 0, then
b1 � n − 2 which is not possible. Since bn−1 ≤ 1, frst we
consider bn−1 � 0, then b1 + b2 � n and b1 + 2b2 � 2n imply
that b1 � 0 and b2 � n which corresponds to the graph Cn. If
bn−1 � 1, then the conditions of Lemma 4 imply that b1 �

n − 3 and b2 � 2, and hence,

minHλ(G) � Fλ(n − 3, 2, 0, . . . , 1) � 2λ n
2

− n − 6􏼐 􏼑 + n
2

− n + 6􏼐 􏼑, (8)

and the unique extremal graphs is K1,n−1 + e. □

Theorem 10 (see [10]). For every n≥ 3 and ∈ G1
n, it holds

that

minD
′
(G) �

12, if n � 3,

3n
2

− 3n − 6, if n≥ 4.
􏼨 (9)

Proof. By putting λ � 1 in Teorem 9, the above result is
proved, and the result is the same asTeorem 3.1 in [10]. □

Theorem 11. For every n≥ 4 and G ∈ G2
n, it holds that

minHλ(G) � 2λ n
2

+ n − 16􏼐 􏼑 + n
2

− n + 14􏼐 􏼑, (10)

and the unique extremal graphs are obtained from K1,n−1 by
adding two edges of common extremity.

Proof. For n � 4, the unique bicyclic graph is C4 with an
edge and Hλ(C4 with an edge) � 34.

For n≥ 5, it holds that we have bn−1 ≤ 1 and
b4 � b5 � · · · � bn−2 � 0. Since bn−1 � 0, 1{ }, frst we consider
bn−1 � 0, then b1 + b2 + b3 � n and b1 + 2b2 + 3b3 � 2n + 2
imply that b1 � b3 − 2. If b3 ≥ 2, then by action of trans-
formation T2 at position 3, a smaller value for F is de-
termined. Consider if bn−1 � 1, then b1 + b2 + b3 � n − 1 and
b1 + 2b2 + 3b3 � n + 3. If b3 � 0, we have (n − 5, 4, 0, . . . , 1)

and T2(n − 5, 4, 0, . . . , 1) � (n − 6, 2, 1, 0, . . . , 1). If b3 � 1,
then we get (n − 6, 2, 1, 0, . . . , 1), and hence,

minHλ(G) � Fλ(n − 6, 2, 1, 0, . . . , 1) � 2λ n
2

+ n − 16􏼐 􏼑 + n
2

− n + 14􏼐 􏼑, (11)
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and the unique extremal graphs is K1,n−1 with two edges of
the common vertex. □

Theorem 12 (see [10]). For every n≥ 3 and ∈ G2
n, it holds

that

minD
′
(G) �

34, if n � 4,

3n
2

+ n − 18, if n≥ 5.
􏼨 (12)

Proof. By putting λ � 1 in Teorem 11, the above result is
proved, and the result is the same as Teorem 3.2
in [10]. □

Theorem 13. For n≥ 5, λ≥ 0 and G ∈ G4
n, it holds that

minHλ(G) � 2λ n
2

+ 5n − 42􏼐 􏼑 + n
2

− n + 36􏼐 􏼑. (13)

Ten, all the extremal graphs are isomorphic to A1. Te
graph A1 is obtained by identifying the center of star Sn with
an arbitrary vertex of degree 5.

Proof. In order to fnd minHλ(G), it is enough to fnd
minF(b1, . . . . . . , bn−1), where (b1, . . . . . . , bn−1) ∈ △3. Let
n � 5, only graphs B1, B2 ∈ G4

n (see Figure 1). Also, Hλ(B1) �

74 and Hλ(B2) � 76. Let us consider n≥ 6. For n � 6, all
graphs G ∈ G4

6 are Ai where 1≤ i≤ 10 shown in Figure 2. For
these graphs minHλ(Ai) � 3 · 2λ+3 + 66 which hold for the
graph A1.

Finally, for n≥ 7. If bn−1 ≥ 2, Ten, we have at least fve
cycles; hence, bn−1 must be less than or equal to one.

Now, we investigate the possible values of b6, b7, . . . ,

bn−2. If there exists 6≤ l<m≤ n − 2, such that bl ≥ 1 and
bm ≥ 1, then by the action of T1 at position l and m, a new
vector (b1′, . . . , bn−1′) ∈ △3 for which F(b1′, . . . , bn−1′)<F(b1,

. . . , bn−1) is obtained.
Similarly, if there exists 6≤ l≤ n − 2 such that bl ≥ 2,

a new degree sequence in △3 is determined by which
Fλ(b1′, . . . , bn−1′)<Fλ(b1, . . . , bn−1). Now, we consider two
cases: □

Case 14. Consider distinct indices 6≤ l≤ n − 2 and m such
that bl � 1 and bm � 0. If b5 � 0, since bn−1 ∈ 0, 1{ }, we will
analyze the two cases separately.

(a) In this case, bn−1 � bl � 1, where l≥ 6 and b4 � 0. By
considering diferent vertices p, qr, s, t, w, z ∈ V(G)

in such a way that d(p) � n − 1, d(q) � j≥ 6. Te
vertices r, s, t, w, z are adjacent to p and q. Also, p

and q are adjacent.Ten, there exist fve cycles which
contradicts the hypothesis.

(b) Suppose bn−1 � 0, then b4 � 0 and bi � 1, (6≤ i≤ n −

2) and△3 is characterized by the equations b1 + b2 +

b3 � n − 1 and b1 + 2b2 + 3b3 � 2n + 6 − i, which
implies that b2 + 2b3 � n + 7 − i, by solving for b2
and b3, and then by applying the transformation for
position 2 or 3, we obtain a smaller value of F.

Case 15. Suppose that b6 � b7 � · · · � bn−1 � 0 holds, the
degree sequence is (b1, b2, b3, b4, 0, 0 · · · , 0, bn−1). As
bn−1 ∈ 0, 1{ }, so we have to analyze two cases:

(a) If bn−1 � 0, then b2 + 2b3 + 3b4 + 4b5 � n + 6. Tis
equation does not hold. If all b2, b3, b4, and b5 are not
greater than 2, then b2 + 2b3 + 3b4 + 4b5 ≤ 20, which
contradicts the hypothesis n≥ 7. If bj > 2 for any j �

2, 3, 4, 5 by applying T2 at position j, the minimum
value of F is obtained.

(b) If bn−1 � 1, then b2 + 2b3 + 3b4 + 4b5 � 8. If b5 ≥ 3,
then b2 + 2b3 + 3b4 + 4b5 ≥ 12. So b5 ≤ 2, if b5 � 2,
then b2 + 2b3 + 3b4 � 0, which implies that
b2 � b3 � b4 � 0, and b1 � n − 3 which is a contra-
diction as b1 ≤ n − 5. So, b5 < 2. Tus, either b5 � 0 or
b5 � 1.

If b5 � 1, then b2 + 2b3 + 3b4 � 4, the only possible so-
lution that follows Lemma 6 and gives a graphical degree
sequence is b2 � 4, b3 � 0, b4 � 0. Tus, (b1, b2, . . . , bn−1) �

(n − 6, 4, 0, 0, 1, 0, . . . , 0, 1) and

Fλ(n − 6, 4, 0, 0, 1, 0, . . . , 0, 1) � 2λ n
2

+ 5n − 42􏼐 􏼑 + n
2

− n + 36􏼐 􏼑. (14)

Next, consider if b5 � 0, then b2 + 2b3 + 3b4 � 8. Tere
are only two possible solutions that satisfy the conditions of
four cyclic graph. Tese graphical sequences are

(n − 5, 0, 4, 0, . . . , 0, 1) and (n − 5, 2, 0, 2, 0, . . . , 0, 1). By
applying T2 at position 3 of (n − 5, 0, 4, 0, . . . , 0, 1), we
obtain a degree sequence (n − 5, 2, 0, 2, 0, . . . , 0, 1) and

Fλ(n − 5, 1, 2, 1, 0, . . . , 0, 1) � 2λ n
2

+ 5n − 40􏼐 􏼑 + n
2

− n + 34􏼐 􏼑. (15)

B1 B2

Figure 1: Te graphs having 5 vertices in G4
n.
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Since 2λ(n2 + 5n − 42) + (n2 − n + 36) � 2λ(n2 + 5n −40)

+(n2 − n + 34)− 2(2λ − 1) < 2λ(n2 + 5n − 40) +(n2 − n + 34).

Hence,

minHλ(G) � 2λ n
2

+ 5n − 42􏼐 􏼑 + n
2

− n + 36􏼐 􏼑. (16)

and the unique extremal graph is obtained by identifying the
center of graph K1,n−4 with an arbitrary degree 4 vertex of
graph A1 (Figure 2).

Theorem 16. Let G ∈ G4
n, then

minD
′
(G) �

74, if n � 5,

3n
2

+ 9n − 48, if n≥ 6}.
􏼨 (17)

Proof. By putting λ � 1 in Teorem 13, the above result is
proved, and the result is the same asTeorem 12 in [11]. □

 . Conclusion

In this note, we have computed the minimum generalized
degree distance indices in the diferent families of unicyclic,
bicyclic, and four cyclic graphs. Te extremal graphs having
minimum generalized degree distance indices are also
characterized among these families of graphs. However, the
problem is still open to compute this index for various
families of α-cyclic graphs for α � 3 and α≥ 5 [12–17].
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