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Topological indices (TIs) are numerical tools widely applied in chemometrics, biomedicine, and bioinformatics for predicting
diverse physicochemical attributes and biological activities within molecular structures. Despite their signifcance, the challenges
in deriving TIs necessitate novel approaches. Tis study addresses the limitations of conventional methods in dealing with
dynamic molecular structures, focusing on the neighborhood M-polynomial (NM-polynomial), a pivotal polynomial for cal-
culating degree-based TIs. Current literature acknowledges these polynomials but overlooks their limited adaptability to intricate
biopolymer relationships. Our research advances by computing degree-based and neighborhood degree-based indices for
prominent biopolymers, including polysaccharides, poly-c-glutamic acid, and poly-L-lysine.Trough innovative utilization of the
NM-polynomial and the M-polynomial, we establish a fresh perspective on molecular structure and topological indices.
Moreover, we present diverse graph representations highlighting the nuanced correlations between indices and structural
parameters. By systematically investigating these indices and their underlying polynomials, our work contributes to predictive
modelling in various felds. Tis exploration sheds light on intricate biochemical systems, ofering insights into applications
encompassing medicine, the food industry, and wastewater treatment. Tis research deepens our understanding of complex
molecular interactions and paves the way for enhanced applications in diverse industries.

1. Introduction

Graph theory fnds application in various felds, with one
prominent branch being chemical graph theory (CGT). CGT
is utilized to study chemical compounds and predict their
distinctive properties. Te concept of a molecular graph
employs the arrangement and connections of components in
a molecule to forecast its boiling point. Tis association is
valuable for creating chemical processes, synthetic materials,
and chemical assembly lines. Chemists employ diverse
physical attributes to fathom molecular structures. Topo-
logical indices (TIs) predict physicochemical traits and bi-
ological activities of bioactive compounds, while also holding
promise for predicting substance hazards. TIs ofer an avenue
to forecast drug behavior based on their electronic structures,

ofering an alternative to empirical testing. TIs have been
instrumental in characterizing the physical properties of al-
kenes and projecting boiling points for untested alkanes. See
[1–3] for insights into alkenes’ physical properties.

Since 1947, topological indices (TIs) have evolved, cate-
gorized by distinct graph attributes such as vertex degrees,
intervertex distances, and graph eigenvalues, and using
characteristic graph notation. However, some TIs are not
directly calculable, prompting the development of poly-
nomials as a solution. Te degree-dependent M-polynomial,
assessing degree-based TIs, is one such polynomial. Te
neighborhood M-polynomial, linked to the sum of neigh-
borhood vertex degrees, is another alternative. Tese indices’
closed equations for a graph family are deduced by computing
the graph family’s M-polynomial and NM-polynomial.
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Te M-polynomial aggregates pertinent degree-based
TIs into a polynomial framework. E. Deutsch and
S. Klavár introduced the M-polynomial in 2015, gaining
wide acceptance. In 2018, Mondal et al. extended this with
the neighborhood M-polynomial, focusing on degree-
centered neighborhood indices. Te NM-polynomial has
facilitated the generation of neighborhood degree-based TIs
for structures such as cuprous oxide’s crystalline form and
the face-centered cubic lattice. Subsequent studies, including
those by Havare [4] and Mondal et al. [5, 6], have further
advanced this feld.

Polysaccharide-based drug delivery vehicles represent
a promising avenue due to biodegradability, low immu-
nogenicity, and improved pharmacokinetics. Tese vehicles,
incorporating drug-loaded polysaccharides, ofer controlled
and safer delivery with fewer adverse efects compared to
conventional vectors. Polysaccharides ensure sustained drug
release, boasting superior safety and high physiological
tolerance. Notably, polysaccharides have facilitated novel
drug distribution mechanisms, as seen in “Novochizol” for
COVID-19 treatment [7].

Gamma-PGAs are gaining traction in drug delivery for
their nontoxicity, water solubility, biodegradability, and
biocompatibility. Gamma-PGA’s monomer units sport free
carboxyl groups, enabling coupling with other polymers or
active compounds and self-assembly into amphiphilic
nanoparticles with hydrophobic esters. Tis system is par-
ticularly benefcial for poorly water-soluble drugs. Gamma-
PGA has broad applications, including cancer therapy, gene
therapy, biological adhesives, and vaccines [8].

Poly-L-lysine (PLL), a highly positively charged amino
acid chain, enhances cell adhesion and growth in culture.
Coating cultureware with PLL boosts cell adhesion, relying
on the attraction between positively and negatively charged
molecules or cells. Poly-D-lysine (PDL) and PLL enhance
cell attachment to surfaces and ofer resistance to enzymatic
degradation, thus prolonging adherence [9]. PLL’s positive
charge density enables binding to negatively charged mac-
romolecules, forming soluble complexes. Tis attribute is
leveraged for DNA and protein delivery [10, 11]. Polylysine-
based nanoparticles passively accumulate at sites of vascular
damage, ofering a novel method for targeted treatment [12].

Te study’s core objective is to evaluate topological
indices (TIs) for polysaccharide, poly-c-glutamic acid, and
poly-l-lysine, utilizing M-polynomial and NM-polynomial
calculations. Tese indices are computed through the edge
partition method and combinatorial analysis, aiding re-
search into medication structure’s physicochemical traits.
Various TIs fall into categories such as degree-based [13, 14],
distance-based [15–17], spectrum-based [15, 18, 19], or
status-based [18, 20] indices, with recent research exploring
TIs’ predictive potential for diverse physicochemical
properties.

2. M-Polynomial and NM-Polynomial

Polynomials, a key graph theory tool, fnd wide applications
[21–25]. Te Hosoya polynomial [26] is pivotal for distance-
oriented topological indices. Te M-polynomial, introduced

by Deutsch and Klav zar in 2015 [27], is a foundational tool,
as is the NM-polynomial by Mondal et al. in 2018 [28], for
closed-form degree-based topological indices. Te M-
polynomial generates many crucial indices, adapting
swiftly to new index creation. Recent emphasis on neigh-
borhood degree sum-based indices has fueled research into
NM-polynomials. Te M-polynomial corresponds to
degree-constructed indices, while the NM-polynomial
parallels this for neighborhood degree-based indices.

TeM-polynomial and NM-polynomial’s calculation for
biopolymer structures yields essential indices, expanding
insight into their physical and chemical aspects. Te M-
polynomial hinges on vertex degrees, while the NM-
polynomial builds on neighborhood degree-based indices.
Tese tools underpin the study of prevalent biopolymers,
such as xanthan gum and gellan gum [29].

A compact method to derive multiple topological indices
from a single polynomial is desirable. Te M-polynomial fts
this criterion, and its properties shed light on degree-based
topological indices. Research worldwide has applied the M-
polynomial and NM-polynomial to graphene structures (see
[30–34]). Recently, Mohammed Yasin et al. [29, 35] have
calculated the M-polynomial and NM-polynomial concepts
for biopolymer structures. In recent years, there has been
a signifcant increase in research activity, particularly in the
feld of topological indices and their practical applications.
Some of the most notable and widely conducted studies have
focused on this area. For further details, you can refer to
[36, 37].

Tis article’s focus is calculatingM-polynomial and NM-
polynomial for biopolymers, generating signifcant indices
like frst and second Zagreb indices, modifed second Zagreb
index, third redefned Zagreb index, Forgotten index, Randic
index, inverse Randic index, symmetric division index, in-
verse sum index, and harmonic index, along with their
neighborhood variations.

3. Preliminaries

Defnition 1. Let R be a simple connected graph, and the M-
polynomial can be represented by the following equation:

M(R; x, y) � 􏽘
k≤l

mkl(R)x
k
y

l
, (1)

where mkl denotes the no. of edges uv ∈ E(G), where
du, dv � k, l, respectively, in which du, dv denotes the degree
of the vertices u and v in the graph, respectively.

Defnition 2. Let R be a simple connected graph, and the
NM-polynomial can be represented by the following
equation:

NM(R; x, y) � 􏽘
k≤l

χkl(R)x
k
y

l
, (2)

where χkl denotes the no. of edges uv ∈ E(G), where
ndu,ndv � k, l, respectively, in which ndu, ndv denotes the
degree of the vertices u and v in the graph, respectively.
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For the degree-based TIs, δu � du, δv � dv, p(x, y) � M

(R; x, y), and for the neighborhood degree-based TIs,
δu � ndu, δv � ndv, NM(R; x, y) � P(x, y). Te

degree-based and neighborhood degree-based TIs and their
respective collections in the NM-polynomial and M-poly-
nomial for graph R are tabulated in Table 1.

Dx � x
δ(P(x, y))

δx
􏼠 􏼡, Dy � y

δ(P(x, y))

δy
􏼠 􏼡, J(f(x, y)) � (p(x, y))|y�x,

Sx � 􏽚
x

0

p(x, y)|x�t

t
dt, Sy � 􏽚

y

0

p(x, y)|y�t

t
dt.

(3)

4. Methodology

Recent studies have shown that polymers could be really
useful for making new medical materials. Tese polymers
have qualities similar to regular plastics made from oil, like
polypropylene. Tis is explained in more detail in sources
([38–40]). Tese natural polymers can be used for many
things, similar to how we use plastics from oil, making them
a good alternative. Scientists have also looked into how these
polymers behave physically and how they are shaped, which
is talked about in source [41]. Te work deals with neigh-
borhood degree sum-based indices for polysaccharide, poly-
c-glutamic acid, and poly-L-lysine structures. First of all, the
NM-polynomials of the structures are calculated, and then,
using some calculus operators, various degree sum-based
indices are recovered. We use combinatorial computation,
the edge partition method, and graph theoretical tools to
obtain the outcomes. Te graphical representations of the
outcomes and comparative study of the fndings are per-
formed via 3D plotting and shown by utilizing the MATLAB
software.

5. Main Results

In this part, we present our computation-based results, and
we calculate M-polynomial and NM-polynomial for the
biopolymers, polysaccharides, poly-c-glutamic acid, and
poly-L-lysine.

5.1. Polysaccharide. Consider a molecular graph R1 for
polysaccharide, which contains 12 n edges. mkl denotes the
no. of edges in which k and l denote the degree of end
vertices for the set of all edges. From Figure 1, the edge
partitions are given in Table 2.

χkl denotes the no. of edges in which k and l represent the
neighborhood degree of end vertices for the set of all edges.
From the polysaccharide structure, we obtained Table 3.

5.1.1. M-Polynomial and NM-Polynomial for Polysaccharide.
Assume R1, the molecular graph of polysaccharide.

(i) Te M-polynomial for polysaccharide graph is as
follows:

M R1; x, y( 􏼁 � 􏽘
k≤l

mkl(R)x
k
y

l

� m1,2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌xy2 + m1,3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌xy3 + m2,3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
2
y
3

+ m3,3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
3
y
3

� nxy
2

+ 2(n + 1)xy3 +(5n − 2)x
2
y
3

+ 4nx3y3
.

(4)

(ii) Te NM-polynomial for polysaccharide graph is as
follows:

M R1; x, y( 􏼁 � 􏽘
k≤l

χkl(R)x
k
y

l

� χ2,4
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
2
y
4

+ χ3,6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
3
y
6

+ χ3,7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
3
y
7

+ χ4,7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
4
y
7

+ χ6,6
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
6
y
6

+ χ6,7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
6
y
7

+ χ6,8
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
6
y
8

+ χ7,7
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
7
y
7

+ χ7,8
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌x
7
y
8

� nx2y4
+ x

3
y
3

+(2n + 1)x
3
y
7

+ nx4y7
+ x

6
y
6

+(3n − 1)x
6
y
7

+ 2(n − 1)x
6
y
8

+(2n + 1)x
7
y
7

+(n − 1)x
7
y
8
.

(5)
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5.1.2. Degree-Based TIs of Polysaccharide Graph Using M-
Polynomial. By using equation (4), we calculated the degree-
based topological indices for the polysaccharide graph, and
the results are as follows:

Dx + Dy􏼐 􏼑f(x, y) � 3nxy2 + 8(n + 1)xy3 + 5(5n − 2)x
2
y
3

+ 24nx3y3
,

DxDy􏼐 􏼑f(x, y) � 2nxy2 + 6(n + 1)xy3 + 6(5n − 2)x
2
y
3

+ 36nx3y3
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 5nxy2 + 20(n + 1)xy3 + 13(5n − 2)x
2
y
3

+ 72nx3y3
,

SxSy􏼐 􏼑f(x, y) �
1
2
nxy2 +

2
3

(n + 1)xy3 +
1
6

(5n − 2)x
2
y
3

+
4
9
nx3y3

,

CH2OH

OH

OH

O

n

OH

CH2OH CH2OH

OH

OH

O

O

OH

O

OH

OH

Polysaccharide

O

Figure 1: Molecular structure of polysaccharide.

Table 1: Te correlation among several TIs with NM-polynomial and M-polynomial.

TIs Formula g(δu, δv)
Derived from

p(x, y)�M(R; x, y) or NM(R; x, y)

M1/NM1 􏽐
uv∈E(G)

(δu + δv) (Dx + Dy)(p(x, y))x�y�1

M2/NM2 􏽐
uv∈E(G)

(δu × δv) (DxDy)(p(x, y))x�y�1

F/NF 􏽐
uv∈E(G)

(δu
2 + δv

2)
(Dx

2 + Dy
2)(p(x, y))x�y�1

mM2/nmM2 􏽐
uv∈E(G)

1/(δu.δv) (SxSy)(p(x, y))x�y�1

Rα/NRα 􏽐
uv∈E(G)

[δuδv]α (Dα
xDα

y)(p(x, y))x�y�1

ReZG3/ND3 􏽐
uv∈E(G)

(δu + δv)(δu.δv) ((DxDy)(Dx + Dy))(p(x, y))x�y�1

SDD/ND5 􏽐
uv∈E(G)

(δ2(u) + δ2(v)/δu.dδv)
(DxSy + SxDy)(p(x, y))x�y�1

H/NH 􏽐
uv∈E(G)

2/δu + δv
(SxJ)(p(x, y))x�y�1

I/NI 􏽐
uv∈E(G)

δu.δv/δu + δv
(SxJDxDy)(p(x, y))x�y�1

Table 2: Edge partition of the degree-based indices for
polysaccharide.

(du, dv), uv ∈ E(G) No. of edges

(1, 2) n
(1, 3) 2n+ 2
(2, 3) 5n− 2
(3, 3) 4n

Table 3: Edge partition of the neighborhood degree-based indices
for polysaccharide.

(ndu, ndv), uv ∈ E(G) No. of edges

(2, 4) n
(3, 6) 1
(3, 7) 2n+ 1
(4, 7) n
(6, 6) 1
(6, 7) (3n− 1)
(6, 8) 2 (n− 1)
(7, 7) 2n+ 1
(7, 8) n− 1
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D
α
xD

α
y􏼐 􏼑f(x, y) � 2α.nxy2 + 3α.2(n + 1)xy3 + 6α(5n − 2)x

2
y
3

+ 9α4nx3y3
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 6nxy2 + 24(n + 1)xy3 + 30(5n − 2)x
2
y
3

+ 216nx3y3
,

DxSy + SxDy􏼐 􏼑f(x, y) �
5
2
nxy2 +

20
3

(n + 1)xy3 +
13
6

(5n − 2)x
2
y
3

+ 8nx3y3
,

SxJ( 􏼁f(x, y) �
2
3
nx3 +(n + 1)x

4
+
2
5

(5n − 2)x
5

+
4
3
nx6,

SxJDxDy􏼐 􏼑f(x, y) �
2
3
nx3 +

3
2

(n + 1)x
4

+
6
5

(5n − 2)x
5

+ 6nx6. (6)

5.1.3. Neighborhood Degree-Based TIs of Polysaccharide
Graph Using NM-Polynomial. By using equation (5), we
calculated the neighborhood degree-based topological

indices for the polysaccharide graph, and the results are as
follows:

Dx + Dy􏼐 􏼑f(x, y) � 6nx2y4
+ 9x

3
y
6

+ 10(2n + 1)x
3
y
7

+ 11nx4y7
+ 12x

6
y
6

+ 13(3n − 1)x
6
y
7

+ 28(n − 1)x
6
y
8

+ 14(2n + 1)x
7
y
7

+ 15(n − 1)x
7
y
8
,

DxDy􏼐 􏼑f(x, y) � 8nx2y4
+ 18x

3
y
6

+ 21(2n + 1)x
3
y
7

+ 28nx
4
y
7

+ 36x
6
y
6

+ 42(3n − 1)x
6
y
7

+ 96(n − 1)x
6
y
8

+ 49(2n + 1)x
7
y
7

+ 56(n − 1)x
7
y
8
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 20nx2y4
+ 45x

3
y
6

+ 58(2n + 1)x
3
y
7

+ 65nx4y7
+ 72x

6
y
6

+ 85(3n − 1)x
6
y
7

+ 200(n − 1)x
6
y
8

+ 98(2n + 1)x
7
y
7

+ 113(n − 1)x
7
y
8
,

SxSy􏼐 􏼑f(x, y) �
1
8

nx
2
y
4

+
1
18

x
3
y
6

+
1
21

(2n + 1)x
3
y
7

+
1
28

nx4y7

+
1
36

x
6
y
6

+
1
42

(3n − 1)x
6
y
7

+
1
24

(n − 1)x
6
y
8

+
1
49

(2n + 1)x
7
y
7

+
1
56

(n − 1)x
7
y
8
,

D
α
xD

α
y􏼐 􏼑f(x, y) � 8αnx2y4

+ 18αx
3
y
6

+ 21α(2n + 1)x
3
y
7

+ 28αnx4y7

+ 36αx
6
y
6

+ 42α(3n − 1)x
6
y
7

+ 48α2(n − 1)x
6
y
8

+ 49α(2n + 1)x
7
y
7

+ 56α(n − 1)x
7
y
8
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 48nx2y4
+ 162x

3
y
6

+ 210(2n + 1)x
3
y
7

+ 308nx4y7

+ 432x
6
y
6

+ 546(3n − 1)x
6
y
7

+ 1344(n − 1)x
6
y
8

+ 686(2n + 1)x
7
y
7

+ 840(n − 1)x
7
y
8
,
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DxSy + SxDy􏼐 􏼑f(x, y) �
5
2
nx2y4

+
5
2
x
3
y
6

+
58
21

(2n + 1)x
3
y
7

+
65
28

nx4y7
+ 2x

6
y
6

+
85
42

(3n − 1)x
6
y
7

+
25
6

(n − 1)x
6
y
8

+ 2(2n + 1)x
7
y
7

+
113
56

(n − 1)x
7
y
8
,

SxJ( 􏼁f(x, y) �
1
3
nx6 +

2
9
x
9

+
1
5

(2n + 1)x
10

+
2
11

nx11 +
1
6
x
12

+
2
13

(3n − 1)x
13

+
1
7

(4n − 1)x
14

+
2
15

(n − 1)x
15

,

SxJDxDy􏼐 􏼑f(x, y) �
4
3
nx6 + 2x

9
+
21
10

(2n + 1)x
10

+
28
11

nx11 + 3x
12

+
42
13

(3n − 1)x
13

+
1
14

(194n − 47)x
14

+
56
15

(n − 1)x
15

. (7)

Now, by the help of partition of edges for poly-c-glu-
tamic acid and poly-L-lysine, the same method is used to
prove M-polynomial and NM-polynomial for poly-
saccharide which can be utilized to prove for poly-c-glu-
tamic acid and poly-L-lysine.

We narrow few degree-based and neighborhood degree-
based TIs of poly-c-glutamic acid and poly-L-lysine, with
the help of the M-polynomial and NM-polynomial with the
identical usage of polysaccharide.

5.2. Poly-c-glutamic Acid. Consider R2, the graph of poly-
c-glutamic acid which contains 9 n edges. From Figure 2, the
partition of edges according to vertex degrees is tabulated in
Table 4.

Also, the partition of edges according to neighborhood
degree sum vertices is shown in Table 5.

5.2.1. M-Polynomial and NM-Polynomial for Poly-c-gluta-
mic Acid. Assume R2, the molecular graph of poly-c-glu-
tamic acid. Te M-polynomial and NM-polynomial for
poly-c-glutamic acid are as follows:

M R2, x, y( 􏼁 � (3n + 2)xy3 + nx2y2
+(4n − 2)x

2
y
3

+ nx3y3
, (8)

NM R2, x, y( 􏼁 � 2x
3
y
4

+ 2nx3y5
+(2n − 1)x

3
y
6

+ x
4
y
5

+(2n − 1)x
5
y
5

+(n + 1)x
5
y
6

+ 2nx6y6
.

(9)

5.2.2. Degree-Based TIs of Poly-c-glutamic Acid Graph Using
M-Polynomial. By using equation (8), we calculated the

degree-based topological indices for the poly-c-glutamic
acid graph, and the results are as follows:
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Dx + Dy􏼐 􏼑f(x, y) � 4(3n + 2)xy3 + 4nx2y2
+ 5(4n − 2)x

2
y
3

+ 6nx3y3
,

DxDy􏼐 􏼑f(x, y) � 3(3n + 2)xy3 + 4nx2y2
+ 6(4n − 2)x

2
y
3

+ 9nx3y3
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 10(3n + 2)xy3 + 8nx2y2
+ 13(4n − 2)x

2
y
3

+ 18nx3y3
,

SxSy􏼐 􏼑f(x, y) �
1
3

(3n + 2)xy3 +
1
4
nx2y2

+
1
6

(4n − 2)x
2
y
3

+
1
9
nx3y3

,

D
α
xD

α
y􏼐 􏼑f(x, y) � 3α.(3n + 2)xy3 + 4α.nx2y2

+ 6α(4n − 2)x
2
y
3

+ 9αnx3y3
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 12(3n + 2)xy3 + 16nx2y2
+ 30(4n − 2)x

2
y
3

+ 54nx3y3
,

DxSy + SxDy􏼐 􏼑f(x, y) �
10
3

(3n + 2)xy3 + 2nx2y2
+
13
6

(4n − 2)x
2
y
3

+ 2nx3y3
,

SxJ( 􏼁f(x, y) � (2n + 1)x
4

+
2
5

(4n − 2)x
5

+
1
3
nx6,

SxJDxDy􏼐 􏼑f(x, y) �
1
4

(13n + 6)x
4

+
6
5

(4n − 2)x
5

+
3
2
nx6.

(10)

5.2.3. Neighborhood Degree-Based TIs of Poly-c-glutamic
Acid Graph Using NM-Polynomial. By using equation (9), we

calculated the neighborhood degree-based topological indices
for the poly-c-glutamic acid graph, and the results are as follows:

HO

NH2

O

OH

O

Poly-γ-Glutamic acid
n

Figure 2: Molecular structure of poly-c-glutamic acid.

Table 4: Edge partition of the degree-based indices for poly-c-
glutamic acid.

(du, dv), uv ∈ E(G) No. of edges

(1, 3) 3n+ 2
(2, 2) n
(2, 3) 4n− 2
(3, 3) n

Table 5: Edge partition of the neighborhood degree-based indices
for poly-c-glutamic acid.

(ndu, ndu), uv ∈ E(G) No. of edges

(3, 4) 2
(3, 5) 2n
(3, 6) 2n− 1
(4, 5) 1
(5, 5) 2n− 1
(5, 6) n+ 1
(6, 6) 2n
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Dx + Dy􏼐 􏼑f(x, y) � 14x
3
y
4

+ 16nx3y5
+ 9(2n − 1)x

3
y
6

+ 9x
4
y
5

+ 10(2n − 1)x
5
y
5

+ 11(n + 1)x
5
y
6

+ 24nx6y6
,

DxDy􏼐 􏼑f(x, y) � 24x
3
y
4

+ 30nx3y5
+ 18(2n − 1)x

3
y
6

+ 20x
4
y
5

+ 25(2n − 1)x
5
y
5

+ 30(n + 1)x
5
y
6

+ 72nx6y6
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 50x
3
y
4

+ 68nx3y5
+ 45(2n − 1)x

3
y
6

+ 41x
4
y
5

+ 50(2n − 1)x
5
y
5

+ 61(n + 1)x
5
y
6

+ 144nx6y6
,

SxSy􏼐 􏼑f(x, y) �
1
6
x
3
y
4

+
2
15

nx3y5
+

1
18

(2n − 1)x
3
y
6

+
1
20

x
4
y
5

+
1
25

(2n − 1)x
5
y
5

+
1
30

(n + 1)x
5
y
6

+
1
18

nx6y6
,

D
α
xD

α
y􏼐 􏼑f(x, y) � 12α2x

3
y
4

+ 15α2nx3y5
+ 18α(2n − 1)x

3
y
6

+ 20αx
4
y
5

+ 25α(2n − 1)x
5
y
5

+ 30α(n + 1)x
5
y
6

+ 36α2nx6y6
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 168x
3
y
4

+ 240nx3y5
+ 162(2n − 1)x

3
y
6

+ 180x
4
y
5

+ 250(2n − 1)x
5
y
5

+ 330(n + 1)x
5
y
6

+ 864nx6y6
,

DxSy + SxDy􏼐 􏼑f(x, y) �
25
6

x
3
y
4

+
68
15

nx3y5
+
5
2

(2n − 1)x
3
y
6

+
41
20

x
4
y
5

+ 2(2n − 1)x
5
y
5

+
61
30

(n + 1)x
5
y
6

+ 4nx6y6
,

SxJ( 􏼁f(x, y) �
4
7
x
7

+
1
2
nx8 +

4
9
nx9 +

1
5

(2n − 1)x
10

+
2
11

(n + 1)x
11

+
1
3
nx12,

SxJDxDy􏼐 􏼑f(x, y) �
24
7

x
7

+
15
4
nx8 + 2(2n − 1)x

9
+
20
9

x
95
2

(2n − 1)x
10

+
30
11

(n + 1)x
11

+ 6nx12.

(11)

5.3. Poly-L-lysine. Consider R3, the graph of poly-l-lysine
which has 10n edges. From Figure 3, the partition of edges
according to vertex degrees is tabulated in Table 6.

Also, the partition of edges according to neighborhood
degree sum vertices is shown in Table 7.

5.3.1. M-Polynomial and NM-Polynomial for Poly-L-lysine.
Assume R3, the molecular graph of poly-L-lysine. Te M-
polynomial and NM-polynomial for poly-L-lysine are as
follows:

M R3, x, y( 􏼁 � xy2 +(2n + 1)xy3 +(5n − 1)x
2
y
2

+(2n − 1)x
2
y
3

+ nx3y3
, (12)

NM R3, x, y( 􏼁 � x
2
y
3

+ x
3
y
4

+ 2x
3
y
5

+(2n − 1)x
3
y
6

+(3n − 1)x
4
y
4

+(2n − 1)x
4
y
5

+(3n − 1)x
5
y
6
.

(13)

5.3.2. Degree-Based TIs of Poly-L-lysine Graph Using M-
Polynomial. By using equation (12), we calculated the

degree-based topological indices for the poly-L-lysine graph,
and the results are as follows:
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Dx + Dy􏼐 􏼑f(x, y) � 3xy2 + 4(2n + 1)xy3 + 4(5n − 1)x
2
y
2

+ 5(2n − 1)x
2
y
3

+ 6nx3y3
,

DxDy􏼐 􏼑f(x, y) � 2xy2 + 3(2n + 1)xy3 + 4(5n − 1)x
2
y
2

+ 6(2n − 1)x
2
y
3

+ 9nx3y3
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 5xy2 + 10(2n + 1)xy3 + 8(5n − 1)x
2
y
2

+ 13(2n − 1)x
2
y
3

+ 18nx3y3
,

SxSy􏼐 􏼑f(x, y) �
1
2
xy2 +

1
3

(2n + 1)xy3 +
1
4

(5n − 1)x
2
y
2

+
1
6

(2n − 1)x
2
y
3

+
1
9
nx3y3

,

D
α
xD

α
y􏼐 􏼑f(x, y) � 2αxy2 + 3α.(2n + 1)xy3 + 4α(5n − 1)x

2
y
3

+ 6α(2n − 1)x
2
y
3

+ 9αnx3y3
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 6xy2 + 12(2n + 1)xy3 + 16(5n − 1)x
2
y
2

+ 30(2n − 1)x
2
y
3

+ 54nx3y3
,

DxSy + SxDy􏼐 􏼑f(x, y) �
5
2
xy2 +

10
3

(2n + 1)xy3 + 2(5n − 1)x
2
y
2

+
13
6

(2n − 1)x
2
y
3

+ 2nx3y3
,

SxJ( 􏼁f(x, y) �
2
3
x
3

+
7
2
nx4 +

2
5

(2n − 1)x
5

+
1
3
nx6,

SxJDxDy􏼐 􏼑f(x, y) �
1
3
x
3

+
1
2

13n −
1
2

􏼒 􏼓x
4

+
6
5

(2n − 1)x
5

+
3
2
nx6.

(14)

O

NH2

H
N

n

Poly-L-lysine

Figure 3: Molecular structure of poly-L-lysine.

Table 6: Edge partition of degree-based indices for poly-L-lysine.

(du, dv), uv ∈ E(G) No. of edges

(1, 2) 1
(1, 3) 2n+ 1
(2, 2) 5n− 1
(2, 3) 2n− 1
(3, 3) n

Table 7: Edge partition of neighborhood degree-based indices for
poly-L-lysine

(ndu, ndv), uv ∈ E(G) No. of edges

(2, 3) 1
(3, 4) 1
(3, 5) 2
(3, 6) 2n− 1
(4, 4) 3n− 1
(4, 5) 2n− 1
(5, 6) 3n− 1
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5.3.3. Neighborhood Degree-Based TIs of Poly-L-lysine Graph
Using NM-Polynomial. By using equation (13), we calculated

the neighborhood degree-based topological indices for the
poly-L-lysine graph, and the results are as follows:

Dx + Dy􏼐 􏼑f(x, y) � 5x
2
y
3

+ 7x
3
y
4

+ 16x
3
y
5

+ 9(2n − 1)x
3
y
6

+ 8(3n − 1)x
4
y
4

+ 9(2n − 1)x
4
y
5

+ 11(3n − 1)x
5
y
6
,

DxDy􏼐 􏼑f(x, y) � 6x
2
y
3

+ 12x
3
y
4

+ 30x
3
y
5

+ 18(2n − 1)x
3
y
6

+ 16(3n − 1)x
4
y
4

+ 20(2n − 1)x
4
y
5

+ 30(3n − 1)x
5
y
6
,

Dx
2

+ Dy
2

􏼐 􏼑f(x, y) � 13x
2
y
3

+ 25x
3
y
4

+ 68x
3
y
5

+ 45(2n − 1)x
3
y
6

+ 32(3n − 1)x
4
y
4

+ 41(2n − 1)x
4
y
5

+ 61(3n − 1)x
5
y
6
,

SxSy􏼐 􏼑f(x, y) �
1
6
x
2
y
3

+
1
12

x
3
y
4

+
2
15

x
3
y
5

+
1
18

(2n − 1)x
3
y
6

+
1
16

(3n − 1)x
4
y
4

+
1
20

(2n − 1)x
4
y
5

+
1
30

(3n − 1)x
5
y
6
,

D
α
xD

α
y􏼐 􏼑f(x, y) � 6αx

2
y
3

+ 12αx
3
y
4

+ 15α2x
3
y
5

+ 18α(2n − 1)x
3
y
6

+ 16α(3n − 1)x
4
y
4

+ 20α(2n − 1)x
4
y
5

+ 30α(3n − 1)x
5
y
6
,

DxDy􏼐 􏼑 Dx + Dy􏼐 􏼑􏼐 􏼑f(x, y) � 30x
2
y
3

+ 84x
3
y
4

+ 240x
3
y
5

+ 162(2n − 1)x
3
y
6

+ 128(3n − 1)x
4
y
4

+ 180(2n − 1)x
4
y
5

+ 330(3n − 1)x
5
y
6
,

DxSy + SxDy􏼐 􏼑f(x, y) �
13
6

x
2
y
3

+
25
12

x
3
y
4

+
68
15

x
3
y
5

+
5
2

(2n − 1)x
3
y
6

+ 2(3n − 1)x
4
y
4

+
41
20

(2n − 1)x
4
y
5

+
61
30

(3n − 1)x
5
y
6
,

SxJ( 􏼁f(x, y) �
2
5
x
5

+
2
7
x
7

+
1
4

(3n − 1)x
8

+
4
9

(2n − 1)x
9

+
2
11

(3n − 1)x
11

,

SxJDxDy􏼐 􏼑f(x, y) �
6
5
x
5

+
12
7

x
7

+
1
8

(48n − 1)x
8

+
38
9

(2n − 1)x
9

+
30
11

(3n − 1)x
11

.

(15)

Both the M-polynomial and the NM-polynomial,
respectively, are replete with details on neighborhood
degree-based and degree-based TIs. We believe further
investigation of the properties of M-polynomials and
NM-polynomials will result in newer, all-encompassing
generalizations in the study of TIs. To view the poly-
nomials, MATLAB does surface plotting. Figures 4–6 show
the graphic representations for the M-polynomials and the
NM-polynomials. Utilizing the x and y parameters, we frst
make a horizontal grid, and we construct a surface on the

head of that grid. Depending on the parameters, these graphs
show various features of the polynomials. By manipulating
polynomials through these parameters, we can exert control
over various aspects and activities. For the signifcance of
Tables 8–13, we show the graphical representation for value
comparison of various degree-based and neighborhood
degree-based topological indices of polysaccharide, poly-
c-glutamic acid, and poly-L-lysine, respectively, in
Figures 7–9. In this study, “n” represents the number of
molecular structures, ranging approximately from 1 to 10.
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Figure 4: 3D plot representation of (a) NM-polynomial in equation (5) and (b) M-polynomial in equation (4) of polysaccharide
molecular graph.
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Figure 5: 3D plot representation of (a) NM-polynomial in equation (8) and (b) M-polynomial in equation (9) of poly-c-glutamic acid
molecular graph.
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Figure 6: 3D plot representation of (a) NM-polynomial in equation (12) and (b) M-polynomial in equation (13) of poly-L-lysine
molecular graph.
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Table 8: Numerical comparison of degree-based indices of polysaccharide for n� 1 to 10.

[n] M1 M2 F mM2 R ReZG3 SDD H I

1 58 68 156 2.78 5.57 360 30.33 5.2 12.77
2 118 142 318 5.22 10.81 756 58.33 10.2 26.93
3 178 216 480 7.67 16.05 1152 86.33 15.2 41.10
4 238 290 642 10.11 21.28 1548 114.33 20.2 55.27
5 298 364 804 12.56 26.52 1944 142.33 25.2 69.43
6 358 438 966 15.00 31.76 2340 170.33 30.2 83.60
7 418 512 1128 17.44 36.99 2736 198.33 35.2 97.77
8 478 586 1290 19.89 42.23 3132 226.33 40.2 111.93
9 538 660 1452 22.33 47.47 3528 254.33 45.2 126.10
10 598 734 1614 24.78 52.70 3924 282.33 50.2 140.27

Table 9: Numerical comparison of neighborhood degree-based indices of polysaccharide for n� 1 to 10.

[n] NM1 NM2 NF nmNM2 NR ND3 ND5 NH NI

1 136 384 840 0.50 2.34 4730 27.65 2.24 32.14
2 283 838 1805 0.92 4.49 10700 54.26 4.32 67.50
3 430 1292 2770 1.35 6.64 16670 80.86 6.40 102.86
4 577 1746 3735 1.78 8.79 22640 107.46 8.48 138.23
5 724 2200 4700 2.21 10.94 28610 134.06 10.57 173.59
6 871 2654 5665 2.63 13.09 34580 160.66 12.65 208.95
7 1018 3108 6630 3.06 15.24 40550 187.26 14.73 244.31
8 1165 3562 7595 3.49 17.39 46520 213.86 16.81 279.67
9 1312 4016 8560 3.92 19.54 52490 240.46 18.89 315.03
10 1459 4470 9525 4.35 21.69 58460 267.07 20.97 350.39

Table 11: Numerical comparison of neighborhood degree-based indices of poly-c-glutamic acid for n� 1 to 10.

[n] NM1 NM2 NF nmNM2 NR ND3 ND5 NH NI

1 104 249 520 0.57 2.45 2524 23.32 2.28 26.13
2 193 467 983 0.98 4.36 4782 42.88 3.87 47.61
3 282 685 1446 1.39 6.26 7040 62.45 5.47 69.09
4 371 903 1909 1.81 8.16 9298 82.02 7.06 90.56
5 460 1121 2372 2.22 10.07 11556 101.58 8.65 112.04
6 549 1339 2835 2.63 11.97 13814 121.15 10.24 133.52
7 638 1557 3298 3.05 13.87 16072 140.72 11.84 155.00
8 727 1775 3761 3.46 15.78 18330 160.28 13.43 176.47
9 816 1993 4224 3.87 17.68 20588 179.85 15.02 197.95
10 905 2211 4687 4.29 19.58 22846 199.42 16.62 219.43

Table 10: Numerical comparison of degree-based indices of poly-c-glutamic acid for n� 1 to 10.

[n] M1 M2 F mM2 R ReZG3 SDD H I

1 40 40 102 2.36 4.54 190 25.00 4.13 8.65
2 82 86 210 4.39 8.73 416 47.67 8.07 18.20
3 124 132 318 6.42 12.93 642 70.33 12.00 27.75
4 166 178 426 8.44 17.13 868 93.00 15.93 37.30
5 208 224 534 10.47 21.33 1094 115.93 19.87 46.85
6 250 270 642 12.50 25.53 1320 138.33 23.80 56.40
7 292 316 750 14.53 29.73 1546 161.00 27.73 65.95
8 334 362 858 16.56 33.93 1772 183.67 31.67 75.50
9 376 408 966 18.58 38.12 1998 206.33 35.60 85.05
10 418 454 1074 20.61 42.32 2224 229.00 39.53 94.60
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Table 12: Numerical comparison of degree-based indices of poly-L-lysine for n� 1 to 10.

[n] M1 M2 F mM2 R ReZG3 SDD H I

1 42 42 78 2.78 5.18 190 24.67 4.90 12.41
2 86 89 154 5.14 9.99 408 47.67 9.53 26.06
3 130 136 230 7.50 14.79 626 70.67 14.17 39.71
4 174 183 306 9.86 19.59 844 93.67 18.80 53.36
5 218 230 382 12.22 24.40 1062 116.67 23.43 67.01
6 262 277 458 14.58 29.20 1280 139.67 28.07 80.66
7 306 324 534 16.94 34.01 1498 162.67 32.70 94.31
8 350 371 610 19.31 38.81 1716 185.67 37.33 107.96
9 394 418 686 21.67 43.62 1934 208.67 41.97 121.67
10 438 465 762 24.03 48.42 2152 231.67 46.60 135.26

Table 13: Numerical comparison of neighborhood degree-based indices of poly-L-lysine for n� 1 to 10.

[n] NM1 NM2 NF nmNM2 NR ND3 ND5 NH NI

1 84 178 378 0.68 2.54 1612 21.40 1.99 18.47
2 177 392 829 1.18 4.75 3670 42.60 4.18 41.09
3 270 606 1280 1.68 6.97 5278 63.80 6.36 63.72
4 363 820 1731 2.18 9.19 7786 85.00 8.55 86.34
5 456 1034 2182 2.68 11.40 9844 106.20 10.73 108.97
6 549 1248 2633 3.17 13.62 11902 127.40 12.92 131.60
7 642 1462 3084 3.67 15.84 13960 148.60 15.10 154.22
8 735 1676 3535 4.17 18.05 16018 169.80 17.28 176.85
9 828 1890 3986 4.67 20.27 18076 191.00 19.47 199.48
10 921 2104 4437 5.17 22.48 20134 212.20 21.65 222.10
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Figure 7: Graphical representation of (a) degree-based TIs and (b) neighborhood degree-based TIs for polysaccharide graph.
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Figure 8: Graphical representation of (a) degree-based TIs and (b) neighborhood degree-based TIs for poly-c-glutamic acid graph.
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Figure 9: Graphical representation of (a) degree-based TIs and (b) neighborhood degree-based TIs for poly-L-lysine graph.
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6. Numerical and Graphical Comparison of
the Indices

In Section 4, various degree-based and neighborhood
degree-based TIs are calculated for the polymers, including
polysaccharide, poly-c-glutamic acid, and poly-L-lysine
molecular graphs using M-polynomial and NM-
polynomial methods. To verify the behavior of indices,
diferent values of n are considered. It is noticed from
Tables 8–13 that the values of TIs increases as the n value
increases. Te behaviors of the M-polynomial and NM-
polynomial are shown in Figures 4–6. Te obtained TIs are
represented using graphs for the distinct values of n as
shown in Figures 7–9. Te variation of values of degree-
based and neighborhood degree-based indices is observed,
and the following points are noted. In degree-based indices
of polysaccharide poly-c-glutamic acid and poly-L-lysine
graphs from Tables 8, 10, and 12, it is observed that
ReZG3 >F>M2 >M1 > SDD> I>R>H> mM2. It is obvi-
ous that ReZG3 is the highest numerical value and mM2 is
the least value for every value of n� 1 to 10 among all the
nine degree-based indices considered in this study. Simi-
larly, by observing Tables 9, 11, and 13, the neighborhood
degree-based indices for the graphs observe that
ND3 >NF >NM2 >NM1 >ND5 >NI>NR>NH> mNM2.
It is obvious that ND3 is the highest numerical and mNM2 is
the lowest value for every value of n� 1 to 10 among all the
nine neighborhood indices considered in this study.

To clarify the physical signifcance of our results and the
efectiveness of the computed topological indices, we have
added concise discussions. Tese indices numerically cap-
ture key structural aspects of our studied polymers. Higher
values often correspond to enhanced stability and lower
reactivity, while lower values indicate potential reactivity
sites. Te strong correlation between certain indices and
experimentally measured properties validates their pre-
dictive power. Our study underscores their utility in de-
signing polymers for drug delivery and tailored material
properties. We also acknowledge the need for considering
molecular context and exploring advanced methods for even
greater accuracy. Tese insights advance our understanding
of polymer structure-property relationships.

7. Conclusion

Te paper examines various topological indices, including
the frst Zagreb index M1(G), second Zagreb index M2(G),
modifed second Zagreb index mM2(G), third redefned
Zagreb index ReZG3(G), forgotten index F(G), Randic
index R(G), inverse Randic index RR(G), symmetric di-
vision index SDD(G), inverse sum index I(G), harmonic
index H(G) and its neighborhood versions of the above
indices for the polysaccharide, poly-c-glutamic acid, and
poly-L-lysine structures. Te M-polynomials and NM-
polynomials of the aforementioned structures are calcu-
lated to create few degree-based and neighborhood degree
sum-based indices, and graphical representations are also
composed for these polynomials. In the future, the work
aims to correlate the physicochemical features of distinct

chemical compounds to the forecasting power of neigh-
borhood degree-based TIs.
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